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Abstract: Virtual synchronous generators (VSGs) present attractive technical advantages and
contribute to enhanced system operation and reduced oscillation damping in dynamic systems.
Traditional VSGs often lack an interworking during power oscillation. In this paper, a coordinated
control strategy for multiple VSGs is proposed for mitigating power oscillation. Based on a theoretical
analysis of the parameter impact of VSGs, a coordinated approach considering uncertainty is
presented by utilizing polytopic linear differential inclusion (PLDI) and a D-stable model to enhance
the small-signal stability of system. Subsequently, the inertia and damping of multiple VSGs are
jointly exploited to reduce oscillation periods and overshoots during transient response. Simulation,
utilizing a two-area four-machine system and a typical microgrid test system, demonstrates the
benefits of the proposed strategy in enhancing operation stability and the anti-disturbing ability of
multiple VSGs. The results conclusively confirm the validity and applicability of the method.

Keywords: multiple VSGs; oscillation mitigation; coordinated control; small-signal and
transient stability

1. Introduction

The high penetration of renewable energy sources (RESs) reduces rotational inertia significantly
and hence lowers the frequency support and damping to a power system [1–3]. To address the
challenges, many scholars introduce a virtual synchronous generator (VSG) control strategy to
resemble the operation of the SG with its inertia behavior [4–6]. By introducing rotor motion equations,
a VSG-based converter integrates the inertia and damping functions in one single term [7]. Different
from traditional voltage control, this “synchronverter concept” controller enjoys a better frequency
response during a disturbance and provides voltage and frequency support in the weak grid. However,
the unsuitable parameters of controllers may deteriorate oscillation suppressing ability and reduce the
stability margin of a system when multiple VSGs operate in parallel [8].

Since the time-scale of converter controllers is inconsistent with the mechanical adjustment of
synchronous machines (SMs), the authors of [9–11] proved that the integration of converter-based
generators exerts little impact on the original electromagnetic oscillation mode (EOM) of a power
system. Though the collateral impact of RESs replacing SMs reduces the overall inertia, the small-signal
stability of the system improves, especially displacing SMs, thereby affecting the modes. However,
the VSG-based converters will be involved in the original electromagnetic oscillation mode due to
the implementation of rotor motion behavior [12]. Consequently, the small-signal stability of a power
system may be deteriorated if the parameters of the VSG are not coordinated with other SMs and VSGs.
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On the other hand, as the VSG unit is not a real synchronous machine, the parameters can be
adaptively updated to operate faster and more stably during disturbances [13]. This characteristic
provides outstanding flexible and convenient performances of VSGs in oscillation mitigation. Some
studies [14,15] have addressed this idea and designed a bang-bang control strategy according to
four intervals of the oscillation cycle. The inertial is set to be a big or small value when the product
of |dω/dt| and ∆ω is positive or negative, respectively [14]. However, this work lacks the detailed
design of the inertial parameters during each cycle and does not consider the damping factor. To
overcome this drawback, the authors of [15] introduce a parameter design method of rotor inertia
combined with damping factors. The thresholds of J and D are set, and |dω/dt| and ∆ω are multiplied
by two experiential coefficients to add as a correction term. However, this parameter design can still
be enriched to better suppress power oscillation.

Dealing with the power oscillation issue, this paper aims to contribute a coordinated control for
multiple VSGs. The novelty of this paper mainly focuses on the following:

(a) The mechanism of low-frequency oscillations caused by the interaction between VSGs and
SMs is quantitatively investigated. A coordinated method is then put forward to keep robustness and
damping under disturbances and uncertainty.

(b) The possibility of reducing intervals in one oscillation cycle is expounded. Subsequently,
an optimized issue is built to fulfill the coordinate-adaptive update of inertial and damping parameters
during transient disturbances.

The article is organized in the manner as follows. Section 2 theoretically presents the impact
of VSG parameters on the small-signal stability. Subsequently, the coordinated design method is
demonstrated for parameter optimization. Section 3 presents an advanced control strategy for multiple
VSGs in reducing oscillation periods. Section 4 is devoted to simulation analysis. Conclusions and
future works are summarized in Section 5.

