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Abstract: The unpredictability of intermittent renewable energy (RE) sources (solar and wind)
constitutes reliability challenges for utilities whose goal is to match electricity supply to consumer
demands across centralized grid networks. Thus, balancing the variable and increasing power inputs
from plants with intermittent energy sources becomes a fundamental issue for transmission system
operators. As a result, forecasting techniques have obtained paramount importance. This work aims at
exploiting the simplicity, fast computational and good generalization capability of Extreme Learning
Machines (ELMs) in providing accurate 24 h-ahead solar photovoltaic (PV) power production
predictions. The ELM architecture is firstly optimized, e.g., in terms of number of hidden neurons,
and number of historical solar radiations and ambient temperatures (embedding dimension) required
for training the ELM model, then it is used online to predict the solar PV power productions.
The investigated ELM model is applied to a real case study of 264 kWp solar PV system installed
on the roof of the Faculty of Engineering at the Applied Science Private University (ASU), Amman,
Jordan. Results showed the capability of the ELM model in providing predictions that are slightly
more accurate with negligible computational efforts compared to a Back Propagation Artificial
Neural Network (BP-ANN) model, which is currently adopted by the PV system owners for the
prediction task.

Keywords: solar photovoltaic system; global solar radiations; ambient temperatures; prediction;
Extreme Learning Machines; Back Propagation; Artificial Neural Networks

1. Introduction

Jordan is an emerging middle eastern country. Unlike other neighbouring countries, Jordan is
non-oil producing with limited natural resources. The overall production of natural gas and crude oil
covers less than 4% of the total national energy demand. The imported energy resources are a major
burden on the country’s national economy. As a yearly average in the last four years, Jordan was
spending more than 10% of its Gross Domestic Product (GDP) to cover the cost of achieving its energy
demands with a large share focused on electricity generation [1–5].

Electricity consumption is growing due to increasing industrialization and fast-growing
population; the latter is related to natural growth as well as due to refugees from Syria and Iraq.
Between 2005 and 2015, the peak power demand as well as the consumption of electrical energy have
increased noticeably (Figure 1). For example, the peak power increased from 1287 MW in 2005 to 3088
MW in 2015. In parallel, the overall consumed electrical energy increased from 8.8 TWh in 2005 to
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15.4 TWh in 2015. Within that period, the annual average growth rate of the peak power demand and
the corresponding yearly consumption of electrical energy were roughly 180 MW/a and 0.66 TWh/a,
respectively. In this context, Jordan had recognized the need to invest in renewable energy (RE).
Based on the 2007–2020 energy strategy, and the updated “Jordan 2025 a national vision and strategy”,
it has been planned to increase the share of renewables in the energy mix to 10% in 2020 [6,7].
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Figure 1. Electricity generation (GWh) and peak load (MW) for the period 2000–2016 (based on the
data from [2]).

Solar photovoltaic (PV) systems in Jordan have evolved from being a niche market of small-scale
applications used for remote power systems towards becoming a MW-scale that feed significant energy
into the utility grid. Currently, the share of installed generating capacity of RE systems (solar and wind)
accounts for 10% of the total installed capacity, as shown in Figure 2 [8]. However, the stochasticity
(variability) of RE sources have brought technical challenges to grids, espcieally to the Transmission
Network Service Provider (TNSP) [1,8–10].
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To manage and control the country’s electricity grid, Jordan follows the single-buyer model shown
in Figure 3. National Electric Power Company (NEPCO), as TNSP, is responsible of energy trading
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with all interconnected parties on the grid: four private entities and one governmental entity have been
licensed to own and operate the conventional power plants, which generate the required electricity to
cover the country’s demands. The distribution of the electricity to final consumers for the southern,
northern, and central parts of the country is carried out by three entities, which are, respectively: (i) the
Electricity Distribution Company (EDCO); (ii) Irbid District Electricity Company (IDECO); and (iii)
Jordan Electric Power Company (JEPCO). The interconnection among these categories is illustrated in
Figure 3 (simplified from [12]).
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Figure 3. Jordanian market structure (single-buyer model) (simplified from [12]).

