
energies

Article

A Novel Reversal Γ-Shape Coupled Inductor
High-Step AC-AC Converter

Hongchen Liu * and Xinsheng Zhang

School of Electrical Engineering and Automation, Harbin Institute of Technology, No. 92, Xidazhi Street,
Nangang District, Harbin 150001, China; Zhangxs05@yeah.net
* Correspondence: fenmiao@hit.edu.cn; Tel.: +86-139-3646-3582

Received: 21 August 2018; Accepted: 25 September 2018; Published: 12 October 2018
����������
�������

Abstract: This paper presents a novel reversal Γ-shape coupled inductor high-step AC-AC converter.
This converter uses a reversal Γ-shape coupled inductor that consists of a two-winding coupled
inductor for higher voltage gain. As the coupling inductance ratio is closer to 1 or the duty ratio is
larger, the boosting capability of this converter is enhanced. The proposed converter has the following
advantages: first, it can realize a continuous input current. Second, the input and output voltage
have a common ground in the proposed converter. Apart from these features, the proposed topology
has a higher voltage gain with a lower voltage stress on switches and the proposed topology has low
cost, and a simple configuration and control scheme. The gain of the proposed high-step AC-AC
converter is determined by more variables. Thus, when designing the converter there are more
options to meet different requirements. The principle of operation is described and discussed in this
paper. In addition, the operating performance is illustrated and estimated based on simulation and
experimental results.
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1. Introduction

In recent years, high-voltage AC-AC boost converters are attracting more and more attention.
In AC power conversion systems, direct PWM AC-AC converters [1,2], indirect AC-AC converters [3]
and matrix converters based on switching device [4] have been widely used. The back-to-back
dc-link converters have the disadvantages of the power system pollution caused by the diode-rectifier.
The disadvantage of matrix converters is their lower voltage ratio. The two converters mentioned
above also have complex structures and commutation strategies. Direct PWM AC-AC converters have
merits such as single-stage conversion, simpler topology, easier control, higher efficiency, smaller size,
lower cost and lower in-line current harmonics.

Since the end of the last century, more and more DC-DC converters were proposed based
on various impedance network layouts [5,6]. In theory, a direct PWM AC-AC converter could be
obtained from a DC-DC topology by replacing all unidirectional devices with bidirectional switches [7].
The converters based on impedance have some advantages as increasing the voltage gain, adding
more flexible options in the design and a larger adjustment range in the gain adjustment. Traditional
single-phase Z-source AC-AC uses a consistent style converters can provide a larger range of output
voltage in buck–boost mode, by reversing or maintaining the phase angle [8,9]. However, the main
drawback of conventional voltage-fed ZSACs [10] is that the ground in the input and output voltages
is not shared. Hence, the feature that the output voltage reverses or maintains its phase angle
with the input voltage is not supported well. The authors in [11,12] used direct PWM AC-AC
converters to overcome voltage sags and swells as static VAR compensators in power systems. The
performance of AC-AC converters can be improved significantly using safe-commutation strategy
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in switching with PWM control as presented in [13]. A class of single phase PWM AC-AC power
converters with simple topologies have been presented in [14]. These include buck, boost, buck–boost,
and Cuk converters. Z-source converters applied to DC-AC inverters and ac–ac converters have
recently been proposed in [8] and [15–18]. Trans Z-source inverters have recently been proposed
to improve the voltage gain using coupled inductors [18,19]. A quasi-Z-source converter has been
presented in [17,20]. The proposed converter utilizes two winding coupled inductors or a two-winding
transformer. The main merits of the Γ-source converter can be summarized as continuous input current,
common ground, simple configuration and control scheme, realizing higher voltage gains with a lower
voltage stress on switches, having more adjustments when changing its gain and having more design
options to meet its performance requirements.