2. Coordinated Parameters Optimization of Multiple VSGs for Small-Signal Stability Improvement

2.1. The Mechanism of Low-Frequency Oscillations Caused by VSGs and SMs

The impact of the VSG-based converters participating in the EOM of a system is investigated
quantitatively below using traditional small-signal analysis method. The derivation is given by
utilizing a simple two-machine system. Figure 1a is the control block of VSGs and Figure 1b is the
system network. In Figure 1b, VSG control is introduced to DG. Assume the phase angle of the load is
zero, the classical small-signal model of SG is expressed as:

JGω0
d∆ω

dt
= −∆Pe − DG∆ω− ∆PDG (1)

PL =
U1U2

ZL
cos δ. (2)
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Figure 1. Virtual synchronous generator (VSG) control block and two-machine infinite-bus system: 
(a) the control block of VSG; (b) the two-machine infinite-bus system. 
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The linearized model of power balance equation with an initial state δ0 at Bus 1 meets:

∆PL =
U1U2

ZL
cos δ0∆δ = ∆Pe + ∆PDG. (3)

As traditional inverters lack inertia, the VSG control algorithm shown in Figure 1a is introduced
to provide frequency and voltage support during power fluctuations. Combined with a ω− P droop
strategy, the model for a VSG under yields:{

dδ
dt = ω−ω0

Jdgω0
dω
dt = Pre f − PDG − (Kω + Ddg)(ω−ω0)

. (4)

Since traditional control of the DG is often working on a maximum power point tracking (MPPT)
state, the active power output does not vary with a small disturbance on the grid side, indicating
∆PDG = 0 in Equation (1). When VSG control strategy is introduced, the output of the active power
responses as grid frequency varies. Combined with Equations (1), (3) and (4), the linearized model
with/without VSG control is expressed:{

JGω0
d∆ω

dt + DG∆ω + I∆δ = 0
(JG + Jdg)ω0

d∆ω
dt + (DG + Kω + Ddg)∆ω + I∆δ = 0

(5)

where I = [(U1U2)/ZL] cos δ0. For the original system, the eigenvalues and damping ratio are
calculated as:

p1,2 =
−D′G ±

√
D′G

2 − 4J ′Gω2
0 I

2J ′Gω0
(6)

ξ =
−D′G

2

√
1

I J ′Gω0
. (7)

For VSG, D′G = DG + Kω + Ddg, J ′G = JG + Jdg. The inertia and droop coefficient of the system
increase when VSG control is introduced. According to Equations (6) and (7), the damping ratio may
decrease, and the eigenvalues may move from left to right when the parameters of multiple VSGs and
SGs do not complement each other well. The unsuitable parameters of the system deteriorate stability
margin and increase angle instability risk, which is unfavorable to the grid power oscillation.

Figure 2 gives a simple example of two VSG controllers operating in parallel. The eigenvalues of
this simple system are calculated as the inertia and damping varies from their rated values to their
limitations. The results show that the coordinated design needs to be introduced for multiple VSGs to
obtain a better operational performance.
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Figure 2. Small-signal stability analysis results of two VSGs operating in parallel. (a) The network of
two VSG system, (b) The eigenvalues of system as the inertia varies, (c) The eigenvalues of system as
the damping varies.

2.2. Parameter Design Method for Multiple VSG in Improving Small-Signal Stability of System

Quite often, we want the system to operate with well-damped oscillations and keep robustness
under disturbances [16]. For this motivation, the D-stable region [17] is presented here to let the
eigenvalues of typical operating points lie in an area of secure operation. To enhance the damping ratio
and stability margin of the system, this region is used to define a criterion for the controller design.
Modes with higher damping behaviors stand on a complex plane shown in Figure 3. The performance
robustness constraints for the design methodology is presented as follows:

AQ + QAT + 2αQ < 0 (8)[
sin θ(ATQ + QA) cos θ(ATQ−QA)

cos θ(QA−QAT) sin θ(ATQ−QA)

]
< 0. (9)

Energies 2018, 11, x FOR PEER REVIEW  4 of 17 

 

 
(a) 

  
(b) (c) 

Figure 2. Small-signal stability analysis results of two VSGs operating in parallel. (a) The network of 
two VSG system, (b) The eigenvalues of system as the inertia varies, (c) The eigenvalues of system as 
the damping varies. 

