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Abstract: Due to the demands of new technologies such as social networks, e-commerce and cloud
computing, more energy is being consumed in order to store all the produced data. While these
new technologies require high levels of availability, a reduction in the cost and environmental
impact is also expected. The present paper proposes a power balancing algorithm (power load
distribution algorithm-depth (PLDA-D)) to optimize the energy distribution of data center electrical
infrastructures. The PLDA-D is based on the Bellman and Ford–Fulkerson flow algorithms that
analyze energy-flow models (EFM). EFM computes the power efficiency, sustainability and cost
metrics of data center infrastructures. To demonstrate the applicability of the proposed strategy,
we present a case study that analyzes four power infrastructures. The results obtained show about
a 3.8% reduction in sustainability impact and operational costs.
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1. Introduction

Social awareness has influenced the way the world works and how people live. Widely available
Internet access, the growing mobile market and advances in cloud computing technology are
generating a huge amount of data, thus entailing unprecedented demands on energy consumption.
The digital universe corresponds to 500 billion gigabytes of data [1], for which only 25% of the world’s
population is on-line [2].

Data center power consumption has increased significantly over recent years, influenced by
the increasing demand for storage capacity and data processing [3–5]. In 2013, data centers in the
U.S. consumed 91 billion kilowatt-hours of electricity [6], and this is expected to continue to rise.
In addition, critical elements in the performance of daily tasks, such as social networks, e-commerce
and data storage, also contribute to the rise in energy consumption across these systems.

Data center infrastructures require electrical components, many of which may directly affect
system availability. Fault-tolerant mechanisms are key techniques for handling equipment with limited
reliability. The Uptime Institute [7] is an institution that classifies the infrastructure of the data center
based on the architectures and characteristics of redundancy and fault tolerance (Tier I, Tier II, Tier III
and Tier IV). In this paper, four data centers were analyzed, considering different tiers of architectures
for the power subsystem. The power subsystem electrical flow is represented by the energy flow
model (EFM) [8].
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The algorithm proposed in this paper, named power load distribution algorithm-depth (PLDA-D),
improves the results presented in our previous work when considering the operational cost and
energy efficiency of data centers [8–10]. Now, we have obtained the shortest path, using Bellman
algorithm instructions, considering the energy cost as the main metric and the maximum energy flow
(Ford–Fulkerson), considering the energy efficiency of each component of the data center’s electrical
infrastructure. Thus, we propose this new algorithm that uses two criteria of different classes that
complement each other.

Both the proposed algorithm and the EFM model are supported in the Mercury modeling
environment (see Section 4). In addition to the EFM model and the proposed algorithm, the Mercury
environment also supports reliability block diagrams (RBD) [11], Markov chain [12] and stochastic
Petri nets (SPN) [13] modeling, which are an essential part of the analysis. As such, the impact on the
power subsystem reliability and availability was included.

The paper is organized as follows. Section 2 presents studies related to this research field. Section 3
introduces the basic concepts of the data center tier classification, sustainability and dependability.
Section 4 presents an overview of the Mercury evaluation platform. Section 5 describes the energy
flow model (EFM). Section 6 explains the PLDA-D. Section 7 describes the basic models adopted.
Section 8 presents a case study, and finally, Section 9 concludes the paper and suggests directions for
future work.

2. Related Works

Over the last few years, considerable research has been conducted into energy consumption in
data centers. This section presents studies related to this research field.

Al-Fares [14] proposed an engine, called Hedera, for dynamic re-routing of the traffic of
networking switch topologies that compose data center infrastructures. The main goal is to optimize
the network bandwidth utilization with the proposed scheduler engine that has a minimal overhead
on the available flows. Following the proposed approach by the authors, the bandwidth utilization
was optimized to over 113% in relation to the static load-balancing strategies.

Dzmitry [15] proposed a methodology, named “Data center energy-efficient network-aware
scheduling" (DENS) to manage job performance, energy consumption and data traffic. This proposed
strategy is able to dynamically analyze the network feedback and make decisions to improve
performance, energy consumption and the traffic. Therefore, the goal is to conduct the balance
between those metrics, as well as to minimize the number of computing servers required on the data
center that provide support to the services contracted.

These two papers are complementary to ours, as we propose a solution to reduce the energy
consumption through the IT equipment of a data center, and those papers reduce the energy
consumption by improving the network utilization.

Doria [16] extended the PowerFarm software [17] concept by adding an online monitor of loads
and the correspondent power consumption. Additionally, the proposed EnergyFarm tool is able to turn
off/on servers as needed according to the demands and respecting logical and physical dependencies.
Therefore, the EnergyFarm turns off a set of servers to satisfy the required demand for storage on the
data center, which reduces the overall system energy consumption, CO2 emissions and the respective
associated cost.

Heller et. al. [18] proposed an engine, named ElasticTree, for managing the power consumption of
computer networks. The ElasticTree is able to dynamically adjust switches in order to couple with the
changes of the traffic loads of data centers. The main goal is, besides reducing the energy consumption,
to improve performance and the fault tolerance of the system under analysis as well. To accomplish
this, methods (e.g., formal models, greedy bin-packer, heuristic and prediction methods) are proposed
to decide which links and/or switches must be used.

Neto et. al. [19] proposed an algorithm, named MtLDF, to improve the load balance of fog systems
considering performance metrics such as delay and priority. The authors have shown, through applied
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case studies, that the proposed method is able to reduce the energy consumption by improving the
load distribution.

These previous related works are similar to the proposed strategy of our paper. However, none of
them propose our own algorithm to minimize the energy consumption of the data center. The PLDA-D
proposes the use of a new algorithm, based on the classic algorithms of minimum and maximum flow,
making a mixture of both and obtaining a great result, with the search in depth.

