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Abstract: In load predication, point-based forecasting methods have been widely applied. However,
uncertainties arising in load predication bring significant challenges for such methods. This therefore
drives the development of new methods amongst which interval predication is one of the most
effective. In this study, a deep belief network-based lower–upper bound estimation (LUBE) approach
is proposed, and a genetic algorithm is applied to reinforce the search ability of the LUBE method,
instead of simulated an annealing algorithm. The approach is applied to the short-term load prediction
on some realistic electricity load data. To demonstrate the effectiveness and efficiency of the proposed
method, it is compared with three state-of-the-art methods. Experimental results show that the
proposed approach can significantly improve the predication accuracy.

Keywords: deep belief network; lower upper bound estimation method; short-term load prediction;
interval predication

1. Introduction

Load prediction plays an important role in the planning of power systems, building reliable
power systems and so on. In general there are four types of load predication, that is, long-term,
medium-term, short-term, and ultra-short-term forecasting. The short-term load prediction (STLP)
is crucially important on the daily operation and scheduling of power systems such as economical
dispatching and optimal unit commitment.

To date, there has been a number of studies proposed for STLP. These methods can be loosely
categorized as point predication and interval prediction. Representative point predication-based
methods include the following: (i) methods based on statistical models, such as state space model [1],
regression analysis model [2], autoregressive integrated moving average (ARIMA) [3], Kalman
filtering [4], and exponential smoothing (ES) models [5]; (ii) artificial intelligence-based methods, e.g.,
neural networks (NNs) [6], expert systems [7], support vector machines (SVM) [8], deep learning [9];
and (iii) hybrid models such as neuro-fuzzy systems [10]. However, the main issue of point predication
is that it only provides a single value as an output without considering the accuracy or reliability of the
predication [11]. Given the increasing uncertainties of the power grid caused by self-powered users
and independent microgrids (based on renewable energies) [12], point predication-based methods
now face great challenges.

Interval predication-based methods, as the name says, output an interval as the predication
results to cover the future observations with a certain confidence level of expectation probability,
which is more suitable to deal with uncertainties [13,14]. The upper and lower bounds in interval
predication can not only highly cover the fallen objectives, but they also provide an accurate coverage
probability as an indication, which obviously brings more quantitative information than point
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prediction. Table 1 listed several representative interval predication methods. The delta method adopts
a nonlinear regression technique to enhance the generalization performance of the neural network
(NN) models [15]. First, the method linearized the neural network model by a set of parameters
generated by minimizing the sum of the squared error cost functions. Then, the linearization model
applied the standard asymptotic theory to construct predication intervals (PIs) [16]. The main issue of
the above method is the use of the linearization that simplifies the approach but that may lose effect
when the dataset shows strong non-linearity. Bayesian techniques are used to train neural networks,
and they allow the predicted value to have a certain error range [17]. However, the need to calculate
the Hessian matrix of the cost function constructed makes the calculation of this method expensive.
The Bootstrap method is perhaps the most widely used technique for NN-based interval predication,
due to its simplicity and ease of implementation [18]. Compared with the aforementioned methods,
the Bootstrap method does not need to calculate the derivative and the Hessian matrix. However,
it requires a large data set to support the training process. The mean-variance estimation-based method
can enhance the ability of the NN model to estimate the distribution characteristics of conditional
objectives [19]. The most striking feature of this approach is that it greatly reduces the calculation cost
of the training process. However, the low empirical coverage probability is the biggest drawback of
this approach.

Table 1. The features of four traditional neural network (NN)-based predication interval (PI) construction
methods [15].

Method Advantage Disadvantage

Delta method NN is enhanced by the nonlinear
regression technique The use of linearization in NN

Bayesian method Strong theoretical foundation of
Bayesian concepts

Large computational burden
required for the calculation of

a Hessian matrix

Bootstrap method Ease of implementation The need of a large data set to
support training and calculation

Mean-variance estimation-based method The low calculation cost of the
training process

The low empirical
coverage probability

In addition to the above methods, an alternative interval predication method, namely, the lower
upper bound estimation (LUBE), is proposed in 2011 [20]. Compared to existing NN-based interval
predication methods, the LUBE does not make any assumption about the distribution of the training
data sets or the prediction errors. Also, it avoids mass computational calculation of complex derivatives.
In this study a single-objective LUBE framework is adopted, though its multi-objective framework has
also been proposed [21,22].

