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Abstract: Double sided linear flux switching permanent magnet machines (DSLFSPMMs) exhibit high
thrust force density, high efficiency, low cost and robust double salient secondary (stator) structures.
The aforementioned unique features make DSLFSPMM suitable for long stroke applications.
However, distorted flux linkage waveforms and high detent forces can exaggerate thrust force
ripples and reduce their applicability in many areas. In order to enhance thrust force performance,
reduce thrust force ripple ratio and total harmonic distortion (THD) of no-load flux linkages, two
structure-based advancements are introduced in this work, i.e., asynchronous mover slot and stator
tooth displacement technique (AMSSTDT) and the addition of an active permanent magnet end slot
(APMES). Furthermore, single variable geometric optimization (SVGO) is carried out by the finite
element method (FEM).

Keywords: active permanent magnet end slot; asynchronous stator and mover tooth displacement
technique; double sided linear flux switching permanent magnet machine; thrust force ripple ratio;
single variable geometric optimization

1. Introduction

Rotary machines used for translational motion exhibit low efficiency and high cost due to
requirement of sophisticated gear systems for the conversion of rotational torques into linear thrust
forces. Linear motors can provide a direct linear thrust force, increasing reliability due to the reduction
of mechanical conversion system, faster dynamic response, and good overload capability. The linear
permanent magnet synchronous machine (LPMSM), linear induction machine (LIM), linear direct current
machine (LDCM), and linear switched reluctance machine (LSRM) are some competent candidates for
translational motion applications. LPMSM shows the merit of high flux density, LIM exhibits advantage
of low cost when compared with linear permanent magnet (PM) machines, LDCM requires simple speed
control, and LSRM has the advantage of a robust stator structure. Conversely, the fabrication cost of
LPMSM for long stroke applications is high due to the increased cost of rare earth PM materials [1].
LIMs have relatively complex construction, and require more elaborate control algorithms than linear PM
machines. LDCMs have low speed-force gradient and high maintenance costs. LSRMs has demerits of
high thrust ripples and lower power density when compared with linear PM machines [2].

The linear flux switching machine (LFSM) combines the features of LPMSMs and LSRMs with
additional advantages of high power density [3], bipolar flux linkage, robust secondary (stator)
structure, suitability for applications where ruggedness and high speed are concerned [4], lowered
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manufacturing cost [5], and compatibility with extreme environmental conditions [6] due to a better
temperature control.

The double sided LFSM (DSLFSM) has a passive secondary (stator made of iron only) and
a short moving primary (mover) encompassing PMs and armature windings (AW). Due to their
passive secondary (stator), DSLFSPMMs can be considered as a competent candidate for short stroke
and long stroke applications such as Maglev transportation [7], rail transportation [8], subways [9],
electromagnetic launch technology [10], linear propulsion technology [11], wave energy generators,
linear oil pumping actuators [12], and artificial hearts [13,14]. As shown in Figure 1, DSLFSMs can be
broadly categorized according to; (a) geometric structure, and (b) excitation source. Based on geometric
structure, DSLFSMs can be divided into: (a) double stator, and (b) double mover [15]. Double stator
LFSMs can be further categorized as: (a) with yoke [16,17], and (b) without yoke [18,19]. Depending
upon the excitation source, DSLFSMs can be divided into: (a) double sided linear flux switching
permanent magnet machines (DSLFSPMMs) [20], (b) field excited DSLFSMs (FEDSLFSMs) [21], and
(c) hybrid excited DSLFSMs (HEDSLFSMs) [22]. HEDSLFSMs utilize both PMs and field windings as
excitation sources. LFSPMM with double mover topology is investigated in [7], whereas [23] examined
the performance of a LFSPMM with a double stator topology. Comparison of double stator and double
mover LFSM is performed in [24] and the authors claim an advantage of a low thrust force ratio for
the DSLFSM structure with moving primary (mover). Analysis and design of a LFSPMM with a
yokeless double stator conventional topology is presented in [25,26] and one with multitooth topology
is presented in [27,28]. On the other hand, the multi-tooth configuration would result in more severe
magnetic leakage on the mover pole, which could easily saturate the mover iron teeth even with a light
electric load. Detailed study of LFSMs reveals that almost all topologies exhibit high detent force and
thrust force ripple ratio due to “slot effect” and “end effect”. A remedy, i.e., introduction of multiple
additional teeth is implemented for a single sided LFSM in [29]. However, this remedy is not yet
investigated for DSLFSPMMs. Furthermore, the aforementioned solution increases the perpendicular
length (x-direction) of the moving primary.

Energies 2018, 11, 2781 2 of 21 

 

manufacturing cost [5], and compatibility with extreme environmental conditions [6] due to a better 

temperature control. 

The double sided LFSM (DSLFSM) has a passive secondary (stator made of iron only) and a 

short moving primary (mover) encompassing PMs and armature windings (AW). Due to their 

passive secondary (stator), DSLFSPMMs can be considered as a competent candidate for short stroke 

and long stroke applications such as Maglev transportation [7], rail transportation [8], subways [9], 

electromagnetic launch technology [10], linear propulsion technology [11], wave energy generators, 

linear oil pumping actuators [12], and artificial hearts [13,14]. As shown in Figure 1, DSLFSMs can be 

broadly categorized according to; (a) geometric structure, and (b) excitation source. Based on 

geometric structure, DSLFSMs can be divided into: (a) double stator, and (b) double mover [15]. 