3. Basic Concepts

This section discusses the basic concepts needed for a better understanding of the paper and
presents an overview of the data center tier classification, followed by concepts regarding sustainability
and combinatorial and state-based models. Finally, the concepts of Mercury environment and energy
flow model are introduced.

3.1. Tier Classification

A data center infrastructure can be classified based on its redundancy features and fault tolerance
ability [7]. This classification provides metrics to data center designers that identify the performance
of the electrical infrastructureand strategies adopted. The following lines provide an overview of the
four-tier classification.

3.1.1. Data Center Tier I (Basic)

This is a data center that does not offer redundant power and cooling infrastructures. A Tier I data
center provides infrastructure to support information technology beyond office hours. Its infrastructure
includes a dedicated area for the IT subsystem; a power subsystem with one uninterruptible power
supply (UPS) to cope with power spikes and short outages; a dedicated cooling subsystem that does
not shut down during office hours; and a generator to protect IT subsystem outages. Figure 1 depicts
an example of the power system infrastructure for the Tier I data center.

Figure 1. Tier I data center power subsystem.

We discuss how to manage schemas and their evolution for the last two scenarios (static schema
management is straightforward and ignored here).

3.1.2. Data Center Tier II (Redundant Components)

A Tier II data center incorporates redundant critical power and cooling components, but with
a single power distribution infrastructure. This infrastructure supports planned maintenance activities
without interrupting the service, reducing as a result the system downtime. The redundant components
include power and cooling equipment, such as UPS, chillers, pumps and engine generators. Figure 2
depicts an example of the power subsystem infrastructure assuming the Tier II classification.
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Figure 2. Tier II data center power subsystem.

3.1.3. Data Center Tier III (Simultaneous Maintenance and Operation)

A Tier III data center does not require shutdowns for equipment replacement or maintenance.
The Tier III configuration considers the Tier II arrangement including a redundant independent
power path (as shown through Figure 3). Therefore, each power component may be shutdown for
maintenance without impacting the IT system’s operation. Similarly, a redundant cooling subsystem is
also provided. These data centers are not susceptible to downtime for planned activities and accidental
causes. Planned maintenance activities may be carried out using the redundant components and
capabilities of the reference distribution so as to ensure the safe operation of the remaining components.

Figure 3. Tier III power system from utility to IT equipment.

3.1.4. Data Center Tier IV (Fault-Tolerant Infrastructure)

A Tier IV adopts the Tier III infrastructure by adding a fault-tolerant mechanism, in which
independent systems (electrical and cooling) are present. This tier classification is suitable for
international companies that provide 24/7 customer services (as shown through Figure 4).
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Figure 4. Tier IV power system from utility to IT equipment.

3.2. Sustainability

The concept of the green data center is related to electricity consumption and CO2 emissions,
which depend on the utility power source adopted. For example, in Brazil, 73% of electrical power is
derived from clean electricity generation [8], whereas in the USA, 82.1% of generated electricity comes
from petroleum, coal or gas [20]. Figure 5 depicts the relationship between the type of material used
for power generation in Brazil and the USA.

Figure 5. Energy Consumption: Brazil vs. USA.

Several methods and metrics are available for comparing equipment from a sustainability viewpoint.
Exergy is a metric that estimates the energy consumption efficiency of a system. It is defined as

the maximal fraction of latent energy that can be theoretically converted into useful work [21].

Exergy = Energy× F (1)

where F is a quality factor represented by the ratio of Exergy/Energy. For example, F is 0.16 for water
at 80 ◦C, 0.24 for steam at 120 ◦C and 1.0 for electricity [21].

The PUE (power usage efficiency) is defined as the total load of the data center (Cin f rastructure)
divided by the total load of the IT equipment installed (CTI).

PUE =
Cin f rastructure

CTI
(2)
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3.3. Combinatorial and State-Based Models

RBD [22], fault trees [11], SPNs [23] and Continuous Time Markov Chains (CTMC) [12] have been
used to model fault-tolerant systems and to evaluate some dependability measures. These model
types differ in two aspects, i.e., simplicity and respective modeling capability. RBD and fault trees are
combinatorial models, so they capture conditions that make a system fail in the structural relationships
between the system components. They are more intuitive to use, but do not allow one to express
dependencies between system’s components. CTMC and SPN models represent the system behavior
(failures and repair activities) by its states and event occurrence expressed as labeled state transitions.

These state-based models enable the representation of complex relations, such as active
redundancy mechanisms or resource constraints [22,24]. The combination of both types of models
is also possible, allowing one to obtain the best of both worlds, via hierarchical modeling. Different
model types can be combined with different levels of comprehension, leading to composite hierarchical
models. Heterogeneous hierarchical models are being used to deal with the complexity of systems
in other domains, such as sensors networks, telecommunication networks and private cloud
computing environments.

3.3.1. Reliability Block Diagram

The reliability block diagram (RBD) [25] is a technique for computing the reliability of systems,
using intuitive block diagrams. The RBD is able to represent the component’s interaction and to verify
the relationship over the failed and active status of elements that keeps the system operational.

Figure 6a depicts a series relationship, where the system fails by the failure of a single component.
Considering n independent components, the reliability is obtained by Equation (3)

Ps =
m

∏
i=1

(Pi) (3)

where Pi is the reliability—Ri(t) (instantaneous availability (Ai(t)) or steady state availability (Ai))—of
block bi.

Figure 6b shows a parallel arrangement, where the system continues to be operational, even with
the failure of a single component. Considering n independent components, the reliability is obtained
by Equation (4):

Pp = 1−
m

∏
i=1

(1− Pi) (4)

Figure 6. (a) Serial arrangement; and (b) parallel configuration.