2.2. Parameter Design Method for Multiple VSG in Improving Small-Signal Stability of System 

Quite often, we want the system to operate with well-damped oscillations and keep robustness 
under disturbances [16]. For this motivation, the D-stable region [17] is presented here to let the 
eigenvalues of typical operating points lie in an area of secure operation. To enhance the damping 
ratio and stability margin of the system, this region is used to define a criterion for the controller 
design. Modes with higher damping behaviors stand on a complex plane shown in Figure 3. The 
performance robustness constraints for the design methodology is presented as follows: 

+Q 2 0TAQ A Qα+ <  (8) 

sin ( ) cos ( )
0

cos ( ) sin ( )

T T

T T

A Q QA A Q QA

QA QA A Q QA

θ θ
θ θ

 + −
< − −  .

 (9) 

 

Figure 3. D-stable area. 

The proof of this theorem can be found in [17]. As the output of renewable generation is 
stochastic, the system under different operation states indicates the weak adaptability of the 
traditional certainty model. To guarantee the robustness of the converter and enhance dynamic 

-60 -50 -40 -30 -20 -10 0
-150

-100

-50

0

50

100

150
D from 0.5 to 30

Real Axis (seconds-1)

Im
a

gi
n

a
ry

 A
xi

s 
(s

ec
o

nd
s-1

)

-12 -10 -8 -6 -4 -2 0
-200

-150

-100

-50

0

50

100

150

200

Real Axis (seconds-1)

Im
a

gi
n

a
ry

 A
xi

s 
(s

ec
o

nd
s-1

)

J from 0.1 to 8

θ

α

LMI region
For pole placement

arccosθ ζ=

Figure 3. D-stable area.

The proof of this theorem can be found in [17]. As the output of renewable generation is stochastic,
the system under different operation states indicates the weak adaptability of the traditional certainty
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model. To guarantee the robustness of the converter and enhance dynamic response, a polytopic
linear differential inclusion model is presented here for better expressing uncertainty in RES. Instead
of precisely predicting system state in a period, the LDI only requires a motion-changed region of
the uncontrolled resource in time [18]. This advantage provides a possibility to apply a stochastic
forecast model to deal with the stability analysis with systematical prediction errors. According to its
mathematical definition, the system based on PLDI is expressed as:

•
x(t) ∈ co(Aix + Biu). (10)

For a typical PLDI, the system has globally uniform stability when it satisfies an exponentially
stable theorem [19]. This characteristic provides a possibility to apply PDLI theory to qualitatively
judge the stability of the stochastic time-variant system and simplifies the analysis process of
uncertainty disturbances. According to [19,20], the stability criterion for PLDI is given as follows:

Theorem 1. Consider a composite positive function Vc(x) in Equation (11). A PDLI system is exponentially

stable if and only if positive–definite matrices Qk(x) ∈ Rn×n, Fk(x) ∈ Rm×n, and Q(γ∗) =
N
∑

k=1
γ∗k Qk,

F(γ∗) =
N
∑

k=1
γ∗k Fk exist, such that

Vc(x) = min
γ∈Γ

xTP(γ)x = min
γ∈Γ

xT

(
N

∑
i=1

γiQi

)−1

x (11)

AiQk + Qk Ai
T + BiFk + Bi

T Fk
T < −βQk. (12)

According to the Schur complement rule, Equation (12) is equal to:

Vcx = minϑ

subject to

[
ϑ xT

x Q(γ)

]
≥ 0, γ ∈ Γ,

N
∑

i=1
γi = 1

(13)

The detail proving process of Equations (12) and (13) is found in [19]. In a practical circuit, Kω

is determined by the system operation requirement. The parameters Ddg and Jdg, according to [21],
should satisfy:

0 ≤ J ≤
(Ddg + Kω)

2π fcpmin
cot PMreq, (Ddg + Kω/ω0) ≤ Dmax. (14)

Combined with the small-signal model of the VSG-based converter, the optimized issue
considered stochastic excitation yields

min ϑ

subject to (6), (8), (9), (10), (12), (13), (14)
(15)

In the practical project, we always want a ξ0 larger than 0.05, which is called a strong damping
mode. Then, let ξ0 = 0.05, and α = ξ0ωn. The polytopic linear differential matrices Ai is:

Ai ∈
[

Asysi 0
0 Avsg

]
Asysi and Avsg satisfies (1) and (5). (16)

When a polytopic model is considered, Equations (8) and (9) should be rewritten for each vertex
system, and the resulting set of inequalities should be solved simultaneously to ensure all eigenvalues
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that lie in a designed region. The optimized issue expressed by Equation (15) consists of a family
of bilinear matrix inequities (BMIs) that contain bilinear terms as the product of a full matrix and
a scalar. To effectively solve the BMI problem and improve the applicability for large-scale systems,
the path-following method [22] is adopted here to update all parameters.