Double stator LFSMs can be further categorized as: (a) with yoke [16,17], and (b) without yoke [18,19]. 

Depending upon the excitation source, DSLFSMs can be divided into: (a) double sided linear flux 

switching permanent magnet machines (DSLFSPMMs) [20], (b) field excited DSLFSMs (FEDSLFSMs) 

[21], and (c) hybrid excited DSLFSMs (HEDSLFSMs) [22]. HEDSLFSMs utilize both PMs and field 

windings as excitation sources. LFSPMM with double mover topology is investigated in [7], whereas 

[23] examined the performance of a LFSPMM with a double stator topology. Comparison of double 

stator and double mover LFSM is performed in [24] and the authors claim an advantage of a low 

thrust force ratio for the DSLFSM structure with moving primary (mover). Analysis and design of a 

LFSPMM with a yokeless double stator conventional topology is presented in [25,26] and one with 

multitooth topology is presented in [27,28]. On the other hand, the multi-tooth configuration would 

result in more severe magnetic leakage on the mover pole, which could easily saturate the mover iron 

teeth even with a light electric load. Detailed study of LFSMs reveals that almost all topologies exhibit 

high detent force and thrust force ripple ratio due to “slot effect” and “end effect”. A remedy, i.e., 

introduction of multiple additional teeth is implemented for a single sided LFSM in [29]. However, this 

remedy is not yet investigated for DSLFSPMMs. Furthermore, the aforementioned solution increases 

the perpendicular length (x-direction) of the moving primary. 

Geometric 

Structure 

 DSLFSM

Excitation 

Source

Double Stator Double Mover FEDSLFSMDSLFSPMM HEDSLFSM

With Yoke Without Yoke

 

Figure 1. Broad classification of DSLFSMs. 

A field excited LFSM with double stator topology is designed and optimized in [30], and the 

authors recommended the proposed design for brushless AC (BLAC) operation. However, the field 

excited LFSM exhibits low thrust force density when compared with PM machines. Although the 

literature about HEDSLFSMs is very limited, a genetic algorithm (GA) optimization approach is 

utilized in [31] to reduce the thrust force ripple ratio while maintaining the average thrust force of a 

HEDSLFSM. Numerous advanced optimization techniques utilized for electric machines are 

presented in [32]. 

In this paper, a proposed DSLFSPMM (shown in Figure 2) is designed, investigated, modified, 

and optimized by the finite element method (FEM) utilizing the JMAG commercial FEA package v. 

14. Design variables and initial parameters are illustrated in Figure 3 and Table 1, respectively. 

However, the initial DSLFSPMM design shows a low average thrust force, asymmetric no-load flux 

distribution and high thrust force ripple ratio. An asynchronous mover slot and stator tooth 

displacement technique (AMSSTDT) is the first modification introduced to enhance the average 

thrust force and reduce the thrust force ripple ratio. Addition of an active permanent magnet end 

slot (APMES) is the second alteration introduced in our modified DSLFSPMM design to effectively 

Figure 1. Broad classification of DSLFSMs.

A field excited LFSM with double stator topology is designed and optimized in [30], and the
authors recommended the proposed design for brushless AC (BLAC) operation. However, the field
excited LFSM exhibits low thrust force density when compared with PM machines. Although the
literature about HEDSLFSMs is very limited, a genetic algorithm (GA) optimization approach is utilized
in [31] to reduce the thrust force ripple ratio while maintaining the average thrust force of a HEDSLFSM.
Numerous advanced optimization techniques utilized for electric machines are presented in [32].

In this paper, a proposed DSLFSPMM (shown in Figure 2) is designed, investigated, modified,
and optimized by the finite element method (FEM) utilizing the JMAG commercial FEA package v. 14.
Design variables and initial parameters are illustrated in Figure 3 and Table 1, respectively. However,
the initial DSLFSPMM design shows a low average thrust force, asymmetric no-load flux distribution
and high thrust force ripple ratio. An asynchronous mover slot and stator tooth displacement technique
(AMSSTDT) is the first modification introduced to enhance the average thrust force and reduce the
thrust force ripple ratio. Addition of an active permanent magnet end slot (APMES) is the second
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alteration introduced in our modified DSLFSPMM design to effectively curtail the asymmetric no-load
flux distribution problem, as illustrated in Section 2. Furthermore, the single variable geometric
optimization (SVGO) technique is utilized to improve the overall performance of modified model
in Section 3. Initial and optimized models are compared in Section 4. Finally, some conclusions are
drawn in Section 5.
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Table 1. Design parameters of DSLFSPMM.