For other examples and closed-form equations, the reader should refer to [11].

3.3.2. Stochastic Petri Nets

The Petri net (PN) [26] is able to represent concurrency, communication mechanisms,
synchronization and a natural representation of deterministic and probabilistic systems. PN is a
graph, in which places are represented by circles and transitions are shown as rectangles. Directed arcs
are used to connect places and transitions and vice versa.
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This paper considers stochastic Petri nets for conducting dependability analysis of data center
power architectures. Figure 7 represents the SPN model of a “simple component”, where the places’
states are X_ON (activity) and X_OFF (inactivity). When the number of tokens (#) in the place X_ON
is greater than zero, this means the component is operational. Otherwise, the component has failed.
MTTFand MTTRof the system are used to compute the availability, and these parameters are not
shown in the figure, but are associated with the transitions X_Failure and X_Repair.

Figure 7. Simple component model.

The expression IF (#X_Rel_Flag = 1) : 2 ELSE 1 defines the multiplicity (« md »), represented by
the arc from X_OFF to X_Repair. The place X_Rel_Flag is adopted to let one conduct the evaluation of
availability or reliability according to the marking of the place p. #XRel_Flag = 1 means the reliability
model is set; otherwise, we have the availability model.

If the number of tokens in the place is zero (X_Rel_Flag and (#X_Rel_Flag = 0)), the probability
P#X_ON > 0 computes the component’s availability. Otherwise, (#X_Rel_Flag = 1); then the
probability P#X_ON > 0 allows one to compute the component’s reliability. That enables us to
parameterize the model, allowing the system evaluation, considering or not the repair.

3.3.3. Continuous Time Markov Chains

Markov chains can be adopted to analyze various types of systems. A Markov process does not
have memory; therefore, it has no influence from the past. The current state is enough to know the
future steps. A Markov chain occurs when the process has a discrete state space. These states represent
the different conditions that the system may be in. The events are represented by the transitions
between the states.

In Figure 8, a new task is represented by the arc with rate λ. The arc with rate µ represents the
server. This model depicts a system with two servers that compute received jobs. Considering the
number of busy servers as a time function, it is possible to assume the function X(t) or a random
variable. The state Xn(t) is named as any modification of X over (t). The state space of the model is
the set of all possible states. Therefore, we can compute the transition probabilities from a state to its
successor Xn+1(t).

In order to accomplish this, it is necessary to define the probability distribution function of Xn(t).
Stochastic processes are these random functions of time, where this variable changes its state over
time [22].

Figure 8. Example of a Continuous Time Markov Chains (CTMC) model.
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4. Mercury

The Mercury environment [27,28] was developed by the MoDCS[28] research group for building
and evaluating performance and dependability models. The proposed environment can be adopted as
a modeling tool for the following formalisms: CTMC [12], RBD [11], EFM [9] and SPN [13,29,30].

Mercury offers useful features that are not easily found in other modeling environments, such as:

• More than 25 probability distributions supported in SPN simulation;
• Sensitivity analyses of CTMC and RBD models;
• Computation of reliability importance indices; and
• Moment matching of empirical data

Figure 9 details the functionalities available in the Mercury environment. The optimization
module is able to evaluate the supported models (SPN, RBD, CTMC and EFM) through optimization
techniques. In our previous study, we implemented GRASP (Greedy Randomized Adaptive Search
Procedure) [31] and PLDA [9]. This paper proposes the PLDA-D as a great improvement over the
PLDA. This is because in a single search, the PLDA-D considers two criteria for stopping, i.e., minimum
flow for the lowest cost (Bellman) and maximum flow for energy (Ford–Fulkerson), with a scan of the
graph in depth for each possible path.

Figure 9. Evaluation environment. SPN, stochastic Petri nets; RBD, reliability block diagrams; EFM,
energy-flow models. PLDA-D, power load distribution algorithm-depth.

5. Energy Flow Model

The EFM represents the energy flow between the components of a cooling or power architecture,
considering the respective efficiency and energy that each component is able to support (cooling)
or provide (power). The EFM is represented by a directed acyclic graph in which components of
the architecture are modeled as vertices and the respective connections correspond to edges [8,32].
For more details about the formal definitions of the EFM, the reader is redirected to [32].

An example of EFM is shown in Figure 10. The rounded rectangles equate to the type of equipment,
and the labels name each item. The edges have weights that are used to direct the energy that flows
through the components. For the sake of simplicity, the graphical representation of EFM hides the
default weight of one.

TargetPoint1 and SourcePoint1 represent the IT power demand and the power supply, respectively.
The weights of the edges, i.e., 0.7 and 0.3, are the energy flows via the uninterrupted power supply
(UPS) units, UPS1 at 70% and UPS2 at 30%, respectively, for meeting the power demand from the
IT system.
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Figure 10. EFM example in the Mercury tool. STS, static transfer switch.

The EFM is employed to compute the overall energy required to provide the necessary energy
at the target point. If we consider that the demand from the data center computer room is 100 kW,
this value is thus associated with TargetPoint1. Assuming that the efficiency of STS1 (static transfer
switch) is 95%, the electrical power that the STS component receives is 105.26 kW.

A similar strategy is adopted for components UPS1 and UPS2, however now, dividing the flow
according to the associated edge weights, 70% (73.68 kW) for UPS1 and 30% (31.27 kW) for UPS2.
Thus, the UPS1 needs 77.55 kW, considering 95% efficiency, and UPS2 needs 34.74, considering 90%
electrical efficiency. The Source Point 1accumulates the total flow (112.29 kW).