One vital activity of the TNSP is to prepare a day ahead plan for loading the running power
generation units differently, to cover the needed system demand with the most economic manner
according to the order of merits. Meanwhile, the TNSP is accustomed to managing the variability
and uncertainty in the load with economic dispatch. The unpredictability of intermittent RE energy
sources creates reliability challenges for utilities aiming at balancing power supplies and demands
across centralized grid networks. Thus, balancing more of the variable input of renewables become
a major challenge for TNSP, and prediction (forecasting) methods and tools are required in order to
facilitate the integration of high penetration of variable RE input [13–20].

2. Literature Review

Approaches for solar photovoltaic (PV) power predictions are broadly classified into model-based
and data-driven [19,21]. The former approaches employ physics-based models that use weather
variables (e.g., solar radiations, temperatures, wind speed, etc.) for the solar power predictions [22].
Although these approaches lead to accurate prediction results, but uncertainty arising due to the
simplifications and assumptions in the adopted models may pose constraints on their practical
deployment [19,20,23].

Contrarily, data-driven approaches, such as those based on Machine Learning (ML) techniques,
do not use any physics-based models, but rely solely on the availability of solar data to build black-box
models for capturing the relationship of weather variables and solar PV power productions [19,24].
For example, Chow et al. [25], have employed the Artificial Neural Network (ANN) technique to
capture the nonlinear relationship between the metrological variables and the energy produced by a
PV system. It was found that the solar radiation, solar elevation and azimuth angles, and dry-bulb
temperature are capable of effectively predicting the PV energy production; Omar et al. [26],
have developed ensembles of multilayer perceptron feedforward ANNs models for 24 h-ahead power
prediction of a solar facility using the forecasted weather variables of the next day; Ding et al. [27],
have proposed an improved Back Propagation (BP) learning algorithm within an ANN for accurate
24 h-ahead solar PV power predictions, under different weather conditions; Mandal et al. [28],
have explored the combination of Wavelet Transform (WT) and Radial Basis Function Neural Network
(RBFNN) techniques for accurate 1 h-ahead PV power output forecasting: the spike changes in PV
power time-series data have been filtered by resorting to WT, and the nonlinear fluctuation of PV
power has been captured with RBFNN.
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Bouzerdoum et al. [29], have developed a new hybrid Seasonal Auto-Regressive Integrated
Moving Average (SARIMA) and Support Vector Machines (SVMs) model for short-term power
forecasting of a grid-connected PV. The developed model has been shown capable of providing
more robust and accurate predictions than any of the two individual models. In [30], the authors
have proposed a novel statistical short-term forecasting system for hourly energy production in a real,
grid-connected, PV plant. The proposed system comprises two Numerical Weather Prediction (NWP)
models for forecasting the weather variables, and an Artificial Intelligence (AI)-based model (i.e., k-NN,
ANN, ARIMA, and ANFIS) for 1–39 h-ahead solar power predictions, based on the forecasted weather
data. Alomari et al. [31], have presented an ANN-based forecasting model that used the measured
weather and PV power data for 24 h-ahead power predictions. The presented ANN model has
been further enhanced by exploring two learning algorithms, namely the Levenberg-Marquardt and
Bayesian Regularization, for the purpose of correlating the historical weather variables to the PV
power productions [32]. Behera et al. [33] have proposed a modified Extreme Learning Machine (ELM)
technique for PV power forecasting, whose weights have been tuned by resorting to different Particle
Swarm Optimization (PSO) techniques. The obtained results have been compared to those obtained by
the state-of-the-art BP-ANN forecasting model.