Parameter and Symbol (Unit) Value Parameter and Symbol (Unit) Value

Stator pole pitch, τs (mm) 36.00 Mover pole pitch, τm (mm) 42.00
Stack length, L (mm) 60.00 Mover slot width, wms (mm) 10.50

Mover tooth width, wmt (mm) 10.50 Stator tooth width, wst (mm) 12.60
Mover tooth tip width, wmtt (mm) 8.50 Mover height, hm (mm) 100.00
Mover tooth tip height, hmtt (mm) 4.00 Height under PM, hPMO (mm) 7.00
Stator tooth tip width, wstt (mm) 12.60 Stator tooth base width, wstb (mm) 12.60

PM width, wPM (mm) 10.50 Width under PM, wPMO (mm) 14.50
PM height, hPM (mm) 33.00 Mover yoke height, hmy (mm) 31.50

Stator yoke height, hsy (mm) 20.00 Stator tooth height, hst (mm) 15.00
Stator height, hs (mm) 35.00 Armature coil area, Acoil (mm2) 359.60
Air-gap length, g (mm) 1.00 Number of turns per coil, Ncoil 90.00

Mover slot height, hms (mm) 34.25 Current density, JA (A/mm2) 5.85

2. Operating Principle and Enhancing Capabilities of DSLFSPMM

2.1. Operating Principle and Key Performance Indicators

The DSLFSPMM operating principle is described in Figure 4. When the relative position of the
stator poles and a particular mover tooth is (assuming θe = 0◦) as shown in Figure 4a, the coil U



Energies 2018, 11, 2781 4 of 21

flux-linkage is assumed as positive maximum value. When the mover moves to position θe = 90◦

(Figure 4b) the flux linkage of coil U approaches a zero value. Flux linkage in coil U is assumed as
a negative maximum value (Figure 4c) after further 90◦ movement i.e., θe = 180◦. When the mover
moves by further 90◦, (θe = 270◦, Figure 4d), the flux linkage of coil U again approaches zero value.
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Key performance indicators of DSLFSPMM such as peak-to-peak detent force (FDetent) and average
thrust force (TFavg) are obtained from 2D FE Analysis. Triangular standard mesh with 2908 elements
of 1 mm size and 1895 nodes is utilized to investigate each model of DSLFSPMM. Simulation time
is almost four hours for each model while using a fifth generation Intel (R) Core (TM) i5 processor
@ 1.70 Ghz with 8 GB RAM. No-load Flux THD (Flux THDNo−load) was obtained utilizing a Fourier
transform, followed by Equation (1):

THD =

(
∑K

k=2 U2
k

)1/2

U1
∗ 100% (1)

where U1 is the fundamental component and U2 to UK are the harmonic components. Thrust force
ripple ratio Krip was calculated using Equation (2) [8]:

Krip =
TFrip

TFavg
=

TFmax − TFmin
TFavg

∗ 100% (2)

where TFmax, TFmin, and TFrip are maximum value, minimum value, and ripples of thrust
force, respectively.

2.2. Enhancing Capabilities

Remedies applied to DSLFSPMM for rectification of low average thrust force, asymmetric no-load
flux distribution and high thrust force ripple ratio problems identified during initial design stage, are
illustrated in this section. Introduced advancements are explained as follows:

2.2.1. Asynchronous Mover Slot and Stator Tooth Displacement Technique

The AMSSTD technique is introduced to enhance the average thrust force, reduce peak-to-peak
detent force and thrust force ripple ratio. AMSSTDT is divided into two steps i.e., (a) mover slot
displacement, and (b) stator tooth displacement. It is important to mention that coil configuration of
top and bottom mover must be re-configured in order to achieve unidirectional thrust force, while
implementing the AMSSTD technique.

(a) Mover Slot Displacement

Both top mover and bottom mover slot displacement is investigated by introducing a variable
dmt and dmb, respectively (Figure 5). Numerical values of dmt and dmb are fractions of the mover pole
pitch i.e., dmt = dmb = (1/4) ∗ τm, (1/2) ∗ τm, (3/4) ∗ τm, and τm. Initially, the top mover slot is
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displaced, followed by bottom mover slot displacement, and eight different models are simulated.
A performance comparison of all mover slot displaced designs with the initial design is shown in
Figure 6. To distinguish the base machine configuration and improved (optimized/modified) machine
configurations illustrated in subsequent figures, they are indicated by the use of different colors.
The base machine configuration is indicated in red, whereas the improved (optimized/modified)
machine configuration is shown in black. It can be seen that the maximum average thrust force with
least no-load flux linkage THD and lowered peak-to-peak detent force can be achieved by selecting
dmt = (3/4) ∗ τm. Hence, DSLFSPMM with dmt = (3/4) ∗ τm is selected for further analysis and is
termed as DSLFSPMM Modified 1 (DSLFSPMM-M1) in this paper. Detailed comparison of DSLFSPMM
with DSLFSPMM-M1 and modified parameters are listed in Table 2.
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Table 2. Modified parameters and performance comparison of DSLFSPMM with DSLFSPMM-M1.

