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Abstract: Graphite/poly(3,4-ethyenedioxythiophene) (PEDOT) nanocomposites were prepared by
an in-situ oxidative polymerization process. The electrical conductivity and Seebeck coefficient
of the graphite/PEDOT nanocomposites with different content of graphite were measured in the
temperature range from 300 K to 380 K. The results show that as the content of graphite increased
from 0 to 37.2 wt %, the electrical conductivity of the nanocomposites increased sharply from
3.6 S/cm to 80.1 S/cm, while the Seebeck coefficient kept almost the same value (in the range
between 12.0 µV/K to 15.1 µV/K) at 300 K, which lead to an increased power factor. The Seebeck
coefficient of the nanocomposites increased from 300 K to 380 K, while the electrical conductivity
did not substantially depend on the measurement temperature. As a result, a power factor of
3.2 µWm−1 K−2 at 380 K was obtained for the nanocomposites with 37.2 wt % graphite.

Keywords: PEDOT; graphite; nanocomposites; thermoelectric properties

1. Introduction

Thermoelectric (TE) materials can directly convert energy from thermal to electrical and
vice versa by transporting carriers [1,2]. Poly(3,4-ethylenedioxythiophene) (PEDOT) and its
derivatives are promising for TE applications, mainly because of its low thermal conductivity, low
density, and the possibility of achieving high electrical conductivity after doping [3–10]. PEDOT
and its derivatives have been synthetized primarily by chemical oxidation polymerization [11],
vapor-phase polymerization [12], and electrochemical polymerization [13]. Although the ZT value
(the thermoelectric figure of merit ZT = S2σT/k, where T, S, σ, and k are absolute temperature,
Seebeck coefficient, electrical conductivity, and thermal conductivity, respectively [5]) of PEDOT and
its derivatives have been significantly enhanced [14,15], it is still much lower than that of typical
inorganic TE materials.

Many researchers have used carbon materials, such as carbon nanotubes (CNTs) and
graphene, as thermoelectrics in their own right [10] and as fillers for preparation of
conducting polymer-based nanocomposites [10,16–25], mainly because of their high electrical
conductivity and excellent thermal stability [26,27]. For instance, we fabricated carbon black
(CB)/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) composite films using
a spin-coating process, and a power factor of 0.96 µWm−1 K−2 was obtained for the composite film
with 2.52 wt % CB [16]. In contrast, for our dip-coated polyester fabric, using a mixture solution of
PEDOT:PSS and water base colloidal graphite, a power factor of only 0.025 µWm−1 K−2 at 398 K was
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determined with 15 wt % graphite content [20]. When graphene was used as filler, a power factor of
11.09 µWm−1 K−2 was obtained for graphene/PEDOT:PSS nanocomposite films, fabricated through a
solution spin coating method with 2 wt % graphene at room temperature [17]. A power factor about
5.2 µWm−1 K−2 was achieved for PEDOT-reduced graphene oxide (rGO) nanocomposites prepared
by a template-directed in-situ polymerization method with 16 wt % rGO at room temperature [18].
In contrast, higher power factors around 50 µWm−1 K−2 have been obtained [22,23]. For example,
a room-temperature power factor of 45.7 µWm−1 K−2 was achieved for graphene/PEDOT:PSS
composites prepared by in-situ polymerization with 3 wt % graphene [22], and a room-temperature
power factor of 53.3 µWm−1 K−2 was obtained for graphene/PEDOT:PSS composites fabricated by
vacuum filtration with 3 wt % graphene [23]. For a PEDOT: PSS/graphene-iron oxide nanocomposite
(GINC), a power factor of 51.93 µWm−1 K−2 was achieved for the composites with 95 wt % GINC
at 300 K [28]. Furthermore, CNTs can be used as fillers. For example, Wang et al. [19] fabricated
multi-walled carbon nanotube (MWCNT)/PEDOT composites by in-situ oxidative polymerization, and
a power factor of 25.9 µWm−1 K−2, was obtained for the composites with 26.5 wt % MWCNTs at room
temperature. Several examples of CNT-containing composites yield much higher power factors [24,25].
For example, Zhang et al. [24] fabricated a single-wall carbon nanotube (SWCNT)/PEDOT: PSS
composite by mixing aqueous dispersions of SWCNT and PEDOT: PSS, and a room-temperature
power factor of 300 µWm−1 K−2 was obtained with 74 wt % SWCNTs. Wang et al. [25] prepared an
n-type CNT/PEDOT composite by in-situ polymerization, and a power factor of 1050 µWm−1 K−2