The designed novel reversal Γ-shape coupled inductor high-step converter based on the Γ-source
impedance network. The Γ-source converter in this paper is showing in Figure 1 below. As we can
see from Figure 1, the proposed converter consists of a coupled inductor (LM), inductor (L), switches
(S1, S2, S3, S4, S5 and S6), capacitors (C1, Cc and Co) and load (R). The numbers of turns of the two
windings of this coupled inductor are N1 and N2. The unique characteristic of this converter is that
the closer the turns ratio (N = N1:N2) of the two windings (N1 and N2) is to 1, the more the boosting
capability of this converter is enhanced. Therefore, this converter still has better boosting capability at
a lower design cost and high engineering application value. To improve the voltage gain and decrease
the voltage stress on switches, a capacitor clamping unit has been used in the proposed converter.
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Figure 1. Proposed reversal Γ-shape coupled inductor AC-AC converter.

2. Study of the Proposed Reversal Γ-Source Ac-Ac Converter

2.1. Circuit Analysis

In this section, the topology proposed in Figure 1 will be analyzed in details. The equivalent circuit
of the presented converter is shown in Figure 2. It is clearly seen that the coupled inductor is modeled
as a magnetizing inductance LM, a leakage inductance LK, and an ideal transformer. For easier analysis
of the circuit, we make some assumptions as follows:

(1) Assuming that the capacitors (C1, Cc and Co) values are large enough, the voltage across them is
fixed over a period.

(2) All power devices in the experiment were ideal devices.
(3) Define LM/(LM + LK) as the coupling coefficient K of the coupled inductor and define N1/N2 as

the turn ratio N of the coupled inductor.
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Figure 3. Two steady-states of the proposed converter: (a) shoot-through state; (b) non-shoot through state. 
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Using these definitions, the proposed converter in shoot through and non-shoot through states
were shown in Figure 3. Time in the state of Figure 3a in one cycle is written as DT and the time in the
state of Figure 3b in one cycle is written as (1-D)T, in which D is the duty cycle and T is the cycle time.
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In shoot-through state as shown in Figure 3a, the time interval in this state is DT. Accordingly,
the state equations can be derived as:

Vo + VL −VC2 = 0
VCC + VLM + VC1 −Vin = 0

Vin − N1+N2
N1

LLM = 0
ICo − IL +

Vo
R = 0

ICc − IL + IC1 = 0
IC1 +

N1−N2
N2

ILM = 0

(1)

In the non-through state as shown in Figure 3b, the time interval in this state is (1-D)T. Accordingly,
the state equations can be derived as:

VCC + N1+N2
N1

VLM −Vin = 0
Vin −VLM −VC1 −VL −Vo = 0

ICo − IL +
Vo
R = 0

IC1 +
N1−N2

N2
ILM = 0

ICC + N1
N2

ILM = 0

(2)

In the above formula, Vo is the output voltage, IL M is the current flowing through the inductor
LM, ICo is the current flowing through capacitor Co, IC1 is the current flowing through capacitor C1, ICc

is the current flowing through capacitor Cc, VL M is the voltage across inductor LM, VC1 is the voltage
across the capacitor C1, VCc is the voltage across the capacitor Cc.
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In one cycle, the average equation is as follows:

∫ DT

0
VLM dt +

∫ T

DT
VLM dt = 0 (3)

Finally, based on (1)–(3), the voltage gain of the proposed reversal Γ-shape coupled inductor
AC-AC converter can be computed as:

M =
ND− 2N + DK
(1− D)(K− N)

(4)

In the above formula, M is the voltage gain.
Figure 4 shows the relationship between voltage gain and duty cycle at different

coupling coefficients.
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It can be obtained from Equation (4) that as the coupling coefficient K increases, the voltage gain
of the proposed converter increases. If the coupling coefficient K is infinitely close to 1, the equation
can be written as follows:

M =
ND− 2N + D
(1− D)(1− N)

(5)

Figure 5 reflects the effect of the turn ratio N on the proposed converter gain. It can be derived
from Equations (4) and (5) that the voltage gain would increase while the turns ratio is close to 1.
This converter reduces the manufacturing cost while increasing the voltage gain. It also can simplify
the structural design.

2.2. Commutation Study of the Proposed Converter

As shown in Figure 2, to implement a bidirectional switch, the two MOSFETs are linked with
a common emitter, using a safety commutation strategy to prevent the damage of current and voltage
spikes on switches.