Parameter (Unit) DSLFSPMM DSLFSPMM-M1

TFavg (N) 22.64 26.43
FDetent (N) 5.73 5.18
TFrip (N) 11.72 7.13

Flux THDNo−load (%) 3.78 3.60
Krip (%) 51.76 26.97

dmt (mm) 0 31.5
dmb (mm) 0 0

(b) Stator Tooth Displacement

DSLFSPMM-M1 is further subjected to the stator tooth displacement technique to reduce
the peak-to-peak detent force and thrust force ripple ratio. Both top stator and bottom stator
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tooth displacement is investigated by introducing a variable dst and dsb, respectively (as shown
in Figure 7). Numerical values of dst and dsb are fractions of the stator pole pitch i.e., dst = dsb =

(1/4) ∗ τs, (1/2) ∗ τs, and (3/4) ∗ τs. Initially, the top stator tooth is displaced, followed by bottom
stator tooth displacement, and six different models are simulated. A performance comparison of all
displaced stator tooth designs with DSLFSPMM-M1 is shown in Figure 8, and detailed values are listed
in Table 3. It can be seen that, the maximum average thrust force with least thrust force ripple ratio can
be achieved by selecting dst = (1/2) ∗ τs. However, a slight increase in no-load flux linkage THD and
peak-to-peak detent force is observed. Hence, DSLFSPMM-M1 with dst = (1/2) ∗ τs is selected for
further analysis and is termed as DSLFSPMM-Modified 2 (DSLFSPMM-M2) in this paper. Detailed
comparison of DSLFSPMM-M1 with DSLFSPMM-M2 and modified parameters are listed in Table 3.
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Table 3. Modified parameters and performance comparison of DSLFSPMM-M1 with DSLFSPMM-M2.

Parameter (Unit) DSLFSPMM-M1 DSLFSPMM-M2

TFavg (N) 26.43 26.95
FDetent (N) 5.18 4.95
TFrip (N) 7.13 5.62

Flux THDNo−load (%) 3.60 4.01
Krip (%) 26.97 20.85
dst (mm) 0 18
dsb (mm) 0 0

2.2.2. Addition of Active End PM Slot

The APMES technique is utilized to effectively curtail the asymmetric no-load flux distribution
problem as shown in Figure 9b. Details of the no-load flux linkage, before and after APMES addition
are listed in Table 4. Dimensions of the added APMES are identical to other slots, as illustrated in
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Table 1. However, the end tooth mover slot width, wms is adjusted to effectively utilize APMES. With
this modification, PM volume is increased followed by an increment in average thrust force and a
decrement in thrust force ripple ratio. A performance comparison of DSLFSPMM-M2 with and without
APMES is shown in Figure 9c, and detailed values are listed in Table 5.

It can be seen that the average thrust force and no-load flux linkage are increased, and the
thrust force ripple ratio and no-load flux linkage THD are decreased, although a slight increase in
peak-to-peak detent force is observed. Hence, DSLFSPMM-M2 with APMES is selected for further
analysis and is termed as DSLFSPMM-M3 (as shown in Figure 9a) in this paper.
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Table 4. Comparison of no-load flux linkage symmetry for DSLFSPMM-M2 with and without APMES.

Parameter (Unit)
DSLFSPMM-M2 DSLFSPMM-M3

Maximum Minimum Maximum Minimum

No-load flux linkage of U-Phase (Webber) 0.208 0.211 0.230 0.237
No-load flux linkage of V-Phase (Webber) 0.218 0.197 0.215 0.219
No-load flux linkage of W-Phase (Webber) 0.205 0.196 0.216 0.223

Table 5. Modified parameter and performance comparison of DSLFSPMM-M2 with and without APMES.

Parameter (Unit) DSLFSPMM-M2 DSLFSPMM-M3

TFavg (N) 26.95 29.11
FDetent (N) 4.95 5.03
TFrip (N) 5.62 3.88

Flux THDNo−load (%) 4.01 3.62
Krip (%) 20.85 13.32

Perpendicular length (x-direction) (mm) 567 600.5
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3. Single Variable Geometric Optimization (SVGO) of DSLFSPMM-M3

The SVGO technique, also known as deterministic optimization [25,28,33], is applied to increase
the average thrust force and decrease peak-to-peak detent force, thrust force ripples, no-load flux
linkage THD, and thrust force ripple ratio of DSLFSPMM-M3. Increase of average thrust force is set as
a priority for the selection of machine configuration. However, in some cases where the proportion of
increment in the average thrust force is less than the increment in detent force or thrust force ripple
ratio, a machine configuration with increased average thrust force is sacrificed and that of low detent
force and low thrust force ripple ratio is selected (machine configurations with such conditions are
explained in the following sections). Electrical loading, stack length, air-gap length, stator pole pitch,
and mover pole pitch are kept constant during the optimization process. SVGO is an optimization
technique that sequentially modifies optimization variables and every consequent variable value may
or may not depend upon a previous variable value [34]. SVGO enables reduced computational and
time efforts compared to “simultaneous” optimization, but may lead to local optimal solutions rather
than a global one. The SVGO technique also helps to investigate the effect of each optimization variable
on machine performance. The following coefficients are defined in order to optimize wPM, hPM, hs,
wmt, wmtt, hm, hmtt, hPMO, wst, wstt, wstb, and hst. Initial values of the optimization variables are listed
in Table 1.