The NN-based LUBE approach has many demonstrated applications [23–25]; however,
the traditional NN model has its own limitations such as the requirement for a long training time for
good performance, and the ease of the model to be trapped in local optima. These limitations have
greatly restricted the performance of the NN-based LUBE method. The deep belief network (DBN) has
attracted a great deal of attention in the last decade [26]. The DBN adopts a layer-by-layer training
method, by which the whole network can be effectively trained. One notable feature of DBN is that it
can hierarchically display multiple characteristics of the patterns of data.

In the last decade, there is a growing appeal for using DBN to predict time series data [27].
For example, an empirical mode decomposition (EMD) algorithm is incorporated into DBN to improve
the algorithm performance [28]. The particle swarm optimization (PSO) approach was introduced to
enhance the learning and extraction capability of the restricted Boltzmann machine (RBM) in DBN [29].
In [30] an adaptive DBN learning architecture is proposed to autonomously generate/eliminate RBM
neurons based on the training data patterns. A fast meta-heuristic algorithm was applied to make
the parameter settings of DBN more suitable and accurate [31]. The nearest neighbor classification



Energies 2018, 11, 2744 3 of 18

algorithm was combined with the dynamic time warping (DTW) method to obtain first-class prediction
performance [32].

In the study, a single-objective framework LUBE method using the DBN is proposed to perform
short-term load predication. In addition, a genetic algorithm is applied to reinforce the search ability
of the LUBE method, instead of a simulated annealing algorithm. The rest of the paper is organized as
follows. Section 2 introduces the background knowledge related to the deep belief network model and
the LUBE method; Section 3 elaborates the proposed novel interval prediction framework combing
DBN and LUBE; experimental setup, results, and discussions are presented in Section 4; Section 5
concludes the paper and identifies some future directions.

2. Background

This section introduces some necessary background knowledge i.e., the evaluation metrics of the
interval predication and the LUBE method.

2.1. Evaluation Metrics of Interval Prediction

As is well known, the mean absolute percentage error (MAPE) and the mean square error (MSE)
are two widely used metrics in point prediction. Likewise, the PI coverage probability (PICP) and the
PI-normalized average width (PINAW) are two important metrics in interval predication. Notably,
the metrics have to be optimized simultaneously so as to obtain an interval with narrow range but
good coverage (i.e., reliability).

Specifically, the PICP measures the number of objective values that are within the predicted
interval. The larger the PICP, the better the predication results. Mathematically, the PICP can be defined
as follows:

PICP =
1
n

n

∑
i=1

ci (1)

where n denotes the number of objective sets, and ci is a Boolean variable defined by:

ci =

{
1, i f yi ∈ [Li, Ui];
0, i f yi /∈ [Li, Ui].

(2)

The variable ci describes the coverage degree of predicated interval (PI). If the objective value yi
lies within the lower bound Li and the upper bound Ui, then ci = 1; Otherwise, ci = 0. The ideal case,
PICP = 100%, indicates that all objective values are within the predication interval.

A little more thought can reveal that a sufficiently wide PI would result in PICP = 100%. However,
this is obviously not applicable. Therefore, another metric has to be introduced, the PINAW, which is
expect to be minimized; see Equation (3):

PINAW =
1

N · S
N

∑
i=1

(U(Xi)− L(Xi)) (3)

where S measures the range of the objective values, i.e., the maximum objective value minus the
minimum. It is used to standardize the average width of the PI as a percentage. In this way, PINAW
can be applied to quantitatively examine the performance of the constructed PI by different methods.