was achieved with 10.7 wt % CNTs at room temperature.
These examples from the background research show that the TE properties of PEDOT and

its derivatives can be greatly improved when using carbon materials, such as carbon black, carbon
nanotubes, or graphene, as fillers in composites with a PEDOT or PEDOT-derivative matrix. Compared
to carbon nanotubes and graphene, graphite is much cheaper, motivating the need for studies
of thermoelectric properties of graphite/PEDOT nanocomposites. In this work, graphite/PEDOT
nanocomposites were prepared by an in-situ oxidative polymerization method and their composition,
microstructure, and TE properties were investigated.

2. Materials and Methods

2.1. Materials

Graphite powder (APS 7–11 micron, 99%) and anhydrous ethanol were purchased from Shanghai
Titan Technology Co., Ltd. (Shanghai, China). 3,4-ethyenedioxythiophene (EDOT) (purity ≥99.0%) was
purchased from Adamas-beta. Chloroform (CHCl3) and Ferric chloride (FeCl3·6H2O) were purchased
from Sinopharm Chemical Reagent Co., Ltd. All the materials were used without further treatment
or purification.

2.2. Preparation of Graphite/PEDOT Nanocomposites

A designed amount of graphite (to obtain 8.9, 18.1, 29.8 and 37.2 wt % with respect to the sum of
the weight of graphite and monomer) was added into 100 mL CHCl3, ultrasonicated for 1 h and then
stirred for 30 min (solution A). Next, 0.85 mL EDOT monomer was dissolved in 50 mL CHCl3 and
then stirred for 30 min (solution B). Solution B was mixed with solution A, ultrasonicated for 10 min
and then stirred for 30 min (solution C). 8.65 g FeCl3·6H2O as oxidant was dissolved in 50 mL CHCl3
to form solution D. Solution D was dropped into solution C, stirred for 24 h, and then washed with
deionized water and anhydrous ethanol for several times until the filtrate became colorless. Finally,
the products were dried at 60 ◦C under vacuum for 8 h. The prepared graphite/PEDOT nanocomposite
powders were pressed into thin pellets with a diameter of 15 mm and thickness of about 1.5 mm by
compacting at a room temperature under the pressure of 30 MPa for 30 min. The pure PEDOT particles
and pellets were prepared using the same procedure without addition of graphite.



Energies 2018, 11, 2849 3 of 9

2.3. Sample Characterization

The graphite/PEDOT nanocomposite powders were characterized by X-ray power diffraction
(XRD; TD3500, Dandong, China), and scanning electron microscopy (SEM; FEI Quanta200 FEG)
and X-ray photoelectron spectroscopy (XPS; PHI 5000 VersaProbe (ULVAC-PHI)), using Al Kα

radiation from an X-ray tube operated at 15 kV and 40 W. The spot size was 200 µm. The base
pressure for the measurement was about 6 × 10−7 Pa. The samples were not plasma-etched
before measurement. The electrical conductivity and Seebeck coefficient of the graphite/PEDOT
nanocomposite bulk materials were measured simultaneously from 300 K to 380 K on an MRS-3L
thin-film TE test instrument system in a vacuum atmosphere (Wuhan Giant Instrument Technology
Co., Ltd., Wuhan, China).