Among the existing data-driven techniques, the ELM is a new learning algorithm for single-hidden
layer feedforward neural networks, originally developed by [34]. It has gained an increasing interest
in different industrial applications due to its simplicity, fast computational and good generalization
capability [34]. Differently from the conventional BP-ANN, the internal parameters of ELM are
generated randomly (i.e., weights of the input-hidden layers) and calculated analytically (i.e., weights
of the hidden-output layers), whereas the BP-ANN employs the well-known BP algorithm to iteratively
set its internal parameters, leading to large computational demands.

To the best of our knowledge, few efforts have been dedicated for investigating the capability of
the ELM data-driven model in predicting solar PV power production. Therefore, the objectives of the
present work are two-fold:

• The development of empirical, data-driven prediction model based on the ELM, that receives
in input the historical global solar radiation and ambient temperature values and provides
in output the 24 h-ahead prediction of the PV system power production. The ELM model is
optimized in terms of number of hidden layer neurons, hidden neuron activation function and
number of historical global solar radiation values needed for accurate predictions (hereafter called
embedding dimension);

• The comparison with a benchmark BP-ANN data-driven prediction model (similarly optimized
for a fair comparison) currently adopted by the solar PV system owners in [31,32].

ELM and BP-ANN are both applied to a real case study concerning measured real weather
and production data taken from a 264 kWp solar PV system installed on the roof of the Faculty of
Engineering at Applied Science Private University (ASU) in Jordan [35]. The original contribution
of this work is the development and the application of optimum ELM model for the solar power
production prediction task and its comparison with BP-ANN model employed by the PV system
owners [31,32]. The performances of the prediction models are verified with respect to three
standard metrics [20,36], namely Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Weighted Mean Absolute Error (WMAE) in addition to the time necessary for building/training
the prediction models.

The remaining of this paper is structured as follows. In Section 3, the ASU solar PV system case
study is illustrated. In Sections 4 and 5, the results of the application of the ELM model to the case
study are presented and compared with those obtained by the BP-ANN model of the system owners,
respectively. Finally, some conclusions are drawn in Section 6.
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3. Case Study: ASU Solar PV System

In this Section, a real case study of a solar PV system of a capacity of 264 kWp installed on the roof
of the Faculty of Engineering at ASU, Amman, Jordan (whose coordinates location (latitude, longitude)
is 32◦2′24.0324” N and 35◦54′1.4328” E) is presented [35].

3.1. Data Description

The dataset extracted from the PV system in the ASU campus comprises (i) real weather data

measured by an existing weather station located around 171 m from the Faculty of Engineering,
→
W,

and (ii) the corresponding power productions (in kW) measured and recorded by the inverters of the

PV system,
→
P (Figure 4 [37]) [35].
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The dataset used in this work has been collected in the period of three years (from 16 May 2015 to
30 September 2017) on an hourly basis, i.e., with a time step ∆t = 1 h, i.e., from 0 a.m. to 11 p.m. daily.

The weather data,
→
W, include the hourly measurements of 45 weather variables, e.g., wind speeds and

directions, humidity, global radiation, precipitation, and temperature at different heights in the plant,
whereas the power production data include the mean power productions obtained by the PV system
(in kW).

It is worth mentioning that among the 45 weather variables, few variables show constant values
during the three-year period and, hence, they are excluded from the analysis. Among the remaining
weather variables, engineering and expert judgment suggested to use the global solar radiation,
Irr (in W/m2), and the ambient temperature at 1 m altitude, T (in ◦C), as the weather variables that
have the largest influence on the solar PV power productions, P [19,31,32]. The investigation of the
influence of the remaining weather variables on the power productions predictions could be an object
of future research work.