Obviously, the PICP and PINAW are in conflict with one another. A narrow interval (a small
PINAW) has a large probability to result in a small PICP. Thus, to assess the overall performance of the
interval predication methods, a comprehensive cost function is required to consider both the coverage
probability and the width of the predication interval. Moreover, as PICP is the basic feature of interval
predication methods, the proposed cost function is designed to give more weight to the variation of
PICP. In short, the coverage width-based criterion (CWC) is as follows:



Energies 2018, 11, 2744 4 of 18

CWC = PINAW + γ(PICP)e−η(PICP−µ) (4)

where γ(PICP) is a Boolean function:

γ =

{
1, i f PICP < µ;
0, i f PICP ≥ µ.

(5)

where η is used to penalize the invalid PI, while µ can be determined by the confidence level of PI.

2.2. LUBE Approach

Different from traditional interval predication methods, the LUBE approach directly approximates
the upper and lower bounds of the PI by unsupervised learning methods. As is mentioned in
the last section, the LUBE aims to achieve a narrow predication interval and a high coverage
probability of objective values, which is a typical bi-objective optimization problem. By Equation (4),
the bi-objective problem is reasonably transformed into a single-objective problem, minimizing the
unified indicator, CWC.

The proposed metric, CWC, is therefore used to train an NN, so as to construct PI. The NN model
has two outputs, the upper bound and the lower bound. A genetic algorithm is applied to reinforce
the search ability of the LUBE method. Figure 1 illustrates a typical flowchart of the NN-based LUBE
approach. The main steps are described as follows.

Step 1 Population initialization: randomly initialize the population of the genetic algorithm (GA).
The weights and thresholds of the NN models are generated based on the population.

Step 2 PI construction and CWCraw calculation: an NN with two outputs is applied to construct PIs
for the training data. PICP, PINAW, and CWC are then calculated, which are taken as the
initial fitness of the genetic algorithm.

Step 3 Generation of a new population: the selection, crossover, and mutation operators are
performed on the parent population to produce new offspring.

Step 4 PIs construction: a new PI is constructed by using new selected NN parameters. Accordingly,
the new metric CWCnew is calculated by Equation (4).

Step 5 Each individual evaluation: The index CWC is considered as the fitness in the GA optimal
process. The individual with the minimum fitness is recorded as the global optimal solution.
The individual also represents the best model parameters.

Step 6 Termination and Results: usually there are frequently used termination criteria, i.e.,
the maximum number of iterations is reached, or the evaluation indicator remains unchanged
for a number of interactions. If the criteria is not met, then the algorithm returns to Step 3.
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3. Single-Objective LUBE Framework for DBN-Based Interval Predication

As mentioned previously, the LUBE method directly constructs a predication interval. This is of
low computational cost, and it is easy to implement. At present, most studies are based on a NN model
to build prediction intervals. However, compared with the NN model, a DBN with RBM structure
can discover inherent features of data which is therefore more suitable in predicting time series data.
This section thus elaborates the use of DBN-based model for interval prediction.

3.1. Deep Belief Network Model

The DBN model generally consists of several restricted Boltzmann machines (RBM), stacking,
and a layer of NN [33]. The training process of DBN contains two phases: a layer-wise pre-training
process and a fine-tuning process. The former provides better initial values of the network parameters,
and the latter searches optimal parameters of the network. A typical DBN is illustrated in Figure 2.
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3.1.1. Pre-Training Process

The goal of the pre-training process is to generate a good set of network parameters for the DBN
model. The configuration of parameters is obtained through an unsupervised greedy optimization
algorithm by using the (RBM).

RBM, a stochastic binary structure, can learn the distribution characteristics of sample data [34,35].
This binary structure consists of visible layers and hidden layers. There are connections between the
visible layer and the hidden layer, while there is no connection within the layer. These connections are
bidirectional and symmetrical. Figure 3 shows the typical structure of RBM.
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Figure 3. The Algorithm schematic of a restricted Boltzmann machine (RBM).