The operation states in “in-phase boost mode” when Vin > 0 is shown in Figure 6. Switches S2, S4

and S6 are completely turned ON, while S1, S2 and S3 are switched complementary in high frequency
with a small dead time between them.
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gradually. The secondary inductor N2 and capacitor Cc are connected in series to charge the capacitor 
C1. During this mode the energy of the load R is supplied by the output capacitor Co and inductor L. 
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Figure 6. Operation states of the converter when Vin > 0: (a) Non-shoot through state; (b) Shoot
through state.

In non-shoot through state, as shown in Figure 6a, the switch S1 and S5 are turned off. The energy
of the inductor N2 stares to transmit to the clamped capacitor Cc. The input source Vin, inductor N1,
and capacitor C1 are connected in series to provide the energy to load and capacitor Co. And the
magnitude of the inductor L current would increase during this state.

In shoot-through state, as shown in Figure 6b, switches S1 and S5 are turned ON. The voltage
source Vin charges the input inductor LM, thus the magnitude of the LM current would increase
gradually. The secondary inductor N2 and capacitor Cc are connected in series to charge the capacitor
C1. During this mode the energy of the load R is supplied by the output capacitor Co and inductor L.

When the Vin < 0, the analysis method is like that Vin > 0. And operation states of the converter
when Vin < 0 are shown in Figure 7. During this period the switches S1, S3 and S5 are turned ON,
while S2, S4 and S6 are switched complementary in high frequency. The gate voltage signals of switches
are shown in Figure 8.
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2.3. Parameter Design

The coupled inductor parameters of the novel reversal Γ-shape coupled inductor converter has
been calculated as follows. In the state of Figure 3b, the voltage of the coupled inductor LM could be
calculated as KN

N+K Vin:

uLM = LM
di
dt

(6)

According to the voltage equation of inductor (6), the following equation can be derived:

LM ≥
uLM dt

di
(7)

As we can see from the Figure 9, the following equation can be obtained:

uLM =
N1

N1 + N2
Vin (8)
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Thus, Equation (9) can be derived:

LM ≥
N1

N1+N2
|Vin|dt

di
(9)

Replacing di with ∆iLM , we can replace dt with DT, so, the following equation can be obtained:

LM ≥
N

N + 1
DT|Vin|

∆iLM

(10)

Considering the range of current ripple is ∆im ≤ x%ILM , Equation (11) can be derived:

LM ≥
N

N + 1
DT|Vin|
x%ILM

(11)

Similar to the above deduction process, we could determine the parameters of the capacitor Cc.
The results can be obtained as:

Cc =
DT
∣∣iLM

∣∣
∆VCC

(12)

Assume that the voltage ripple coefficient of the capacitor is m%, the equation of the value range
of the capacitor parameters can be described as:

Cc ≥
DT
∣∣iLM

∣∣
m%VCC

(13)

By the same method, the equation of C1 can be written as:

C1 ≥
N − 1

N
DT
∣∣iLM

∣∣
m%VC1

(14)

Finally, the parameter design of the output filter is as follows. The parameter of the output filter
inductor is calculated as follows [21]:

L =
εR

2π fc
(15)

and, the expression of ε is as follows:

ε =
1
R

√
L
C

(16)

Moreover, the parameter of the output filter capacitor could be derived as:

Co =
1

2π fcεR
(17)

fc represents the cutoff frequency of the output filter. R represents the load resistance. And L
represents filter inductor. ε is greater than 0.5 and less than 0.8. The ε is select as 0.6. The efficiency of
the filter will reduce when ε is too large or too small:

VS1 = VCc =
(2ND− N − 1)

ND + D− N − 1
Vin (18)

VS3 =
(N − 1)

(N + 1)(1− D)
Vin (19)
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According to the above equations, we can obtain the voltage of capacitor C1 and Cc as follows:

VC1 =
2D− N − 1

DN − D− N + 1
Vin (20)

VCC =
2ND− N − 1

DN + D− N − 1
Vin (21)

2.4. Proposed Converter Versus Other

Besides the proposed converters based on reversal Γ-shape coupled inductor, there are many
converters that have been proposed in previous papers. Detailed related introductions can be found in
the respective references.