3. Improved Coordinate-Adaptive J/D Control Strategy of Multiple VSGs in Mitigating OSC

3.1. The Mechanism of Improved Bang-Bang Control Strategy in Improving the Transient Stability of a System

Generally, the system needs to go through three intervals during transient disturbances before
converging into a steady state [16]. This transition (i.e., a–b–c–b) shown in Figure 4a often inevitably
causes power oscillation and deteriorates frequency damping. In contrast, as the rotor does not exist,
the controller parameters of the VSG can be more flexible during the OSC cycle, hence accelerating the
response of the VSG in tracking the steady state. For example, during the acceleration modes (i.e., a–b
and c–b), high inertial parameters are adapted to resist disturbances, while small inertial parameters
need to be chosen during the deceleration period (i.e., b–c and b–a) to accelerate convergence. This
strategy was first introduced by [14,15] and represents one step further on how to detail the coordinate
design of adaptive parameters (i.e., J and D) during each stage.

In fact, the intervals during the OSC cycle can be reduced into one interval (i.e., a–b) if the
appropriate control strategy is utilized. For example, on the right side of Figure 4b, we usually want
the frequency converges into a rated value at the same time t1 that the output of VSG increases to its
final required power. This process requires the angular velocity to grow first and then decrease. If this
scene happens, the other stages in the OSC cycle no longer exist, and the other transient adjustments
of the system are eliminated. Specifically, when a large disturbance occurs, the angular frequency
quickly increases and obtains its upper limit at time tu. According to Equation (4), during this period,
the inertial term at the left side of the equation is larger than the damping term. The ω then remains
with the fastest velocity and waits for the decreasing order. When the decline time td comes, the ω

begins to decrease and the inertial term at the left side of the equation is smaller than the damping
term. Finally, the ω will converge into its rated value at time t1, and the system operates steadily
without any further adjustment. During this whole cycle, the output of the VSG remains increasing
and reaches P2 at the same time t1. It needs to be emphasized that the output of the VSG rises linearly
during periods between tu and td, and the ω is continuous but nondifferentiable during the whole
time. Compared to SM, only the VSG is flexible enough to operate in this idea.
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Figure 4. The power-angle curve of a synchronous machine (SM) and the proposed VSG: (a) the SM
response during transient disturbances; (b) the proposed VSG response during transient disturbances.

3.2. Parameter Design Method for Multiple VSG Corresponding to Oscillation Cycle

To begin with, we should set a trigger threshold that enables transient self-adaptive control.
The threshold is determined by the endurance capacity and of the VSG-based converter. When the
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disturbance ∆P > L happens, the controller starts. Then, to fulfil the expectation in Figure 4b, the
parameter-optimization issue, for one VSG, yields

min
ω

Tosc

subject to ∆P ≈ UvsgUgrid
Xs

Tosc∫
0

[ω(t)−ω0]dt, ω(t)

∣∣∣∣∣t=0 = ω(t)

∣∣∣∣∣t=Tosc = ωn

|ω(t)−ω0| ≤ 2π∆ fmax, |dω/dt| ≤ 2πkmax

(17)

The first equality constraint ∆P represents the required power deviation that is calculated
by the terminal voltage Uvsg and Ugrid at the converter and grid side and the impedance
Xs between these two sides. The second equality term represents the steady-state constraint.
The third and fourth constraints consider the limitation of the frequency change-rate threshold
kmax, e.g., the charge–discharge rate of the battery in the VSG-based converter and the maximum
frequency deviation ∆ fmax. According to the model in Equation (17) at a particular time t ∈ (0, Tosc),
the constrains ω(t) at the time-span Tosc in Figure 4b satisfies:

ω(t)−ω0 =


2πkmaxt 0 ≤ t ≤ T1

2π∆ fmax T1 ≤ t ≤ T2

2πkmax(Tosc − t) T2 ≤ t ≤ Tosc

. (18)

It is obvious that T1 = ∆ fmax/kmax, and T2 = Tosc − ∆ fmax/kmax. Assume the same decline rate
of frequency. Based on Equations (17) and (18), we have

∆P ≈
UvsgUgrid

Xs

Tosc∫
0

[ω(t)−ω0] dt ≤
2UvsgUgridπ

Xs
∆ fmax(Tosc −

∆ fmax

kmax
). (19)

If we know the final state of the system (i.e., ∆P is obtained), then Tosc is identified by Equation (19).
Then, according to Equation (18), the term dω/dt should meet the following condition:

dω/dt =


2πkmax 0 ≤ t ≤ T1

0 T1 ≤ t ≤ T2

−2πkmax T2 ≤ t ≤ Tosc

. (20)

Combined with Equations (4) and (20), parameters J and D during three periods should meet the
following conditions:

(a) In a period 0 < t < T1, the frequency linearly increases as a rate of kmax. Then at this stage,
the parameters J should meet the following condition:

J1 = (Pre f + kω(ω−ω0)− Pe)/2πkmaxω. (21)

To accelerate this transient process, Ddg = 0 at this period.
(b) When the system meets dω/dt = 0, the system transits to Stage 2, and parameters Ddg

should have

Ddg =
[Pre f + kω(ω−ω0)− Pe]

2π∆ fmax(2π∆ fmax + ω0)
. (22)

During this period, J is set as the original value.
(c) Then, in T1 < t < T2, the frequency linearly decreases as a rate of kmax, and Ddg = 0 while J

meets the following condition:

J3 = −(Pre f + kω(ω−ω0)− Pe)/2πkmaxω. (23)
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This control strategy can be applied to a single VSG-based system owing to the power fluctuation,
and the adjustment is mainly provided by this converter. From Equations (17)–(19), to obtain the
adjust time T2, the adjusting power ∆P = P2 − P1 should be identified. This situation indicates that the
coordinated controller needs to obtain the next system steady state. However, for a multiple VSG-based
system, the steady-state output of each VSG is not easy to achieve. For this concern, a system state
estimation algorithm is needed.

Considering a typical AC network, the oscillation happens due to the power matching process
between each SMs when a disturbance happens. When detecting the imbalance frequency between
each bus, the SMs adjust their output for system synchronization. Subsequently, the frequency recovers
to its rated value. This characteristic indicates that each VSG at the same bus should synchronize at any
moment to eliminate OSC. Therefore, if each VSG introduces the proposed parameter-optimization
issue, according to Equation (18), the deviation of the power angle is the same. Hence, the state
estimation algorithm can utilize this characteristic to simplify the calculation procedure. Since the
controller needs to obtain the final system state variable (i.e., voltage and active power), this estimation
is somehow similar to static security analysis [23] after a disturbance.

For a typical network contained n bus, the system at each bus meets the following power balance
constraints [23]:

Pi = Ui∑
j∈i

Uj(Gij cos δij + Bij sin δij), Qi = Ui∑
j∈i

Uj(Gij sin δij − Bij cos δij). (24)

In traditional power flow analysis, SM is set as a PV node, and a Vδ node is needed for power
balancing. However, a VSG-based converter is not appropriate to be considered as a PV node, especially
V/ f control is introduced. When system operates in an island model, the power balance between load
and energy resource is maintained by adjusting converter output. Therefore, according to Equation
(24), the VSG-based converter meets the following conditions:

UvsgUi

X′L
sin δiv = Ui ∑

j∈i
Uj(Gij cos δij + Bij sin δij)

UvsgUi

X′L

Uvsg cos δiv−Ui
Uvsg

= Ui ∑
j∈i

Uj(Gij sin δij − Bij cos δij)
(25)

The left side of Equation (25) represents the output of the VSG when line impedance meets
X � R. This requirement can be fulfilled by adding virtual impedance [24]. Hence, in Equation (25),
X′L = XL + Xvir, Uvsg is set as the nominal integrated voltage. The equation contains two unknown
variables (i.e., Ui and δij), which are consistent with traditional PQ node constraint. Then, based on
Newton-Raphson, the Jacobian matrix yields[

∆P
∆Q

]
=

[
H N
J L

][
∆δ

∆V/V

]
. (26)

When ∆P > L, the next operation state is obtained by Equations (25) and (26) and the equality
constraint of power angle on the same bus.