The edge weights are specified by the designer of the model, and there is no guarantee that the
best values for the distribution were defined; as a result, higher power consumption may be reached.
This work aims at solving such an issue by automatically setting the edge’s weight distribution of
the EFM model with the PLDA-D algorithm. Therefore, our approach is able to achieve lower power
consumption for the system.

Cost

In this paper, the operational cost considers the data center operation period, energy consumed,
energy cost and the data center availability. Expression (5) denotes the operational cost.

OpCost = PInput × CEnergy × T × (A + α(1− A)) (5)

Pinput is the power supply input; Cenergy is the energy cost per energy unit; T is the considered
time period; A is the system availability; α is the energy percentage that continues to be consumed
when the system fails.

6. Power Load Distribution Algorithm in Depth Search

The power load distribution algorithm-depth (PLDA-D) is proposed to minimize the electrical
energy consumption of the system represented through EFM models [32]. PLDA-D is a depth search
extension of PLDA [9,10]. The Bellman–Ford algorithm [33] is used for searches of the smaller path
in a weighted digraph, whose edges have a weight, including a negative one. The Ford–Fulkerson
algorithm [34] is used when it is desired to find a maximum flow that makes the best possible use of
the available capacities of the network in question. The PLDA-D is a blend of these algorithms since it
uses the characteristics of Bellman–Ford to choose the lowest cost, considering the weights of each
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node and the attributes of Ford–Fulkerson to pass the more significant amount of energy by a specific
path, considering the energy efficiency of each piece of equipment.

The time and space analysis of depth-first-search (DFS) differs according to its application area.
DFS traverses an entire graph with time Θ (|V| + |E|), linear in the graph size. In the worst case,
it adopts the space O(|V|) to store the set of vertices on the actual search path like the stack of vertices
visited [35]. Thus, in this setting, the time and space bounds are the same as for breadth-first search,
and the choice of which of these two algorithms to use depends less on their complexity and more on
the different properties of the vertex orderings the two algorithms produce.

In this case, for the properties of a data center’s electrical infrastructure, the depth search
implemented in PLDA-D offers an optimal solution, whereas the width search performed in PLDA
guarantees only a good solution.

The PLDA-D is divided into three phases: initialization, kernel calculations and search.

6.1. Initialization

This phase initializes variables, calls PLDA-D and computes the input power assigned to the EFM.
In Algorithm 1 (initialize PLDA-D), the power infrastructure is represented by graph G (EFM model).
Variable R stores a copy of G, so the original EFM is preserved (Line 1). The accumulated cost
(AccumCost) of the variables, the capacities of the equipment (ccuv), edge weights (weighe) and the
input power (inputPower) are initialized with values of zero (Lines 2–11).

Algorithm 1 Initialization PLDA-D (G).

1: R = G;
2: for v ∈ R do
3: ccuv = 0;
4: ActualCostv = ∞
5: AccumCostv = 0;
6: Childv = null
7: end for
8: for e ∈ R do
9: weighe = 0;

10: end for
11: inputPower = 0;
12: for t ∈ Vtarget do
13: R = PLDADKernel(R, fd(t), s);
14: end for
15: setUpdateWeight(R);
16: return R;

ActualCostv of each node is initialized with a symbol denoting an infinite quantity (Line 4),
and the variable Child is initialized with a null value. This variable is adopted to create a relationship
between nodes (Line 6).

Lines 12–14 call the PLDA-D function for each target node vertex (if there is more than one target
in the EFM). The number of calls corresponds to the number of target nodes on G. If there is more than
one target node, the energy flow will be distributed considering each.

The EFM edge weights are updated considering the accumulated flow of each component (Line 13).

6.2. Kernel Calculations

The kernel calculations, depicted in Algorithm 2 (Algorithm 2: PLDA-D kernel calculations),
execute a loop with two stop criteria. First, it is checked if the demand is higher than zero ( fd(t) > 0)
and if there is a valid path from Target(t) node to Source(s) node (isPathValid(R,t,s)), where t is target
node and s is the source. A valid path is a path from one node to another where the electrical capacity
of all components in this path is respected.
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Algorithm 2 PLDA-D kernel calculations (R, fd(t), t, s).

1: while ( fd(t) > 0) & (isPathValid(R, t, s)) do
2: P = getElementsFromBestPath(t);
3: p f = ∞;
4: for i ∈ P do
5: p f = getMinimumCapacity(p f , f c(i) − ccu(i));
6: end for
7: for i ∈ P do
8: ccui = ccui + p f ;
9: if ( f c(i) − ccu(i) = 0) then

10: i.reachedLimit()
11: end if
12: end for
13: fd(v) = fd(t) - p f ;
14: end while
15: return R

The function getElementsFromBestPath(t) aims at finding the best path from the target to the
source node, according to the efficiencies and respecting the capacity of each element. This function is
explained in the following section.

The path is stored in list P (Line 2), then the infinity symbol is assigned to the variable pf (possible
flow) (Line 3), which stores the possible energy flow in the path. In the first loop (Lines 4–6), pf receives
the value returned from getMinimumCapacity() for each path (Line 5), which returns the lower value
between the actual possible flow (pf ) and the difference between the flow capacity supported by the
node f c(i) and the actual flow ccu(i).

The smallest possible value is added to each node of the path. The second loop (Lines 7–12)
stores the accumulated flow (ccui). The limit of each piece of equipment is respected (i.reachedLimit())
(Line 10). In the next valid path query, those that possess a selected node as a limit reached will
be disregarded.

The demanded energy of the target node ( fd(t)) is updated (Line 13), subtracting the previously
transmitted flow from its values. The previous steps are repeated until all valid paths have been
analyzed or there is no demand. Finally, residual graph R is returned (Line 15), and only the edge
weights are changed from the original graph G.