KwPM =
New wPM

Initial wPM
(3)

KhPM =
New hPM

Initial hPM
(4)

Split ratio =
2 ∗ (hs + g)

[2 ∗ (hs + g)] + hm
(5)

Kmtw =
New wmt

Initial wmt
(6)

Kmttw =
wmtt

wmt
(7)

Kmtth =
hmtt

hPMO
(8)

Kstw =
wst

τs
(9)

Ksttip =
wstt

wst
(10)

Kstb =
wstb
wstt

(11)

Ksth =
hst

hs
(12)

Initial values and constraints of optimization coefficients are listed in Table 6 and are in accordance
with general electric machine design rules [1]. The order of the optimization coefficients is the same
one in which the optimization process is performed.
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Table 6. Optimization coefficients and constraints.

Coefficient Initial Value Constraints

KwPM 1.00 [0.6–1.0]
KhPM 1.00 [0.6–1.3]

Split ratio 0.418 [0.3–0.45]
Kmtw 1.00 [0.7–1.2]
Kmttw 0.80 [0.5–1.2]
Kmtth 0.57 [0.0–1.0]
Kstw 0.35 [0.2–0.5]
Ksttip 1.00 [0.7–1.2]
Kstb 1.1 [0.7–1.3]
Ksth 0.39 [0.2–0.8]

3.1. Influence of KwPM and KhPM

Neodymium iron boron (NdFeB) PMs (Neomax-35AH, K&J Magnetics, Inc., (Pipersville, PA,
USA) are the strongest magnets, and used to simulate DSLFSPMM. The maximum recommended
temperature for the NdFeB magnets is +220 degrees Centigrade and their demagnetization curves are
shown in Figure A1 (Appendix A) [35].

The primary objective of these two optimization coefficients is to decrease PM volume and to
enhance thrust force capabilities. Performance comparison of DSLFSPMM-M3 with different KwPM
and KhPM ratios is done in Figure 10a,b, respectively. It can be seen that the overall performance of
DSLFSPMM-M3 with reduced PM volume is degraded. Hence, KwPM = KhPM = 1.00 is assumed as
the optimal value with respect to the primary objective.

The secondary objective of this optimization step is to enhance the thrust force capabilities while
maintaining PM volume. wPM and hPM are varied with the condition that the overall PM volume
remains unchanged. Performance comparison of DSLFSPMM-M3 with different KwPM and KhPM
values subject to the aforementioned condition is done in Figure 11a.
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Figure 10. Influence of PM dimensions on DSLFSPMM-M3: (a) Comparison of different KwPM values;
(b) Comparison of different KhPM values.

It can be seen that the maximum average thrust force with minimum no-load flux linkage THD
can be achieved by selecting KwPM = 0.83 and KhPM = 1.20. However, a slight increase in thrust
force ripples and peak-to-peak detent force is observed. Hence, DSLFSPMM-M3 with KwPM = 0.83
and KhPM = 1.20 is selected for further analysis and is termed as DSLFSPMM-MO1 in this paper.
Performance comparison of DSLFSPMM-M3 with DSLFSPMM-MO1 is done in Figure 11b and detailed
values are listed in Table 7.
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Figure 11. Influence of PM dimensions on DSLFSPMM-M3, when PM volume is constant: (a) Comparison
of DSLFSPMM-M3 with different KwPM and KhPM values; (b) Comparison of DSLFSPMM-M3
and DSLFSPMM-MO1.

Table 7. Modified parameters and performance comparison of DSLFSPMM-M3 with DSLFSPMM-MO1.

Parameter (Unit) DSLFSPMM-M3 DSLFSPMM-MO1

TFavg (N) 29.11 47.35
FDetent (N) 5.03 8.79
TFrip (N) 3.88 6.16

Flux THDNo−load (%) 3.62 2.36
Krip (%) 13.32 13.00

wPM (mm) 10.5 8.75
hPM (mm) 33.00 39.60

3.2. Split Ratio Optimization

Split ratio is an important and detrimental parameter for the electromagnetic performance of
a machine. Optimal selection of the split ratio enables a reduction of mover iron volume, hence
reducing weight and cost while improving thrust force capability. It must be emphasized that PM
volume, armature winding slot area, and electrical loading are fixed when the split ratio is varied.
Key performance indicators of DSLFSPMM-MO1 with different split ratios are presented in Figure 12a.
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It can be observed that the maximum average thrust force with minimum thrust force ripple
ratio can be achieved by selecting split ratio = 0.455. However, a slight increase in thrust force ripples,
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no-load flux linkage THD, and peak-to-peak detent force is observed. Hence, DSLFSPMM-MO1 with
split ratio = 0.455 is selected for further analysis and is termed as DSLFSPMM-MO2 in this paper.
Performance comparison of DSLFSPMM-MO1 with DSLFSPMM-MO2 is illustrated in Figure 12b,
whereas, detailed values are tabulated in Table 8.

Table 8. Modified parameters and performance comparison of DSLFSPMM-MO1 with DSLFSPMM-MO2.