Equation (26) can be solved by the Newton-Raphan method in this case. The calculation speed
can be faster if the system satisfies the constraints of the PQ decoupled method. Moreover, if the grid
structure is fixed, the iterative matrix in Equation (26) is determined and only needs to generate once
according to the PQ algorithm.

Noted that this calculation will cause a time-delay issue. From Equation (18), the controller
satisfies T1 = ∆ fmax/kmax, which is constant and identified by controller response ability. Therefore,
the time-span at Stage 1 (T1) is determined. This characteristic indicates that the time-delay issue can
be eliminated if the measurement and calculation process can be done before time T2. From a practical



Energies 2018, 11, 2788 9 of 17

perspective, the speed requirement can be fulfilled, especially for a large-scale power system containing
Wide Area Measurement System (WAMS) equipment, e.g., Power Management Unit (PMU) [25].

The maximal power margin of each VSG is different, so the proposed method is limited by the
minimum of the maximal adjust-margin of VSG-based converters. Let ∆δ =

∫ Tosc
0 [ω(t)−ω0] dt. Then,

for a given system,
∆δmax = min{∆δ1max, ∆δ2max, . . . . . . ∆δnmax}. (27)

Equation (27) represents the maximal self-adjustment ability of a system, which is limited by each
∆δimax. If the strength of the disturbances exceeds the limitation of the system, the strategy in [15] is
utilized in this paper.

In all, the steps for coordinate-adaptive J/D control of multiple VSGs is summarized as follows:

(a) Measure the bus disturbances. If ∆P > L, go to Step (b);
(b) Set the J/D value to satisfy the first-period requirement in Equation (21), while estimating the

final state of the system by utilizing Equations (25) and (26) and equality constraint;
(c) Transit J/D to the values in Equation (22) at time T1; meanwhile, calculate Tosc and T2;
(d) At time T2, let the J/D value satisfy Equation (23) and return to their rate values.

4. Case Study

To validate the proposed approach, two test cases are utilized. The first case is a four-machine
two-area test system shown in Figure 5a. In this case, each generator model has six generator states,
and the additional control is not considered. The SMs in Areas 1 and 2 are replaced by two VSG-based
converters with the equivalent MVA rating of the original SM. The specification and setting of VSGs
are shown in Table 1, and the typical system operation data is supplied by [16]. To be mentioned,
the VSG parameters J and D before optimization are consistent with the original SM in the same
bus. The purpose of this setting is to prove that the VSG-based converter participates in the original
electromechanical oscillation modes.
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Table 1. Case 1: Main simulation parameters of the VSG model. 

Controller Constraints of VSG 

Minimum reqPM , 
mincp

f /
mincp

f , maxD  45°, 8.5/12.3 Hz, 30 N·m/rad 
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Control parameters of VSG at bus 2 and 4 
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Figure 5. Test cases system: (a) four-machine two-area system containing VSG; (b) a typical microgrid
containing three VSGs.

Table 1. Case 1: Main simulation parameters of the VSG model.

Controller Constraints of VSG

Minimum PMreq, fcpmin/ fcpmin, Dmax 45◦, 8.5/12.3 Hz, 30 N·m/rad
Jmax, DC Voltage, DC Capacitor 20 kg/m2, 1150 V, 10,000 µF

Control parameters of VSG at bus 2 and 4

VSG at Bus 2: virtual, inertia/damping 11.571 kg/m2, 11.773 N·m/rad
VSG at Bus 4: virtual, inertia/damping 12.418 kg/m2, 10.89 N·m/rad

The second case is a typical Microgrid system shown in Figure 5b. The operation parameters,
which were optimized by the PLDI and the D-stable model, are given in Table 2. The validation was
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carried out on a real-time digital simulator (RTDS) to validate the controller presented in Section 2.
The model of the VSG and the proposed controller were built on RSCAD, which is accompanying
software of RTDS. The signal connection of the RTDS simulation is shown in Figure 6. The digital
output card (GTDO) and the digital input card (GTDI) was provided to generate a D/A signal for
communication between the RTDS and controller platform. The Field Programmable Gate Array
(FPGA, XC3S200-AN) and Digital Signal Processing (DSP, TMS-320F28335) constitute the main
hardware architectures of a platform. The PWM pulse signal was provided by this platform.
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Table 2. Case 2: Main simulation parameters of the microgrid system.