3. Results and Discussion

Figure 1 is a schematic illustration of the fabrication process of the graphite/PEDOT
nanocomposites and bulk materials. When the EDOT monomer was added into the graphite dispersion,
the EDOT monomer was adsorbed on the surface of graphite due to electrostatic attraction [29].
After the oxidant of FeCl3·6H2O was dropped into the solution, the EDOT monomer was in-situ
polymerized on the surface of graphite, and then formed graphite/PEDOT nanocomposites. Figure 2a
shows XRD results of PEDOT, graphite and graphite/PEDOT nanocomposites with 37.2 wt % graphite.
It can be seen that the as-prepared PEDOT shows an amorphous XRD feature as expected [30], while
the graphite shows a strong peak at about 26.48◦, which is attributed to diffraction from the (002) plane
of graphite [31]. The graphite/PEDOT nanocomposite also shows this characteristic peak of graphite
combined with the amorphous feature from PEDOT. Figure 2b shows XPS survey spectra of graphite
and graphite/PEDOT nanocomposites with 37.2 wt % graphite. It can be seen from Figure 2b that the
pure graphite mainly contains carbon, with a small amount of oxygen from surface contaminations
detected. In contrast, for the graphite/PEDOT nanocomposites, S and Cl were detected. The Cl
originates from the FeCl3·6H2O used in the synthesis process [32,33]. Sulphur is a characteristic
element of PEDOT. The binding energy at around 164.2 eV is attributed to the S2p band in PEDOT [34].
Since XPS is a highly surface-sensitive technique, this indicates that that PEDOT was coated on the
surfaces of graphite.
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Figure 2. (a) X-ray power diffraction (XRD) patterns of PEDOT, graphite, and graphite/PEDOT
nanocomposite with 37.2 wt % graphite, and (b) X-ray photoelectron spectroscopy (XPS) of graphite
and graphite/PEDOT nanocomposites with 37.2 wt % graphite.

Figure 3a–f show SEM images of graphite (a & b) and graphite/PEDOT nanocomposites with
8.9 wt % (c), 18.1 wt % (d), 29.8 wt % (e), and 37.2 wt % (f) graphite. The surfaces of pure graphite
are much smoother than those of graphite/PEDOT nanocomposites, indicating that PEDOT is
homogeneously coated on the graphite surfaces. Figure 3g,h show an SEM image and corresponding
energy dispersive spectrometer (EDS) map of sulphur for the graphite/PEDOT nanocomposites with
37.2 wt % graphite. As indicated by the EDS map, the sulphur is homogeneously dispersed in the
graphite/PEDOT nanocomposites (Figure 3h).

The electrical conductivity, Seebeck coefficient, and power factor at 300 K for the graphite/PEDOT
nanocomposites with graphite content from 0 to 37.2 wt % are shown in Figure 4a. The electrical
conductivity and Seebeck coefficient of pure PEDOT are in the range of 3.5 S/cm–6.0 S/cm and
12.0 µV/K–16.0 µV/K, respectively. With increasing graphite content from 8.9 wt % to 37.2 wt %,
the electrical conductivity of the composites significantly increases from 30.5 S/cm to 80.1 S/cm, in all
cases an order of magnitude higher than that of pure PEDOT. The reason for this increase is in part
because the electrical conductivity of graphite is much higher than that of PEDOT [35]. It may also be
affected by the π–π interactions between PEDOT and graphite, which causes PEDOT to grow along
the graphite surface. As a result, a more ordered PEDOT molecular chain may be formed, which is
beneficial to decrease the carrier hopping barrier and enhance the carrier mobility [29,36].

The Seebeck coefficient of all the composites retains almost the same value (14.1 µV/K–15.1 µV/K),
which is close to that of pure PEDOT. As the graphite content is increased from 8.9 wt % to 37.2 wt %,
the power factor of the graphite/PEDOT composites increases from ~0.7 µW/mK2 to 1.6 µW/mK2 at
300 K. This was mainly due to the increased electrical conductivity and almost unchanged Seebeck
coefficient of all the nanocomposites.
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Figure 3. Scanning electron microscopy (SEM) (a) images of graphite (20 um) and (b) images of
graphite (5 um), graphite/PEDOT nanocomposites with 8.9 wt % (c), 18.1 wt % (d), 29.8 wt % (e),
and 37.2 wt % (f) graphite. SEM image (g) and corresponding energy dispersive spectrometer
(EDS)-mapping of sulphur (h) for the graphite/PEDOT nanocomposites with 37.2 wt % graphite.