Parameter (Unit) DSLFSPMM-MO1 DSLFSPMM-MO2

TFavg (N) 47.35 52.73
FDetent (N) 8.79 9.71
TFrip (N) 6.16 6.69

Flux THDNo−load (%) 2.36 2.62
Krip (%) 13.00 12.69

Split ratio 0.418 0.455

3.3. Influence of Kmtw

To investigate the influence of the mover tooth width wmt on the average thrust force,
peak-to-peak detent force, thrust force ripples, no-load flux linkage THD, and thrust force ripple
ratio, DSLFSPMM-MO2 with different Kmtw values should be investigated. Initially, wmt = τm/4 is
selected. Key performance indicators of DSLFSPMM-MO2 with different Kmtw values are presented in
Figure 13. It can be observed that the overall performance of DSLFSPMM-MO2 with Kmtw = 1.00 is
better than for other Kmtw values, hence, no modification in wmt is carried out.
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3.4. Influence of Kmttw

As shown in Figure 2 and listed in Table 1, a mover tooth tip width wmtt is not equal to wmt.
To investigate the influence of the mover tooth tip width, a dedicated coefficient Kmttw is defined and
simulated for a range of 0.5 to 1.2. Performance comparison of DSLFSPMM-MO2 having different
values of Kmttw is shown in Figure 14a.

It can be seen that the maximum average thrust force can be achieved by selecting Kmttw = 1.1.
However, a slight increase in peak-to-peak detent force, thrust force ripples, no-load flux linkage
THD, and thrust force ripple ratio is observed. Hence, DSLFSPMM-MO2 with Kmttw = 1.1 is selected
for further analysis and is termed as DSLFSPMM-MO3 in this paper. Performance comparison of
DSLFSPMM-MO2 with DSLFSPMM-MO3 is illustrated in Figure 14b and detailed values are tabulated
in Table 9.
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Figure 14. Mover tooth tip width optimization: (a) Performance comparison of DSLFSPMM-MO2 having
different Kmttw values; (b) Performance comparison of DSLFSPMM-MO2 and DSLFSPMM-MO3.

Table 9. Modified parameter and performance comparison of DSLFSPMM-MO2 with DSLFSPMM-MO3.

Parameter (Unit) DSLFSPMM-MO2 DSLFSPMM-MO3

TFavg (N) 52.73 56.64
FDetent (N) 9.71 9.97
TFrip (N) 6.69 8.43

Flux THDNo−load (%) 2.62 3.60
Krip (%) 12.69 15.71

wmtt (mm) 8.50 11.55

3.5. Influence of Kmtth

The influence of mover tooth tip height on average thrust force, peak-to-peak detent force,
thrust force ripples, no-load flux linkage THD, and thrust force ripple ratio is investigated by using
the coefficient Kmtth, and simulated for a range of 0.00 to 1.00. Key performance indicators of
DSLFSPMM-MO3 having different Kmtth values are presented in Figure 15a.
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Figure 15. Mover tooth tip height optimization: (a) Performance comparison of DSLFSPMM-O3 having
different Kmtth values; (b) Performance comparison of DSLFSPMM-MO3 and DSLFSPMM-MO4.

It can be seen that the maximum average thrust force no-load flux linkage THD can be achieved
by selecting Kmtth = 0.10. However, a slight increase in peak-to-peak detent force, thrust force ripples,
and thrust force ripple ratio is observed. Hence, DSLFSPMM-MO3 with Kmtth = 0.10 is selected
for further analysis and is termed as DSLFSPMM-MO4 in this paper. Performance comparison of
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DSLFSPMM-MO3 with DSLFSPMM-MO4 is illustrated in Figure 15b and detailed values are listed in
Table 10.

Table 10. Modified parameter and performance comparison of DSLFSPMM-MO3 with DSLFSPMM-MO4.

Parameter (Unit) DSLFSPMM-MO3 DSLFSPMM-MO4

TFavg (N) 56.64 60.76
FDetent (N) 9.97 12.22
TFrip (N) 8.43 10.86

Flux THDNo−load (%) 3.60 2.74
Krip (%) 15.71 17.87

hmtt (mm) 4.00 0.70

3.6. Influence of Kstw

The topology of DSLFSPMM allows for a completely passive stator (made only of iron) and is
suitable for long stroke applications due to its reduced cost. Following general machine design rules,
an initial value of wst ≈ τs/3 is selected. Key performance indicators of DSLFSPMM-MO4 having
different Kstw values are presented in Figure 16. It can be observed that the overall performance of
DSLFSPMM-MO4 with Kstw = 0.35 is better than for other Kstw values; hence, no modification in wst

is carried out.
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3.7. Influence of Ksttip

Ksttip is the ratio of stator tooth tip width to stator tooth width (wst for DSLFSPMM-MO4). Both
increase and decrease in wstt are investigated by defining a range from 0.7 to 1.2. The performance
comparison of DSLFSPMM-MO4 having different values of Ksttip is shown in Figure 17a.