6.3. Search

We proposed our own version of an algorithm to compute maximum and minimum flows,
which was implemented based on the Bellman [33] and Ford and Fulkerson [34] algorithms. More
detail is provided in this section.

All paths are traversed from the target to source node. A cost is assigned to each node (component);
the lower the value, the better the path. Once the cost associated with each path is calculated, it is
possible to direct the flow to the better paths in relation to the electrical energy consumption.

Algorithm 3 (Algorithm 3: best patch choice) shows a function, called “getElementsFromBestPath”,
responsible for identifying the best path through the nodes Target to Source. In the first execution,
the value passed as a parameter (CurrentVertices) is the Target node. ListO f Parents stores the list of
nodes with one level of the current node precedence, i.e., the list of parents (Line 1).

Line 2 starts a loop to each node of the list of parents. The first step of the loop chooses one
item of equipment from a list of parents to begin the procedure (Line 3). The order of choice does not
influence the search. The limit of capacity is verified in Line 4. If the node has reached its capacity
limit, the algorithm proceeds looking for other paths available.
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Algorithm 3 Search getElementsFromBestPath(CurrentVertices).

1: ListO f Parents = getListo f ParentsFrom(CurrentVertices)
2: for i ∈ ListO f Parents.size do
3: CurrentParent = ListO f Parents[i]
4: if CurrentParent.LimitNotReached() then
5: newCost = 1/(CurrentVertices.getAccumCost ∗ (CurrentParent.e f f iciency/100))
6: if CurrentVertices = Target then
7: CurrentParent.setActualCost(newCost)
8: CurrentParent.setChild(CurrentVertices)
9: CurrentParent.setAccumCost(

10: CurrentParent.e f f iciency/100)
11: else
12: if CurrentParent.ActualCost > CurrentVertices.getActualCost + newCost then
13: CurrentParent.setActualCost(
14: CurrentVertices.getActualCost + newCost)
15: CurrentParent.setChild(CurrentVertices)
16: CurrentParent.setAccumCost(
17: CurrentParent.e f f iciency/100) ∗ CurrentVertices.getAccumCost
18: end if
19: getElementsFromBestPath(CurrentParent)
20: end if
21: end for
22: ListO f Elements.addBestChild(Source)
23: return (ListO f Elements)

Line 5 computes the cost of each component node, in which the shortest value represents the best
path choice. Line 6 verifies if the vertex under analysis (CurrentVertices) is the Target. In this case,
the CurrentParent cost receives newCost; the CurrentVerticesis assigned as the Child of CurrentParent;
and the accumulated cost is computed (Lines 7–9). The accumulated cost represents the cost of the
node multiplied by the cost of the path that precedes it. This step draws the best path.

Assuming the CurrentVertices are not the Target, Line 11 conducts a check that is only satisfied
when there is at least one path with a lower cost to be reached.

In this case, the CurrentParent cost is updated to the sum of the cost of the CurrentVertices plus
the newCost. The CurrentVertices will be the “best child” for the CurrentParent, and the CurrentParent
cost is updated considering this new path (Lines 12–14).

In Line 19, a list of elements is filled with the children of the Source node, which corresponds to
the best path from the Target to the Source node, according to the expression of Line 5. Finally, a list
with the elements of the best path is returned (Line 20).

6.4. PLDA-D Execution

Figure 11 illustrates the step-by-step execution of the PLDA-D. Figure 11a shows an EFM
composed of three electrical components A, B, and C, with an efficiency of 80, 90 and 95%, respectively.
S is the Source node, representing an electrical utility, and T is the Target node, representing a
computer room.

The demand (Dem) and the efficiency (E f ) values are specified by the data center designer.
The Target node Acc value is set to one. The other accumulated costs (Acc) are set to zero, and the edge
weights are set to the default value, respectively, as depicted in Figure 11a. Phase 1 of the PLDA-D is
represented by Figure 11b, where all variables of all vertices are initialized.

Phase 2 starts in Figure 11c following until Figure 11h. The best path is selected according to the
efficiency of each component. In Figure 11c, the values of the ActualCost and AccumulatedCost are
computed, and the best child is chosen according to the lowest value of the variable ActCost.
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Figure 11. Example PLDA-D execution; blue rectangles highlight the nodes under analysis.

Next, one of the parents of node C is chosen; the order of choice does not influence the search.
Node A was selected, and the values of Acc and ActCost were computed; the best child is node C;
see Figure 11d.

The values of ActCost and Acc were computed according to Equations (6) and (7), as described in
Lines 5 and 14 of Algorithm 3.

ActCost = ActCost +
1

ActCost× e f f iciency
100

(6)

Acc = Acc× e f f iciency
100

(7)

Figure 11e shows the algorithm step in which Acc and ActCost of all variables were computed
and the best child selected. The Source is a terminal node and has no parent; thus, the algorithm
returns to the node C that has two parents. Node C has not been thoroughly researched, because there
is an unvisited parent node B. Figure 11f shows the algorithm step once the variables for node B have
been computed.

Figure 11g depicts the step after calculating variables Acc and ActCost and verifies that the
ActCost for the current path (3.39) was less than the ActCost of the previous path (3.68) for reaching
the Source node. Thus, the Source node has changed the values of its variables, and the best Child is
now node B and no longer node A. In other words, the path passing through the node B represents
a better choice than passing through the node A.

Figure 11h represents the end of Phase 3, which returns the best path to Phase 2. The best path
from the target to source node is: Target, C, B, Source. Figure 11i presents the flow distributed by
Phase 2. After that, the EFM computes the minimum possible value for the input power.
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7. Basic Models

This section presents the analysis of the proposed models for representing the previous four-tier
configurations. The baseline architecture is modeled with RBD; however, RBD models cannot
completely represent complex systems with dependencies between components.