In order to investigate the influence of temperature on the TE properties of graphite/PEDOT
composites, the electrical conductivity, Seebeck coefficient, and power factor of graphite/PEDOT,
composites with different graphite content were measured in the temperature range from 300 K to
380 K (Figure 4b–d). As the measurement temperature was increased from 300 K to 380 K, the electrical
conductivity of the composites was nearly constant. In contrast, the Seebeck coefficient increased,
e.g., from 15.1 µV/K to 24.7 µV/K, and from 14.1 µV/K to 21.7 µV/K, for the nanocomposites with



Energies 2018, 11, 2849 6 of 9

8.9 wt % and 37.2 wt % graphite, respectively. As a result, the power factor also increased as the
temperature increased, and a maximum power factor of 3.2 µWm−1 K−2 at 380 K was obtained for
the nanocomposites with 37.2 wt % graphite. This is about 30 times higher than that of pure PEDOT
(0.1 µW/mK2) prepared by the same procedure, and also much higher than those of a CB/PEDOT
nanocomposite (0.96 µWm−1 K−2 with 2.52 wt % CB at 300 K) [16] and a graphite-PEDOT: PSS coated
polyester fabric (0.025 µWm−1 K−2 with 15 wt % graphite content at 398 K) [20]. However, this value is
lower when compared to the nanocomposites using graphene or carbon nanotube as fillers, for example,
a graphene/PEDOT:PSS nanocomposite (11.09 µWm−1 K−2 with 2 wt % graphene at 300 K) [17],
a rGO/PEDOT composite (5.2 µWm−1 K−2 with 16 wt% rGO at 300 K) [18], a MWCNT/PEDOT
composite (25.9 µWm−1 K−2 with 26.5 wt % MWCNT at 300 K) [19], a PEDOT:PSS/graphene-iron
oxide nanocomposite (51.93 µWm−1 K−2 with 95 wt % GINC at 300 K) [28], a graphene/PEDOT:PSS
composite (53.3 µWm−1 K−2 with 3 wt % graphene at room temperature) [23], a SWCNT/PEDOT:PSS
composite (300 µWm−1 K−2 with 74 wt % SWCNTs at room temperature) [24], and a CNT/PEDOT
composite (1050 µWm−1 K−2 with 10.7 wt % CNTs at room temperature) [25]. The possible potential
applications of our graphite/PEDOT nanocomposites can be used in the following aspects: wrist
watches, remote wireless sensors, biomedical devices, etc. [37].Energies 2018, 11, x FOR PEER REVIEW  6 of 8 
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Figure 4. (a) electrical conductivity, Seebeck coefficient, and power factor of graphite/PEDOT
nanocomposites with different content of graphite from 0 to 37.2 wt % at 300 K. Temperature
dependency of (b) electrical conductivity, (c) Seebeck coefficient, and (d) power factor of
graphite/PEDOT nanocomposites with different content of graphite from 8.9 to 37.2 wt %.

4. Conclusions

Graphite/PEDOT nanocomposites were prepared by an in-situ polymerization method with
different content of graphite. The electrical conductivity of these nanocomposites was greatly enhanced
with the graphite content increased from 0 to 37.2 wt %, while the Seebeck coefficient stayed nearly
constant at 300 K. As the measured temperature increased from 300 K to 380 K, the power factor of the
nanocomposites increased, mainly because of the similar trend in the Seebeck coefficient. A power
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factor of 3.2 µW/mK2 at 380 K was obtained for the nanocomposites with 37.2 wt % graphite, which is
about 30 times higher than that of the pure PEDOT, though lower than nanocomposites using graphene
or carbon nanotubes as filler. Nonetheless, graphite is economically advantageous compared to carbon
nanotubes and graphene. Furthermore, the present study shows that using graphite as filler is an
effective method to enhance the TE properties of PEDOT, and also indicates that graphite could be
used in other conducting polymer systems.
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