It can be seen that when Ksttip = 0.90, the minimum value peak-to-peak detent force, thrust
force ripples, and thrust force ripple ratio can be achieved, however, the average thrust force is about
98.78% of the maximum value at Ksttip = 1.10. Hence, DSLFSPMM-MO4 with Ksttip = 0.90 is selected
for further analysis and is termed as DSLFSPMM-MO5 in this paper. A performance comparison of
DSLFSPMM-MO4 with DSLFSPMM-MO5 is illustrated in Figure 17b and detailed values are tabulated
in Table 11.
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Figure 17. Stator tooth tip width optimization: (a) Performance comparison of DSLFSPMM-MO4
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Table 11. Modified parameter and performance comparison of DSLFSPMM-MO4 with DSLFSPMM-MO5.

Parameter (Unit) DSLFSPMM-MO4 DSLFSPMM-MO5

TFavg (N) 60.76 60.05
FDetent (N) 12.22 7.28
TFrip (N) 10.86 8.56

Flux THDNo−load (%) 2.74 2.65
Krip (%) 17.87 14.25

wstt (mm) 12.60 11.34

3.8. Influence of Kstb

The stator tooth base width is also optimized in order to reduce the peak-to-peak detent force
and thrust force ripples. Similar to stator tooth tip ratio, both an increase and decrease in wstb is
investigated by defining a range from 0.7 to 1.3. The performance comparison of DSLFSPMM-MO5
having different values of Kstb is shown in Figure 18a.
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It can be observed that when Kstb = 1.2, the average thrust force is about 99.91% of the maximum
value at Kstb = 1.1, whereas, the peak-to-peak detent force and thrust force ripples of DSLFSPMM-MO5
having Kstb = 1.2 is 98.76% and 99.41% to that of Kstb = 1.1, respectively. Hence, DSLFSPMM-MO5
with Kstb = 1.2 is selected for further analysis and is termed as DSLFSPMM-MO6 in this paper.
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Performance comparison of DSLFSPMM-MO5 with DSLFSPMM-MO6 is illustrated in Figure 18b,
whereas, detailed values are listed in Table 12.

Table 12. Modified parameter and performance comparison of DSLFSPMM-MO5 with DSLFSPMM-MO6.

Parameter (Unit) DSLFSPMM-MO5 DSLFSPMM-MO6

TFavg (N) 60.05 60.00
FDetent (N) 7.28 7.19
TFrip (N) 8.56 8.51

Flux THDNo−load (%) 2.65 2.66
Krip (%) 14.25 14.18

wstb (mm) 12.60 13.64

3.9. Influence of Ksth

The influence of stator tooth height on average thrust force, peak-to-peak detent force, thrust
force ripples, no-load flux linkage THD, and thrust force ripple ratio is investigated by coefficient Ksth.
The range of Ksth is selected from 0.2 to 0.8. Key performance indicators of DSLFSPMM-MO6 having
different Ksth values are presented in Figure 19a.
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It can be seen that the maximum average thrust force with minimum peak-to-peak detent force
can be achieved by selecting Ksth = 0.30. However, a slight increase in no-load flux linkage THD is
observed. Also thrust force ripples and thrust force ripple ratio is reduced. Hence, DSLFSPMM-MO6
with Ksth = 0.30 is selected as final optimized model and is termed as DSLFSPMM-MO7 in this paper.
Performance comparison of DSLFSPMM-MO6 with DSLFSPMM-MO7 is illustrated in Figure 19b,
while detailed values are tabulated in Table 13. The comparison of the initial and optimized geometric
parameters is summarized in Table 14.

Conclusions drawn from the optimization process may be listed as follows:

(1) As a PM is an active source, the influence of PM dimensions greatly affect the average thrust
force. Although the armature winding slot area is constant, reducing PM width helps to increase
armature winding slot width and slot opening. This enhances flux linkage and average thrust
force. PM height is increased and armature winding slot height is decreased in order to maintain
the PM volume and armature winding slot area.

(2) Split ratio is directly proportional to the height of the stator portion and inversely proportional to
whole machine height. As can be witnessed in Section 3.2, an increased value of the split ratio is
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selected as the optimal value, and hence, mover volume and weight are reduced. This reduction
helps to improve the average thrust force profile.

(3) Although an increment of mover tooth tip width helps to improve the average thrust force, it is
at the cost of an increase in thrust force ripple ratio. The reason behind the increment of thrust
force ripple ratio is an increase in the slotting effect of the detent force.

(4) Mover tooth tip height effect mover volume and low reluctance path (iron) to short circuit PM
mmf. As can be seen in Section 3.5, a decreased value of mover tooth tip height is selected as an
optimal value. This reduction helps to reduce mover weight and increase the high reluctance
path (air) at the opening of the PM.

(5) Stator tooth tip width is related to the slotting effect of detent force. A reduction in stator tooth
tip width resulted in a decrease of detent force and thrust force ripple ratio at the cost of a slight
decrease in average thrust force.

(6) Although the stator tooth base width and stator tooth height do not have a significant effect
on overall machine performance, however, an increase in stator tooth base width and decrease
in stator tooth height results in an increase of the low reluctance path (iron). This increment
enhances magnetic flux distribution and average thrust force profile.