The RBM is an energy-based model. The energy of the joint configuration of the visible and
hidden layers can be expressed as below:

E(v, h) = −∑
i

∑
j

wijhivj −∑
i

bihi −∑
j

ajvj (6)

where hi represents the state of the hidden layer unit i, and vj represents the state of the visible layer
unit j. wij is the weight between the units. bi and aj represent the thresholds of the units. The energy
function is applied to calculate the probability that is assigned to each pair of visible and hidden
vectors. The lower the energy, the closer the network is to the desired goal. The probability distribution
between the visible layer and the hidden layer is defined as follows:

p(v, h) =
1
M

e−E(v,h) (7)

where M is a partition function that counts e−E(v,h) over all possible configurations, and regularizes it
as below:

M = ∑
v,h

e−E(v,h) (8)

Given the activation unit of the visible layer, the activation probability of the hidden layer unit is:

phi
= p(Hi = 1|v) = σ

(
∑

j
wijvj + bi

)
(9)

where σ is the logistic sigmoid function:

σ(x) =
1

(1 + exp(−x))
(10)

Accordingly, for a given hidden unit vector, the state probability of the visible layer specific unit
can be expressed as:

pvj = p
(
Vj = 1

∣∣h) = σ

(
∑

i
wijhi + aj

)
(11)

The update process of the RBM is described below. The number of units selected for the visible
layer is the same as the number of training data given, and then Equation (10) is used to calculate the
state of the corresponding hidden layer. Similarly, based on the state obtained by the hidden layer
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unit, the state of the visible layer unit is calculated by Equation (11). After a number of such loops,
the resulting unit is denoted as hi

′ and vj
′. Related parameters of RBM are updated as follows:

∆bi = η
(
〈hi〉 −

〈
hi
′〉) (12)

∆aj = η
(〈

vj
〉
−
〈
vj
′〉) (13)

∆wij = η
(〈

vjhi
〉
−
〈
vj
′hi
′〉) (14)

where 〈·〉 epresents the expectation of training data, and η refers to the learning rate.

3.1.2. Fine-Tuning Process

After the pre-training, the DBN network adjusts its connection weights by the back propagation
(BP) algorithm. This process is called fine-tuning, which enables the DBN to have better discriminant
performance. Based on the loss function of the network, a gradient descent algorithm is adopted to
adjust the network parameters, wherein the loss function defined in Equation (15) is applied to find
the optimal parameter setting:

L
(
y, y′

)
= ‖y− y′‖2

2 (15)

where y′ defines the forecast point and y defines the actual point.

3.2. Model Implementation

Based on the DBN model and the LUBE method, the predication interval can be constructed, and
the schematic diagram is shown in Figure 4. Moreover, Figure 5 shows the flowchart of the DBN-based
LUBE method. The main steps are discussed below.

Step 1 Data processing. As is known, the power system is a typical nonlinear system, which is affected
by various natural and social complex factors. In order to establish an accurate prediction
model, the load forecasting method needs to quantify the effects of various factors, but such
quantification is often very difficult. Since the evolution of any component of the system is
determined by the other components that interact with that component, the load time series
contains the long-term evolution information of all variables that affect the load. Therefore,
studying the regularity of load and predicting the future development trend of load power
can only use historical load data. The theoretical basis of this prediction method is the phase
space reconstruction theory proposed by Packard et al. [36].

Assuming that the time series of a component of the system is observed as {x(k), k = 1, 2, · · · , N},
then a point state vector reconstructed in the phase space can be expressed as:

X(i) = [x(i), x(i + τ), · · · , x(i + (m− 1)τ)], i = 1, 2, · · · , M (16)

where M is the number of phase points in the reconstructed phase space, M = N− (m− 1)× τ. m and
τ respectively represent the embedding dimension and the time delay of the system.

The authors in [37] demonstrated that when the embedding dimension is sufficiently large,
the reconstruction algorithm is an embedded mapping. The reconstructed phase space can preserve
many characteristics of the dynamic system, and can recover the dynamic characteristics of the system
in the sense of topological equivalence.
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The key point of the phase space reconstruction technology is to correctly select the embedding
dimension m and the time delay τ. A small m cannot show the real structure of a complex system,
while a large m makes the true structural relationship between the points unclear, due to the decrease
of the density of the points. Therefore, it is necessary to select an appropriate embedding dimension,
m. In practical applications, due to the limited data, the choice of an appropriate τ is also critical. If τ is
too small, the correlation of the coordinates is too strong, so that the information is not easily revealed;
if τ is too large, the power system will be distorted. Overall, in this study, the two parameters are
determined by the mutual information function and the false nearest neighbor method.
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Once the time delay and embedding dimension are determined, the time series can be reconstructed.
Then it can be applied to train the DBN model. In this case, the number of input units of the model is
equal to the embedding dimension.