Main Network System

Inertia/damping/DC voltage/Droop
coefficient/Virtual impedance of VSG 0.2 kg/m2, 2·N m/rad, 700 V, 100 kW/Hz, j2Ω

Equivalent power source 10.5 kV, 50 Hz
AC Load 1/AC Load 3, DC Load1/DC Load2 (8 + j2) kVA, (11 + j2) kVA, 6 kW/5 kW

Transmission Line j0.347 Ω/km, L1 = 15 km, L2 = 10 km, L3 = 20 km

Virtual Synchronous Generator Parameters

VSG1: PV generation/Storage 12 kW, 10 kW
VSG2: PV generation/Storage, PV

generation/Storage 8 kW/4 kW, 6 kW/4 kW

VSG 3: Wind power/Storage 14 kW/8 kW

4.1. Case 1 Study

Small-signal stability is of great importance for a system to perform well. To mitigate the power
oscillation caused by VSGs, the Case 1 test system was mainly introduced to validate the coordinated
parameter design method in Section 3. Compared with the traditional VSG controller [4], the stable
margin and the dynamic response of the multiple-VSG system before and after optimization are
presented here to show the advantages.

The dominant eigenvalues of the original two-area system, before and after optimization, are
shown in Figure 7. The oscillation decays in all cases when a disturbance happens. However, the level
of damping ratio of the original interarea model, i.e., ξ = 0.0341), is too small to be accepted. After
replacing the SMs with a VSG-based converter station, the dominant eigenvalues shown in Figure 7 are
changed and improved but still quite close to the original oscillation model. Since the VSG parameters
J and D are consistent with the SM, the similarity of oscillation indicates that both VSGs and SMs are
coupled, and parameter optimization of multiple VSGs needs to be considered. To satisfy operation
requirement, the minimum ξ of the system is 0.05, and the physical constraints of the VSG converter
are shown in Table 1. Based on the proposed designed method in Section 2.1, the dominant eigenvalues
after optimization is also shown in Figure 7. The dynamic response to step changes of 2% with/without
optimization are shown in Figures 8 and 9.

In Figure 7, the eigenvalues are located in a specified complex plane that satisfies the design
requirement, and the damping ratios of the system are all larger than 0.05. According to Figures 8 and 9,
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the generator speed responses to changes in the mechanical torque decays fast when J/D parameters
are designed. In contrast, the oscillation of the original system with insufficient ξ decays for more
than 30 s. In addition, the simulation result shows the high tracking speed and small overshoot of the
proposed algorithm.
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Figure 9. Dynamic response of power angle before/after optimization. (a) After optimization, (b)
before optimization.

4.2. Case 2 Study

To fully utilize the outstanding flexible and convenient performances of VSGs during oscillation,
Case 2 was performed to validate the coordinate-adaptive method in Section 2. Compared with the
constant J/D controller [4] and the traditional adaptive control [6], the effectiveness and advantage of
the improved coordinate-adaptive J/D control strategy are verified.