Table 13. Modified parameter and performance comparison of DSLFSPMM-MO6 with DSLFSPMM-MO7.

Parameter (Unit) DSLFSPMM-MO6 DSLFSPMM-MO7

TFavg (N) 60.00 61.16
FDetent (N) 7.19 7.08
TFrip (N) 8.51 8.50

Flux THDNo−load (%) 2.66 2.73
Krip (%) 14.18 13.89
hst (mm) 15.00 11.40

Table 14. Comparison of initial and optimized geometric parameters.

Parameter
(mm)

Initial
Value

Optimized
Value

Parameter
(mm)

Initial
Value

Optimized
Value

hmtt 4.00 0.70 wms 10.50 12.25
wmt 10.50 10.50 hmy 31.50 35.30
wmtt 8.50 11.55 hm 100.00 94.00
hst 15.00 11.40 hms 34.25 29.35

wstt 12.60 11.34 wstb 12.60 13.64
wPM 10.50 8.75 hPM 33.00 39.60

hs 35.00 38.00 hsy 20.00 26.60

4. Performance Comparison

Steady state and electromagnetic performance of DSLFSPMM (initial design, as shown in Figure 2)
and DSLFSPMM-MO7 (modified and optimized design, as shown in Figure 20) is investigated and
compared in this section.

The three phase no-load flux linkage waveforms obtained by the FE method for DSLFSPMM
and DSLFSPMM-MO7 are compared in Figure 21a. It can be seen that the no-load flux linkage
of DSLFSPMM-MO7 is higher in magnitude, more symmetrical and more sinusoidal than that of
DSLFSPMM. Slight asymmetry is observed in the W phase of DSLFSPMM-MO7; a possible reason is the
“end effect” (an inherent property of linear machines) [7,33]. Harmonic analysis (shown in Figure 21b)
reveals that second-order, fifth-order and seventh-order harmonic components are curtailed effectively
in the modified and optimized design, although the third-order, fourth-order, and sixth-order harmonic
components of modified and optimized design are slightly high when compared with the initial design.
According to the literature, third-order harmonic components can be counteracted in three-phase
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machines [10]. THD obtained from the frequency spectrum (shown in Figure 21b) of no-load flux
linkage waveform for DSLFSPMM is 3.78% and for DSLFSPMM-MO7 is 2.73%.
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Figure 22a shows the thrust force comparison of DSLFSPMM and DSLFSPMM-MO7 obtained by
the FE method. The average thrust force of DSLFSPMM-MO7 is about 270.14% to that of DSLFSPMM.
The detent force waveforms obtained by the FE method for DSLFSPMM and DSLFSPMM-MO7 are
compared in Figure 22b. It can be seen that the detent force of DSLFSPMM-MO7 is unidirectional and
slightly higher in magnitude when compared with DSLFSPMM, whereas, the thrust force ripple ratio
is reduced from 51.76% (DSLFSPMM) to 13.89% (DSLFSPMM-MO7). The performance comparison of
DSLFSPMM and DSLFSPMM-MO7 is illustrated in Figure 23, while detailed values are tabulated in
Table 15.
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Table 15. Performance comparison of DSLFSPMM and DSLFSPMM-MO7.

Parameter (Unit) DSLFSPMM DSLFSPMM-MO7

TFavg (N) 22.64 61.16
FDetent (N) 5.73 7.08
TFrip (N) 11.72 8.50

Flux THDNo−load (%) 3.78 2.73
Krip (%) 51.76 13.89

In order to calculate contribution of PM volume on the average thrust force, a dedicated variable
termed as thrust force density due to PM (TFDPM) is defined as under:

TFDPM =
TFavg

VPM
(13)

VPM for DSLFSPMM (initial design) is 0.00048996 m3 and 0.00058212 m3 for DSLFSPMM-MO7
(modified and optimized design). An increase in VPM of DSLFSPMM-MO7 can be observed; the reason
behind this increment is the addition of APMES. TFDPM calculated for DSLFSPMM is 46.20 kN/m3

and 105.06 kN/m3 for DSLFSPMM-MO7.

5. Conclusions

In this paper, key performance indicators of a double sided linear flux switching permanent
magnet machine (DSLFSPMM) i.e., average thrust force, peak-to-peak detent force, thrust force
ripples, no-load flux linkage THD, and thrust force ripple ratio are investigated and enhanced by
the FE method. Asynchronous mover slot and stator tooth displacement technique (AMSSTDT) is
utilized to enhance the average thrust force, reduce peak-to-peak detent force and thrust force ripple
ratio. The active permanent magnet end slot (APMES) technique is utilized to effectively curtail the
asymmetric no-load flux distribution problem. After the aforementioned modifications, single variable
geometric optimization (SVGO) is carried out. The thrust force of the modified and optimized model
is about 270.14% to that of the initial model. The thrust force ripple ratio of the initial model is 51.76%,
whereas that of the modified and optimized model is 13.89%. THD is also reduced from 3.78% to
2.73%, when compared with the initial model.
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