For clarification purposes, Figure 5 shows the hourly global solar radiation values (top left),
the hourly ambient temperature values at 1 m altitude (top right) and the corresponding solar
power productions (bottom) of the 2016-year data. For confidentiality reasons, throughout the paper,
the values of the solar radiations, ambient temperatures and energy productions reported in the
Figures are given on an arbitrary scale. From Figure 5, it can be easily recognized that [19]:
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• The higher the global solar radiation received by the PV system is (7 a.m.–5 p.m. of each day)
(Figure 5 (top left)), the higher the solar PV power production is (Figure 5 (bottom));

• The higher the ambient temperature (1 m altitude) of the PV panels is (Figure 5 (top right)),
the more negative will be the impact on the output power productions produced by the panels
(Figure 5 (bottom));

• The large variability in the global solar radiation and ambient temperature of the system, at the
different days of the year, and the corresponding large variability of the power productions.
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3.2. Data Pre-Processing

For proper use of the dataset for the prediction task, the following pre-processes have been carried
out on the three-year dataset:

1. Negative Irr values and associated missing P values have been recognized in the early
morning (i.e., 0 a.m.–6 a.m.) and in the late evening (i.e., 6 p.m.–11 p.m.) times, due to
radiation measurement devices (i.e., offset in the sensors) and inverter failures, respectively.
Correspondingly, the Irr values and the associated P values are set to 0;

2. A few T values were not reported correctly at some time instants, due to temperature
measurement devices failures (i.e., offset in the sensors). Correspondingly, they are treated
as missing values and, thus, they have been excluded from the analysis with the corresponding
Irr and P values;

3. Missing Irr, T values and/or missing P values have been recognized in some days of the dataset,
due to radiation and temperature measurement devices failures and some network connection
disruptions and/or inverter failures, respectively. Correspondingly, the Irr and T values and the
associated P values in both cases are excluded from the analysis;

4. The Irr and T values and the corresponding P values are then, normalized to the range of
[0,1] [19] for better ELM and ANN model performances related to the value ranges of their
neuron activation functions [31,36] (Equation (1)):

Irrnorm =
Irr− Irrmin

Irrmax − Irrmin , Tnorm =
T − Tmin

Tmax − Tmin and Pnorm =
P− Pmin

Pmax − Pmin (1)

For the solar PV power production prediction task, the three-year dataset is partitioned into:
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• Training,
=
Xtrain, and validation,

=
Xvalid, datasets that contain the global solar radiation

values, Irr, and the corresponding power productions, P, sampled randomly from the
2015–2016 years data with fractions of 60% and 40%, respectively. The training dataset is
formed by Ntrain = 15, 437 patterns, which are used for building/training the ELM (Section 4)
and the ANN (Section 5) prediction models, whereas the validation dataset is formed by
Nvalid = 10, 291 patterns, which are used for optimizing the architectures of ELM (Section 4)
and ANN (Section 5) prediction models;

• Test dataset,
=
Xtest, that contains the 2017-year data, which have never been, used during the

development of the prediction models. The test dataset is formed by Ntest = 6384 patterns,
which are used to evaluate the performance of the optimum ELM prediction model with respect
to that of the ANN prediction model.

It is worth mentioning that each pattern of the created datasets comprises in inputs the historical
real d radiation and ambient temperature values (i.e., embedding dimension) collected at hour h in
the past d days, [Irrh,1

j , . . . , Irrh,d
j , Th,1

j , . . . , Th,d
j ], and in output the associated historical real power

production value collected at the same time h of the day d + 1, [Ph,d+1
j ], where j = 1, . . . , N training,

validation, and test patterns [31,32].