State-based methods can represent these dependencies, thereby allowing the representation of
complex redundant mechanisms. The Achilles heel for state-based methods is the exponential growth
of the state space as the problem becomes large, which can either increase the computation time or
make the problem mathematically intractable. However, strategies for hierarchical and heterogeneous
modeling (based on states and combinatorial models) are essential to represent large systems with
complex redundancy mechanisms [22]. MC, SPN, RBD and EFM models were utilized to evaluate the
four tiers. The availability was obtained by the RBD, MC or SPN model. The other metrics (cost, PUE,
input power) were achieved through the EFM evaluation.

7.1. Tier I Models

Figures 12 and 13 depict the RBD models for power and cooling architectures of Tier I, respectively.
The power and cooling architectures were evaluated separately.

Figure 12. RBD model of the Tier I power infrastructure.

Figure 13. RBD model of the Tier I cooling infrastructure.

After that, we assumed that the system was only operational once both the cooling and power
system were working. Therefore, the previous availability results were put together in a serial
relationship, meaning that the failure of an electrical device would also affect the cooling equipment.
Moreover, the system availability was compared with the Up Time Institute [7], in which there can be
no doubt that the results achieved are equivalent.

Once the availability was computed, the EFM shown in Figure 14 was adopted for computing,
for instance, cost and operational exergy. Only the electrical infrastructure was consider in the
EFM model.
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Figure 14. EFM model of Tier I.

7.2. Redundancy N + 1

Redundancy N + 1 is adopted in utility power and generator systems for Tiers II, III and
IV. This redundancy is a form of ensuring system availability in the event of component failure.
Components (N) have at least one independent backup component (+1). This paper considers
redundancy N + 1 (generator and UPS), as there is a demand for at least two pieces of equipment.
One machine works with a spare backup; thus, N is assumed to be two.

The RBD model is used to obtain the dependability metrics of the electrical infrastructure of
data center Tiers II, III and IV. However, due to the system complexity of the redundancy (N + 1),
the utility power and generator subsystem were modeled in SPN (Figure 15 depicts the corresponding
SPN model for that system). This model represents the operational mode of the utility power and
generator system, in which the system is operational if the power supply utility (#C_UP = 1) and the
two main generators are operating (#G12_Up = 2) or if one main generator and one backup is running,
i.e., ((#G12_Up = 1) and (#Gb_Up = 1)).

In this SPN model, the transaction that activate Generators 1 and 2 (G12 Act) is only fired when
the power supply utility has failed. Similarly, the transaction Gb Act is able to fire once the power
supply utility and at least one main generator have failed.

Figure 15. SPN model for the utility power and generator system (UP + GS).

The availability expression obtained by the SPN model is:

A = (CU p = 1)OR(G12U p = 2)OR((G12U p = 1)AND(GbU p = 1)) (8)

The UPS system is modeled with redundancy (N + 1), assuming a cold standby strategy. A cold
standby redundant system considers a non-active spare component that is only activated when the
main active component fails. The components of the UPS system are based on a non-active redundant
module that expects to be active when the main module fails. The operational mode of this system
considers that at least two UPSs must be active. Figure 16 depicts the Markov chain model adopted to
evaluate the availability of the UPS system with redundancy (N + 1) in cold standby.
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Figure 16. CTMC model for the UPS cold standby system (UPS system).

In Figure 16, State 2 represents the two standard UPSs operating and the backup waiting. State 1
shows the detection of a fault in one UPS. State 2* represents two UPSs operating (one standard UPS
and one backup). State 1* represents a fault in the standard or backup UPS. State 0 represents the
fault of all the UPS’s. State 0* shows the fault of two standard UPSs and the operating of the backup.
The failure rate is represented by λ; µ is the repair rate; σ is the mean time to activate the backup UPS.

The availability expression obtained by the CTMC model is A’/A”, where:

A′ = (µσ(4λ3 + 4λ2(µ + σ) + µ2(µ + σ) + λµ(3µ + 2σ))) (9)

A” = (2λ2µ3 + (λ + µ)(2λ + µ)(2λ2 + µ2)σ + (4λ3 + 4λ2µ + 2λµ2 + µ3)σ2) (10)

7.3. Tier II Models

Availability results are obtained through the evaluation of these SPN models, as well as the
RBD and MC. We use two-level hierarchical models in which RBD is used to represent the overall
system on the upper level, and SPN and MC are used to capture the behavior of the subsystem on the
lower level, as power and UPS systems. Figure 17 depicts the RBD model adopted to represent the
power infrastructure.

The values of the GS + UP1 (Generator_System and UtilityPower1) and the UPS_System used
in the RBD models of Tiers II, III and IV are computed through the SPN and MC models in
Figures 15 and 16, respectively. The availabilities of the SPN and MC models are computed and
inserted into each block of the RBD (e.g., UP1 + GS) models.

Figure 17. RBD model of Tier II.

Figure 18 depicts the EFM model of the electrical infrastructure of data center Tier II. As the
reader may observe, there is a difference between the representation of dependability models and the
electrical flow to the power strip component.

At first, representation in series signifies that the failure of one component affects the operation of
the data center. In the second, the parallel representation signifies that the electrical flow is distributed
by all power strip devices.
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Figure 18. EFM model of Tier II.

7.4. Tier III Models

The data center Tier III model uses hierarchy to represent the UPS system and power generation
system. The Tier III model is divided into subsystems; two of them represent the power and UPS
systems previously presented (Figures 15 and 16). One path of the electrical flow uses the UPS
system with redundant components (Subsystem X), and the other path has no redundant components
(Subsystem Y). Both provide possible paths to the set of power strip components (Subsystem P).
The availability algebraic expressions of each subsystem is shown in Equations (11)–(13).