From Table 1, it could be known clearly that the voltage stresses of switches in the proposed
converter are far lower than output voltages, therefore low-voltage-rated power switches can be used
in the proposed converter. Apart from this, as we can see from Table 1, in the proposed Γ-shape
coupled inductor converters, when the turns ratio comes close to 1, the gain become larger.

Table 1. Governing equations of the existing converters and the proposed converter.

Topology Voltage Gain Maximum Voltage Stress of Switches

Converter in [22] D
1−D

√
2Vin

1−D

Converter in [23] 1−N+D
(1−D)

√
2(9D2+1)Vin
2D(1+D)

The proposed converter ND−2N+D
(1−D)(1−N)

VS1,2 =
(2ND−N−1)
ND+D−N−1 Vin

VS3,4 =
(N−1)

(N+1)(1−D)
Vin

VS5,6 =
(
√

2−D)
ND+D−N−1 Vin

When the coupled inductor turns ratio is 1.5, the graphs of Figures 10 and 11 are obtained.
Figures 10 and 11 show the output voltage gains and voltage stress of MOSFETs. Figures 10 and 11
show that the voltage gain of proposed reversal Γ-shape coupled inductor converter is higher than that
of previous topologies in [22,23] while the voltage stresses are lower. Figure 10 shows that the proposed
reversal Γ-shape coupled inductor converter has a higher voltage gain than the converters in [22,23]
under the same circumstances. Figure 11 shows that the proposed reversal Γ-shape coupled inductor
converter has lower voltage stress than the converters in [22,23] under the same circumstances.
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3. Experimental Verifications

To verify the performances of the proposed reversal Γ-shape coupled inductor converter,
experiments were carried out according to the experimental parameters given in Table 2. Experimental
verification of the proposed novel topology is achieved and controlled using a digital signal processor
(TMS320F28335). Switching frequency is set at 20 kHz. The duty cycle is 0.72. The tested condition
and experimental parameters are shown in Table 2.

Table 2. Experimental parameters.

Components Parameters Components Parameters

Maximum output power P 250 W Inductor L2 20 µH
Input voltage Vin 30 V Inductor L 1 mH

Output voltage Vo 250 V C1 (Capacitor) 4.7 µF
Switching frequency fs 20 kHz Cc (Capacitor) 4.7 µF

Turns ratio n2/n1 of
coupled inductor N 1.5 Co (Capacitor) 20 µF

Inductor L1 45 µH Power MOSFET Q IRFP 250 N

The experimental results of the novel reversal Γ-shape coupled inductor converter have been
illustrated in Figure 12. Figure 12a shows the input and output voltages of the proposed reversal
Γ-shape coupled inductor converter. In Figure 12a, the green waveform is the input voltage waveform
and the yellow waveform is the output voltage waveform.

As we can see from the result, the input voltage amplitude of the proposed converter is 30 V and
the output voltage amplitude of the proposed converter is about 250 V. Both the input and output
voltages are sinusoidal. The voltage gain of the proposed converter was verified. The input current
has been shown in Figure 12b which is also a sinusoidal waveform. Figure 12c shows the voltage
stress of the switch S1. As can be seen from Figure 12c, the maximum voltage stress on switch S1

is about 13 V. The experimental results agree with the calculation, which verifies the validity of our
theoretical analysis.
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4. Conclusions

In this article, a novel reversal Γ-shape coupled inductor high-step AC-AC converter is presented.
The proposed converter utilizes a safe commutation strategy to avoid voltage and current spikes.
The modulation strategy, analysis of operation states and parameter design are introduced. The input
voltage and output voltage share the same ground, which is beneficial for reducing the input current
harmonics. As the coupling inductance ratio is closer to 1 or the duty ratio is larger, the voltage gain
of this converter is enhanced. This exclusive feature is beneficial to reduce the structural cost of the
converter while achieving high voltage gain. The gain of the proposed high-step AC-AC converter
is determined by more variables. Thus, when designing the converter there are more options to
meet different requirements. Finally, the experimental results prove the correctness of the theoretical
analysis. The proposed converter has better performance that other proposed devices.
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