4. Application of the ELM Prediction Model

ELM is a new learning algorithm for single-hidden layer feedforward neural networks, originally
developed by [34]. Figure 6 shows the architecture of ELM that consists of three layers (input, hidden
and output layers):

• The input layer receives the j-th pattern that comprises historical real d radiation and ambient

temperature values measured at hour h in the past d days,
→
x j = [Irrh,1

j , . . . , Irrh,d
j , Th,1

j , . . . , Th,d
j ];

• The hidden layer manipulates the inputs, it comprises H hidden neurons (or nodes), via a neuron
activation function, G, that defines the output of each i-th neuron (or node), i = 1, . . . , H, based on
the received inputs;

• The output layer provides the j-th solar PV power production value at the same time h of the
following day d + 1, [Ph,d+1

j ], via the following equation (Equation (2)):

Ph,d+1
j =

H

∑
i=1

→
β iG(

→
wi
→
x j + bi) (2)

where
→
wi is the weights vector that connects the inputs to each i-th neuron, bi is the bias of each i-th

neuron,
→
β i is the output weights vector that connects the outcomes of each i-th neuron to the output

node, and G() is the neuron activation function which is, in practice, a continuous non-polynomial
function [34].

In simple words, the built-ELM should provide in output the prediction of the solar PV power
production at time h of the following day d + 1 (i.e., one day ahead), Ph,d+1, for an input pattern that
comprises the historical real d radiation and ambient temperature values measured at hour h in the
past d days (as depicted in Figure 6).

The idea underpinning the operation of the ELM is that it randomly chooses the input weights,
→
wi,

and biases, bi, of each i-th hidden neuron, i = 1, . . . , H, and analytically determines the output weights,
→
β i by considering the pair of (

→
Irrj,

→
T j, Pj) inputs/output patterns as a training data, j = 1, . . . , Ntrain

training patterns (for more details on the ELM, the interested readers may refer to [34]). Therefore,
compared to the traditional BP-ANN that employs an iterative BP algorithm for setting the input
weights and biases, ELM has been shown capable in providing better generalization performances
with lower computational efforts necessary to train the ELM model [34,38].
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Figure 6. The Architecture of ELM model.

4.1. Optimum Architecture of ELM Model

In this Section, the architecture of the ELM model is optimized in terms of (1) number of hidden
neurons, H; (2) neuron activation function, G, and (3) embedding dimension d, to provide accurate

24 h-ahead predictions of the solar PV power productions on the validation dataset,
=
Xvalid. To this aim,

we follow an exhaustive search procedure by considering:

1. Nine possible numbers of hidden neurons, H = 10, 50, 100, 200, 300, 500, 700, 900, 1000;
2. Five possible nonlinear piecewise continuous activation functions, G = “Sigmoid”, “Triangular

Basis”, “Sine”, “Hard Limit”, and “Radial Basis” functions due to their wide used in literature
(for more details on the neuron activation functions in ELM, the interested reader can refer
to [39]);

3. Five possible embedding dimensions, d = 2, 4, 6, 8, 10, 12, 14.

The effectiveness of each ELM candidate architecture, i.e., characterized by any combination of
the above-mentioned choices, is evaluated by quantifying the accuracy of the obtained predictions of

the validation dataset,
=
Xvalid, using the RMSE standard metric, i.e., RMSE is the average error of the

solar PV power production predictions (small RMSE values entail more accurate predictions). It is
defined by (Equation (3)):

RMSE =

√√√√∑Nvalid
j=1 (P̂j − Pj)

2

Nvalid
(3)

where P̂j and Pj are the predicted and the true solar PV power productions, respectively, of each j-th
validation pattern, j = 1, . . . , Nvalid.

Specifically, a 10-fold Cross-Validation (CV) procedure is carried out to robustly evaluate the
ELM prediction performance in terms of the RMSE: the training and validation patterns are sampled
randomly from the 2015–2016 years data with a fraction of 60% (i.e., Ntrain = 15, 437 patterns) and 40%
(i.e., Nvalid = 10, 291 patterns), respectively. The CV procedure is then, repeated 10 times (10-fold),
using different patterns for training and validation datasets. The final RMSE value is then, calculated
by averaging the 10 RMSE values of the 10 different simulations.

Table 1 reports the modelling parameters of the optimum ELM architecture found at the smallest
RMSE value, i.e., RMSE = 13.4832 kW.
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Table 1. The modelling parameters of the optimum ELM architecture.