Figure 10 gives the root locus of this test system as the inertia varies. The disturbance fluctuation
margin is set as 10 kW, and related analyses are performed to assess the dynamic transient performance
behaviors of the VSGs with the proposed coordinated strategy. The description of this case is as follows:
At 0.5 s, there is a step change from 8 to 18 kW in the active power of AC Load1 in Figure 5b. Then, 2 s
later, the load decreases to its rated value. The transient response of VSG-based converters is shown
in Figures 11–14 as follows.
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Figures 11–13 shows the comparison of current, frequency, and active power among different
control strategies at each VSG. Figure 14 is the changing process of adaptive virtual inertia and damping
coefficients during transient response. According to Figures 11–13, the coordinated controller is well
able to control the system response during the sharp rise of power. During simulation, the overshoot
under coordinated control is restricted to a small area and the settling time of the system is less
than 0.01 s. The total transient period is less than 0.05 s. In contrast, the constant J and D control
and traditional adaptive control [6] took longer to converge into the rated frequency. Meanwhile,
the overshoot of the system under these controllers is higher than the proposed method. Moreover,
the oscillating amplitude of frequency under constant J/D is larger than 1 Hz. The dynamic response of
current and active power shown in Figures 11 and 13 also demonstrates the advantages of the proposed
method over the other controllers. The overshoot and total transient period under the proposed method
are constricted to a small region, and the active power experiences a smooth transition to the final state.
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In Figure 14, the adaptive dynamic process of parameters J and D are fitted to Equations (21)–(23).
During the first period, according to Equation (21), parameter J satisfies a linearly decreasing function,
while the ω linearly increases. The parameter D at Stage 2 is obviously linearly increasing. At Stage
3, parameter J shows a contrary tendency with a change in ω. It should be noted that the inertial
parameter J is negative during this period to fast convergence.

Note that, since the structure of the microgrid is fixed and the network impedance satisfies x � R,
the PQ decoupled method can be utilized and the ∆δ and ∆V can be directly and quickly identified
using Equation (26). The proposed estimation algorithm is fast enough to calculate the threshold time
T2 (in this case, it is 6 ms, according to Figure 14) before the controller requires. From the viewpoints of
increasing the adaptability of the proposed controller and reducing the requirement of the measurement
of the device’s ability, some follow-up work can be done, such as the improvement of the estimation
algorithm with deep learning as well as reduced-order models of real-sized power systems.

5. Conclusions

This paper introduces a coordinated control for multiple virtual synchronous generators to
improve small-signal stability. Simulation, utilizing a two-area four-machine system and a typical
microgrid test system, validates the proposed strategy. Based on theoretical analysis and simulation
study, the major conclusions include the following:

(1) The theoretical analysis and related simulation prove that the VSG-based converters are
involved in the original electromagnetic oscillation mode. Hence, the damping ratio may decrease and
the eigenvalues will move from left to right. The simulation result in Case 1 shows the high tracking
speed and small overshoot and thus shows the effectiveness of the proposed algorithm.

(2) To further reduce dynamic periods during transient disturbances, an optimization algorithm
for the coordinated controlling of multiple VSG-based converters is presented. Compared to the
constant J and D control and traditional adaptive control, the advanced controller can well reduce
overshoot and oscillating amplitude in Case 2.

The results effectively confirm the applicability of the method and indicates the benefits of the
proposed strategy in enhancing operation stability and the anti-disturbing ability of multiple VSGs.
Concerning the proposed coordinated control, a few aspects should be enriched, and these include
reducing and optimizing the investment of a detection system. Moreover, a coping strategy responding
to asymmetric faults is necessary. These tasks will be carried out in the future.
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Nomenclature

Subscript i, j, k integer index = {1, 2, 3, . . . . . . }.
Subscript G presents the synchronous machine (SM).
Subscript dg, DG presents the distribution generation (DG).
U1, U2 the voltage at bus 1 and bus 2 respectively.
ZL impedance between bus 1 and bus 2.
Pe, PL the electromagnetic power and supply power of SM.
ω, ω0 operational and rated rotor angular velocity.
Jdg, Ddg, Kω virtual inertia, damping coefficient, and droop coefficient of VSG.
Q ∈ Rn×n symmetric matrix of linear matrix inequality (LMI) variables.

γ∗(x) = arg min
γ∈ΓN

xT(
N
∑

j=1
γjQj)

−1

x a typical convex hull function which meets 0 ≤ γi ≤ 1,
N
∑

i=1
γi = 1.

α, θ designer specified scalar values shown in Figure 3.
x ∈ Rn, u ∈ Rn, Ai ∈ Rn×n, Bi ∈ Rn×m the state, input variable and constant matrices of the system.
PMreq, fcpmin, Dmax the required phase margin, cut-off frequency and max droop of VSG.
ξ0, Tosc, θ the damping ratio threshold and response time-span of the system,

θ = arccosξ0.
Gij, Bij the real and imaginary parts of an element in nodal

admittance matrix.
Pi, Qi the net active and reactive power at node i.
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