SubsystemX = ATS1×UPSSystem× ATS2× SDT1× SubPanel1× JuctionBox1 (11)

SubsystemY = SDT1× SubPanel2× JuctionBox2 (12)

SubsystemP =
n

∏
i=1

(PowerStrip(n)) (13)

where n is six in this model. Equation (14) shows the algebraic availability expressions of all subsystem
(X, Y, P) that compose Tier III.

TierI I I = (1− (1− (UPS_GS)× (ATS1×UPSSystem× ATS2× SDT1×
SubPanel1× JuctionBox1))× (1− (UP2)× (SDT1× SubPanel2× JuctionBox2)))×

(∏n
i=1(PowerStrip(n)))

(14)

Once availability is computed, the EFM model can be analyzed to provide cost and operational
exergy, as well as to ensure that the power restrictions of each device are respected. Figure 19 presents
the EFM model adopted for Tier III.

Figure 19. EFM model of Tier III.
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7.5. Tier IV Models

Tier IV is the highest level of assurance that a data center can offer. This data center category is
fully redundant in terms of electrical circuits (see Figure 4).

The RBD of Tier IV is modeled using a similar approach to Tier III, with hierarchical models.
Five subsystems are used, two representing the power and UPS system (Figures 15 and 16). There are
two redundant paths of electrical flow, both with redundant UPS systems. One path, named Subsystem
Z (see the availability algebraic expression in Equation (15)), is composed of ATS1, UPS System 1,
ATS2, SDT1, SubPanel 1and JunctionBox1. The set of power strips for data center Tier IV is present in
Equation (16), where m is eight.

SubsystemZ = ATS1×UPSSystem1× ATS2× SubPane1× JuctionBox1 (15)

SubsystemPS =
m

∏
i=1

(PowerStrip(m)) (16)

There are two utility powers, each with a backup generator system (UtilityPower1 + GeneretorSystem1
and UtilityPower2 + GeneretorSystem2). The availability algebraic expression of Tier IV is presented
in Equation (17).

TierIV = (1− (∏n
i=1(1− (UtilityPower_GeneretorSys)(n) × (ATS1×UPSSystem1

×SubPane1× ATS2× JuctionBox1)(n)))× (∏m
i=1(PowerStrip(m)))

(17)

After computing the availability value of Tier IV, the EFM depicted in Figure 20 is adopted.

Figure 20. EFM model of Tier IV.

8. Case Study

The main goal of this case study is to validate the proposed models and to show the applicability
of the PLDA-D algorithm, considering the data center power infrastructure of Tiers I, II, III and IV.
To conduct the evaluation, the environment Mercury was adopted. In addition to computing the
dependability metrics, Mercury is adopted for estimating the cost and sustainability impact, as well
as to conduct the energy flow evaluation and propose a new one, according to the optimization of
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the PLDA-D algorithm. Figure 21 depicts the connections between cooling components and electrical
infrastructure.

Figure 21. Cooling connections to power the infrastructure.

To validate the Tier I model, the cooling and power infrastructure were evaluated together.
The value of the availability proposed for Tier I according to the Up Time Institute is 0.9967.
The availability obtained from the RBD model of Figures 12 and 13 was 0.9952. To validate the proposed
model, the relative error was used, to compare the difference between the results. Considering the
relative error (presented in Equation (18)), the value of 0.0015 was reached.

RelativeError =
(Theoretical − Experimental)

Experimental
(18)

A very small value for the relative error was found; therefore, we consider the proposed model to
be an accurate representation of the Tier I model. The same strategy was adopted to validate the other
proposed models of Tiers II, III and IV.

Table 1 shows the MTTF and MTTR values for each device. These values were obtained from [36].

Table 1. MTTRand MTTRvalues.

Equipment MTTF (h) MTTR (h)

AcSource 5380.0 8
Generator 3190.0 8
ATS 282,581 8
UPS 60,000 8
SDT 1,412,908 8
Subpanel 404,000 8
Junction Box 5,224,000 8
Power Strip 215,111 8
Cooling Tower 24,816 48
Chiller 18,000 48
CRAC 37,059 8
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To show the applicability of the PLDA-D, four data center power infrastructure tiers were
evaluated considering the following metrics: (i) total cost; (ii) operational exergy; (iii) availability; and
(iv) PUE (power usage efficiency). These metrics were computed over a period of five years (43,800 h).
Each metric was computed before and after the PLDA-D execution.

The electrical flow in a data center starts from a power supply (i.e., utility power), passes through
uninterruptible power supply units (UPSs), the step down transformer (SDT), power distribution units
(PDUs) (composed of a transformer and an electrical subpanel) and, finally, to the rack. According to
the adopted tier configuration, different redundant levels were considered, which impact the metrics
computed for this case study. Table 2 presents the electrical efficiency and maximum capacity of
each device.

Table 2. Capacity and efficiency. SDT, step down transformer.

Equipment Efficiency (%) Capacity (kW)

Utility Power 1 95.3 10,000
Utility Power 2 90.0 10,000
STS 1 99.5 1500
STS 2 98.0 1500
SDT (or transformer) 1 98.5 5000
SDT (or transformer) 2 95.0 5000
Subpanel 1 99.9 1500
Subpanel 2 95.0 1500
UPS 1 95.3 5000
UPS 2 90.0 5000
Junction Box 1 99.9 1500
Junction Box 2 98.0 1500
Power Strip 1 99.5 5000
Power Strip 2 95.1 5000

Table 3 summarizes the results for each power infrastructure of data center Tiers I–IV. Row Be f ore
presents the results obtained before executing the PLDA-D; row After presents the results after PLDA-D
execution; Improvement (%) is the improvement achieved as a percentage; Oper. Exergy is the operational
exergy in gigajoules (GJ) (considering five years); Total Cost is the sum of the acquisition cost with
the operation cost in USD (for five years); Availability is the availability level; PUE is the power usage
efficiency as a percentage, which corresponds to the total load of the data center divided by the total
load of the IT equipment installed.