H G d RMSE (kW)

300 “Radial basis” 10 13.4832

For clarification purposes, Figure 7 shows the performance of different ELM model architectures
(i.e., average RMSE). Figure 7 (left) shows the influence of the neuron activation function, G, on the final
RMSE value, considering different numbers of hidden neurons, H, when the embedding dimension, d,
is set to d = 10. One can easily recognize that:

• “Sine” and “Radial basis” neuron activation functions (circle and star markers, respectively) clearly
outperform the Sigmoidal and Hard limit activation functions (square and diamond markers,
respectively) and slightly outperform the “Triangular basis” activation function (triangle marker);

• As long as the number of hidden neurons, H, increases, the prediction performance increases,
i.e., the RMSE value decreases. This is justified by the fact that ELMs characterized by large hidden
layers will have a better generalization capability and, hence, better prediction performances
can be obtained [38,40]. However, for large number of neurons, i.e., H > 300, the prediction
performance seems to be slightly stable and further increment in the number of neurons might
not be necessary, as the computational efforts will increase too. In this regard, the best number
of neurons is considered at H = 300 (RMSE 13.4832 kW) obtained by the “Radial basis” neuron
activation function.
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Figure 7 (right) shows the influence of the numbers of hidden neurons, H, considering different
embedding dimensions, d, when the neuron activation function, G = “Radial basis” is selected. One can
also notice that:

• Small and large embedding dimensions, d, are not desired, whereas the optimum d is found at the
intermediate value d = 10. This is can be justified by the fact that the small embedding dimensions
entail benefiting from the previous few d global solar radiation and ambient temperature values
measured in the previous d days, that might not be sufficient to accurately predict the solar power
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productions, and vice versa: large embedding dimensions entail using the previous large d global
solar radiation and ambient temperature values measured in the previous d days, that might be
less correlated and, thus, less accurate predictions are obtained;

It is worth mentioning that this result is in line with the preventive maintenance program
established for the PV system at the ASU campus concerning the cleaning of the PV panels. As a result,
of, the soiling issue in the Jordanian dusty environment, which reduces the PV power production,
and might lead to a localized hotspot failure when the soiling is uneven [41].

• Small number of hidden neurons, H = 10 (square markers), is not able to accurately represent the
solar radiation-power relationship, whereas large number of neurons H > 300 is more favorable.
In fact, in line with Figure 7 (left), further increment in number of neurons might not be necessary,
as the computational efforts will be increased as well.

Here, the computational time needed to optimize the ELM model on an Intel Core i7 with 10-fold
CV, equals to 6.8758 min. This provides insights on the time-effectiveness that can be achieved using
the ELM, in particular, when the frequency of model updating, each time new solar radiation and
ambient temperature-power values become available, is high.

4.2. Application Results of ELM Model

Once the optimum ELM architecture has been defined, it has been applied on the test dataset,
=
Xtest,

and its performance is evaluated on the Ntest test patterns by considering the RMSE (Equation (3)),
the MAE and the WMAE performance metrics [42,43], using 10-fold CV:

• MAE: it is defined as the average error of the solar PV power production prediction. Smaller MAE
values indicate more accurate predictions. MAE is defined by (Equation (4)):

MAE =
∑Ntest

j=1

∣∣(P̂j − Pj)
∣∣

Ntest
(4)

• WMAE: it computes the average relative error. Smaller WMAE values indicate more accurate
predictions. WMAE is defined by (Equation (5)):

WMAE =
∑Ntest

j=1

∣∣(P̂j − Pj)
∣∣

∑Ntest
j=1 Pj

(5)

where P̂j and Pj are the predicted and the true solar PV power productions, respectively, of each j-th
test pattern, j = 1, . . . , Ntest.

Table 3 reports the average performance metrics and their standard deviations over the 10-fold
CV obtained by the application of the proposed ELM model, along with the time required for building
the ELM model.