Step 2 Determine the primary structure of DBN. In this study, the trial and error method is used to
find the appropriate number of hidden units in the DBN model. The number of input units is
determined by the delay time.

Step 3 Parameter initialization. The parameters of DBN model are initialized by the RBM using
Equations (12)–(14).

Step 4 Generation of new population of GA. The new population is used to update the weights and
thresholds of DBN, and then we can obtain new cost function. A smaller cost function value
in this study will be retained.

Step 5 Model evaluation. First, predication intervals are constructed by the DBN model, then the
corresponding metrics, i.e., PICP and PINAW, are calculated. Finally, CWC (a combination of
PICP and PINAW) is used to evaluate the quality of the PI.

Step 6 Termination criterion. If the termination condition is met, then the training is terminated.
Otherwise return to step 3.

Step 7 Construct PI. Construct the predicated intervals by the obtained optimal DBN model.

4. Experiment

In this section, we describe the historical power load data of a small town in the UK as the
short-term load forecasting case. To demonstrate the prediction performance of the proposed model,
the proposed method is compared against three other state-of-the-art models.

4.1. Preprocessing of Data Set

The entire dataset uses real-world electricity load data of a small town in the UK in 2013, which is
a 24 h daily load data from 1 January 2013 to 31 December 2013. According to the LUBE method,
the data set needs to be divided into two parts: the training set and the test set. In this paper, we chose
nearly 75% of the data set (i.e., the first 273 days) as the training set, and the remaining data (i.e., the last
92 days) as the test set to evaluate the predictive performance of the DBN-LUBE model. The power
load data for the entire month of August 2013 is shown as an instance in Figure 6.
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Figure 6. The power load data of August 2013.

4.2. Parameter Settings

Before constructing the prediction interval, we needed to determine the number of input units and
hidden units of the DBN model. The number of input nodes is related to the embedding dimension,
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which can be determined by the phase space reconstruction theory. By the mutual function and the
false nearest function in the TISEAN toolbox [38], m is calculated as 10, and τ is 6. In this case,
the dimension of reconstructed delay vectors is 10 and the number of input units for the DBN model is
also 10. Specifically, the selection of training sample and training objective is shown in Table 2.

Table 2. Training sample and training objective.

Training Sample Training Objective

x1, x7, x13, · · · , x55 x56
x2, x8, x14, · · · , x56 x57

. . . . . .
x6500, x6506, x6512, · · · , x6554 x6555

The number of hidden units was obtained by the trial and error method. The trial and error results
of the DBN model are illustrated in Figure 7. It can be observed from the figure that the MSE achieved
optimal performance when the number of hidden units was 34.
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Therefore, the optimal structure of the DBN used in this case was 10-34-2. The diagram of the
model is illustrated in Figure 8. For the DBN model, the transfer functions of the output neurons and
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4.3. Results Analysis

In the experiment, the proposed DBN-based LUBE method was compared with three best-in-class
prediction models, i.e., the Elman model [39], the nonlinear autoregressive exogenous (NARX)
model [40], and the back propagation (BP) network neural model [41].

The comparative prediction results obtained by the four forecasting models for the entire test
data are shown in Figure 9. In Figure 9, the prediction results by the DBN fell within the range of the
1300-4800 KW load, which was the narrowest width of the constructed PIs. Compared to the DBN
model, in the BP and NARX models, the predicted intervals were a bit wider. Although most of the
predictions of the Elman model were good, the prediction range of the model at the beginning was too
volatile, exceeding by an order of magnitude.
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Figure 9. The prediction results by four models for the entire test data: (a) DBN-based PI; (b) BP
network neural-based PI; (c) Elman network neural-based PI; (d) NARX network neural-based PI.