Table 3. Results of PLDA-D execution with improvement in %. Operational Exergy, Total Cost;
Availability and PUE.

Tiers - Oper. Exergy Total Cost Availability PUE

Tier I
Before 4688 1,173,593 0.999605271 86.84 (%)
After 4418 1,165,323 0.999605271 87.50 (%)

Improvement (%) 6.13 0.71 0 0.77

Tier II
Before 10,127 2,289,365 0.9997510814 85.94 (%)
After 8837 2,249,961 0.9997510814 87.50 (%)

Improvement (%) 14.59 1.75 0 1.82

Tier III
Before 13,242 3,347,222 0.9999999380 87.52 (%)
After 11,077 3,281,087 0.9999999380 89.34 (%)

Improvement (%) 19.54 2.02 0 2.08

Tier IV
Before 16,252 4,452,412 0.99999993803 88.39 (%)
After 11,000 4,291,925 0.99999993803 91.84 (%)

Improvement (%) 47.75 3.74 0 3.9
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We apply the PLDA-D algorithm to each EFM architecture, and as a result, the weights presented
on each edge of the EFM model are updated, improving the energy flow. The lowest value of the input
power is reached, and thus, all metrics related to energy consumption are improved.

From the aforementioned table, the first observation to be noted is the improvement obtained
after using the PLDA-D algorithm. The metrics of sustainability, energy consumption and cost are
all improved. For instance, even in the data center of Tier I, where no redundant components are
considered, improvements were achieved. For instance, the operational exergy was reduced by 6.13%
and the total cost by 0.71% (which corresponds to 8720 USD savings), and the PUE metric was also
improved by around 0.77%.

Tier II presents an improvement in cost and sustainability metrics. For example, operational exergy
was reduced from 10,127 to 8,837 GJ and PUE from 85.94 to 87.50 (%), and the cost improved by 1.75 (%),
which would be 39,404 USD. Assuming Tier III, a reduction of almost 20% was observed in operational
exergy and 2% in total cost, which in financial resources equates to 66,135 USD. The PUE was improved
by 2.08%, reaching 89.34%, a considerable improvement.

The data center classified as Tier IV is the most complete in redundancy and security levels.
The values achieved were significant, with a reduction of almost 50% in operating exergy and almost
160,500 USD in five years. The PUE was improved by 3.9%. Figure 22 presents the increase of the total
cost and PUE.

Figure 22. Comparison before and after PLDA-D execution.

Although the improvements to the algorithm seem slight, the long-term values are high.
For instance, the total cost of Tier II was 1.75 (%), which means USD 39,403 over five years. Resources
from these energy savings could be used for hiring employees, team qualification or acquiring
equipment. In order to do this, it is sufficient to adopt a new method for distributing the electrical flow.

Furthermore, the UPS system is responsible for maintaining the IT infrastructure; then, there is a
relationship between the tier classification and the capacity of the UPS system. The average power
consumption of a computer room according to the tier level is shown in Table 4 [37].

Table 4. Relation between cost/kW before/after PLDA and PLDA-D.

Tier Classification Cost/kW After PLDA After PLDA-D

Tier 1 10,000 9923 9923
Tier 2 11,000 10,870.2 10,870.2
Tier 3 20,000 19,679 19,584
Tier 4 22,000 21,337 21,142

The columns “After PLDA” and “After PLDA-D” represent the results achieved after running
the PLDA and PLDA-D algorithms, in which a reduction in comparison with the average power
consumption (column “Cost/kW”) can be noticed.
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To compare the improvement of PLDA-D also with its predecessor, PLDA, we have included the
results after the execution of both. For the first two tiers, there was no change in the result, showing that
both have good solutions (in this case, optimal); however, as the complexity of the graph increases,
PLDA-D continues to offer an optimal result, unlike PLDA, which returns a good solution. For Tier III,
the use of PLDA implies a reduction of 1.63%, while with PLDA-D 2.12%. For Tier IV, the improvement
is even more significant, since with PLDA 2.21% and PLDA-D, we achieved a 4.05% reduction in the
cost/kW.

Therefore, this case study has shown that the proposed approach can be adopted for reducing
the cost for a company. In this specific case, we have reduced the cost associated with the electricity
consumed through the improvement of the electrical flow inside the data center system infrastructure.

9. Conclusions

The present paper has proposed an algorithm, named the power load distribution
algorithm in depth search (PLDA-D), to reduce the electrical energy consumption of data center
power infrastructures.

The main goal of the PLDA-D algorithm is to allocate more appropriate values to the edge weights
of the EFMs automatically. Such an optimization-based approach was evaluated through a case study,
which validated and demonstrated that the results obtained after the execution of the PLDA-D were
significantly improved.

For all the architectures of the case study, the results for sustainability impact (operational exergy
and PUE) were improved. Power consumption and total cost were also improved. Companies are
always looking at reducing costs and their environmental footprint, which has been demonstrated for
data centers by optimizing the power load distribution using PLDA-D in the Mercury environment.

For future work, we plan to integrate the PLDA-D with the use of artificial intelligence to predict
the energy consumption of data centers, taking into account historical data that date back several years
and estimating the environmental impact.
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