For clarification purposes, Figure 8 shows the global solar radiations (left), the ambient
temperatures (middle), and the associated power production predictions (right) obtained by the
proposed ELM model for four different days in 2017 representative of two different weather conditions,
i.e., normal and anomalous: Figure 8 (top) shows an example of a sunny day characterized by a
clear sky (4 August 2017); Figure 8 (top middle) shows an example of a cloudy day characterized
by an extreme clouds sky (15 January 2017); Figure 8 (bottom middle) shows an example of haze
day characterized by dust, smoke and dry particles that obscure the sky clarity (7 February 2017);
Figure 8 (bottom) shows an example of a raining day characterized by raining and broken clouds
(31 January 2017).
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It can be seen that: (1) the predicted power productions are reasonably close to the true power
productions (4 August), i.e., RMSE = 8.4046 kW; (2) due to the extreme weather conditions suffered
by the ASU PV system (15 January, 7 February and 31 January), the ELM tends to provide over and
under estimated (average) power predictions, i.e., RMSE = 9.6898, 22.4060 and 39.7119 kW, respectively.
However, they are slightly better than those obtained by the BP-ANN model, as we shall see in
Section 5.2; and (3) the predictions are, in general, more uncertain during the day hours (characterized
by high solar radiations) than those of the early morning and late evening hours (characterized by
low/no solar radiations). This is due to the large variability (stochasticity) of the global solar radiations
and ambient temperatures during the day hours, as shown in Figure 5.

5. Comparison with ANN Prediction Model

In this Section, the data-driven BP-ANN [44,45] prediction model, has been applied to the solar
PV case study and the obtained results are compared with those obtained by the proposed ELM model.

Inspired by the biological neural networks, ANN is a computational model comprises of several
neurons (the computational units) directionally connected by weighted connections structured in
a proper architecture that consists of three layers: input, hidden (with H hidden neurons) and
output layers [46]. Basically, ANN aims at capturing the underlying complex inputs/outputs,
possibly nonlinear, relationships. The input layer receives the global solar radiation and ambient
temperature values; the hidden layer processes the inputs via a neuron activation function,
G (Equation (2)), and send the manipulated information to the output layer for providing the solar
power production value.

In this work, the motivation of selecting ANN for the comparison with the proposed ELMs
(Section 4) is the fact that it has been adopted by the PV system owner and has provided accurate
24 h-ahead solar PV power productions predictions [31,32].

Unlike the ELM operation, the internal parameters (i.e.,
→
wi, bi and

→
β i of the i-th hidden neuron,

i = 1, . . . , H) of the ANN are defined by resorting to the iterative error BP algorithm in which the ANN
model parameters are initially defined randomly, then updated in an iterative way by sampling the
inputs-output from the training dataset, calculating the error on the outputs and distributing it back to
the ANN model layers [44]. In this regard, setting the internal parameters of the ANN requires more
computational efforts than those required by the ELM [38,44].
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5.1. Optimum Architecture of ANN Model

Similar to the optimization procedure of the ELM architecture, the architecture of the ANN
model is optimized in terms of (1) number of hidden neurons, H; (2) neuron activation function, G;
and (3) embedding dimension, d, for providing accurate 24 h-ahead predictions of the solar PV power

productions on the validation dataset,
=
Xvalid. To this aim, we follow an exhaustive search procedure

by considering:

• Six possible numbers of hidden neurons, H = 1, 5, 10, 20, 40, 60, 90, 100, 110;
• Six possible nonlinear piecewise continuous activation functions, G = “Log-Sigmoid”,

“Tan-Sigmoid”, “Linear”, “Triangular Basis”, “Radial Basis”, and “Elliot Symmetric Sigmoid” functions
due to their wide used in literature (for more details on the neuron activation functions in ANN,
the interested reader can refer to [47]);

• Five possible embedding dimensions, d = 2, 4, 6, 8, 10, 12, 14.