In order to better show the comparative test results, we selected the results of the four prediction
models for the same 10 continuous days, which are respectively shown in Figure 10. In Figure 10,
the construction PI of DBN model can perfectly cover the test data. The prediction results by the
Elman model also cover most of the test data, but the PI is much wider than that of DBN. Compared
to the DBN model, the reliability of the prediction results by the BP and NARX models were much
worse. From the results, it can be concluded that the proposed method provided a narrower width
and better reliability.
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In Table 3, the prediction results are compared in terms of four indicators. The CWC indicator is the
overall evaluation indicator. According to Equation (4), the smaller the CWC, the better the prediction
performance. From Table 3, the CWC of the DBN-based LUBE approach was 0.4702, which was the
best. Moreover, in terms of the PI coverage probability, DBN model showed significant superiority
over the Elman model. The DBN was also much better than the BP neural network model for the
PI-normalized average width. Besides, the DBN model had the shortest running time.

Table 3. Comparative results of the four models in terms of different indicators.

Model CWC (%) PICP (%) PINAW (%) Time

DBN 47.02 96.60 47.02 578.41 s
BP 81.84 95.83 81.84 629.97 s

Elman 79.45 96.42 79.45 982.52 s
NARX 91.16 91.38 91.16 970.92 s

During the iteration, the change of the optimum individual’s fitness by the four models is depicted
in Figure 11. In Figure 11, the CWC indicator of all models decreased sharply and achieved satisfactory
results in the initial iterations. As the search progressed, the CWC indicator continued to decrease and
eventually it converged to the optimal value. The convergence performance shows that the network
model with RBM-initialized network weights had stronger optimization capabilities. Compared with
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the optimal results, the initial and optimal fitness of the DBN model were significantly superior to the
results of other models.
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To demonstrate the superiority of the proposed method even further, Figure 12 and Table 4
show the construction PI of the DBN model over four seasons. Overall, the DBN model had a great
prediction performance for all the four seasons. Comparing the prediction results of the four seasons,
the summer results were the worst. The reason might be that the temperature in summer changes
more significantly than in the other seasons.

Table 4. Prediction results on four seasons.

Season CWC (%) PICP (%) PINAW (%) Time

Spring 51.08 96.01 51.08 153.46 s
Summer 57.74 96.01 57.74 158.88 s
Autumn 54.94 99.83 54.94 157.53 s
Winter 54.47 93.75 54.47 164.43 s
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5. Conclusions

Load prediction often involves a number of uncertainties which makes point predication-based
methods not applicable in practice. Interval prediction, as an effective method to quantify uncertainties,
therefore has attracted more and more attention. In this study, a selection of point and interval
predication methods are first briefly reviewed, then a DBN-based lower upper bound estimation
(LUBE) method for short-term load interval forecasting is proposed. To demonstrate the superiority of
the proposed method, we compare the DBN-based LUBE method with three state-of-the-art methods,
i.e., the BP neural network, the Elman neural network and the NARX neural network. Experimental
results show that the DBN-based LUBE method provides the best predication results in a relatively
short period of time.

In terms of future work, more empirical tests should first be performed to further demonstrate the
effectiveness of the proposed method. Second, in the single-objective LUBE method, the final objective
function CWC is a simple combination of PICP and PINAW, and the forecast accuracy and robustness
are generally two conflicting objectives; thus, a multi-objective prediction method should be further
studied. Lastly, future studies should also consider the potential effects of an advanced evolutionary
algorithm [42–44] to enhance the performance and efficiency of the multi-objective method.
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The following abbreviations are used in this manuscript:

ARIMA Autoregressive Integrated Moving Average
BP Back Propagation
CWC Coverage Width-based Criterion
DBN Deep Belief Network
DTW Dynamic Time Warping
EMD Empirical Mode Decomposition
ES Exponential Smoothing
GA Genetic Algorithm
LUBE Lower Upper Bound Estimation
MAPE Mean Absolute Percentage Error
MSE Mean Square Error
NARX Nonlinear Autoregressive Exogenous
NN Neural Network
PI Prediction Intervals
PICP PI Coverage Probability
PINAW PI Normalized Average Width
PSO Particle Swarm Optimization
RBM Restricted Boltzmann Machine
SVM Support Vector Machines
STLP Short-term Load Prediction
TISEAN Time Series Analysis
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