The effectiveness of each ANN candidate architecture, i.e., characterized by any combination of
the above-mentioned choices, is evaluated by quantifying the accuracy of the obtained predictions of

the validation dataset,
=
Xvalid, using the RMSE metric (Equation (3)) over 10-fold cross-validation.

The modelling parameters of the optimum ANN architecture are found at H = 60 using neuron
activation function G = “Log-Sigmoid” and d = 12 solar radiation and ambient temperature values
(Table 2). Notice that the developed BP-ANN architecture is characterized by slightly more number
of inputs compared to that obtained for the proposed ELM model (i.e., d = 10), with fewer hidden
neurons (i.e., H = 60) (Table 1) required to capture the solar radiation and ambient temperature-power
relationship. However, with slightly less accurate predictions (i.e., RMSE = 14.2601 kW) than the best

ELM model (i.e., RMSE = 13.4832 kW) when applied on the validation dataset,
=
Xvalid. In practice,

the BP-ANN employs the BP algorithm that updates the weights and biases of the hidden neurons
iteratively forward and backward, whereas the ELM is based on a one-time process that generates
random weights and obtains the output weights analytically [34]. Consequently, fewer hidden neurons
are required for the convergence of the ANN than the ELM model.

Table 2. The modelling parameters of the optimum ANN architecture.

H G d RMSE (kW)

60 “Log-Sigmoid” 12 14.2601

Although the number of hidden neurons in ANN is much less than those in ELM for an accurate
solar power production prediction, the optimization of the ANN using 10-fold CV necessitates
129.4622 min, which is ∼18 times larger than the 6.8758 min required for the ELM architecture
optimization of Section 3.2, due to the BP algorithm.

5.2. Application Results of ANN Model

To effectively compare the developed ANN model to that of the ELM, it has been applied on the

test dataset,
=
Xtest, and its performance is evaluated on the Ntest test patterns by considering the three

previously defined performance metrics, using 10-fold CV.
Table 3 reports the average performance metrics and their standard deviations over the 10-fold CV

obtained by the application of the developed ANN, along with the time required for building/training
the ANN model, with respect to those obtained by the proposed ELM model. The performance gain
(pgMetric) [48] of the ELM model with respect to the ANN model is calculated for the considered
metrics, using:

pgMetric(%) =

(
METRICANN −METRICELM)

METRICANN ·100 (6)
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Table 3. Average performance metrics and their standard deviations obtained by the developed
BP-ANN model on the test dataset, with respect to the proposed ELM.

Performance Metrics BP-ANN
(d = 12, H = 60, G = “Log-Sigmoid”)

ELM
(d = 10, H = 300, G = “Radial Basis”)

RMSE (kW) (pgRMSE %) 15.53 ± 2.76 (0) 15.07 ± 2.13 (2.98)
MAE (kW) (pgMAE %) 9.66 ± 1.86 (0) 9.30 ± 1.41 (3.73)
WMAE (pgWMAE %) 0.34 ± 0.06 (0) 0.33 ± 0.04 (3.21)
Training Time (sec) 37.14 ± 9.23 (0) 0.35 ± 0.05 (99.07)

Results show that the ELM model slightly enhances the accuracy of the solar power production
predictions with respect to the use of the BP-ANN model (∼3%, ∼3.7% and ∼3.2% performance gains
obtained for the RMSE, MAE and WMAE, respectively). It is worth mentioning that despite that these
improvements in the prediction accuracy are relatively small, but they have been considered relevant
to the PV system owner. Additionally, the short training times of the both models increase their
potentiality in real time applications. In fact, large computational efforts are required for building the
BP-ANN model than those required for building the ELM model (i.e., BP-ANN requires computational
efforts by 106 times larger than those required by the ELM with enhancement reaches to ∼99%), due to
the complex BP algorithm employed in the ANN model to effectively capture the solar radiation and
ambient temperature-power relationship. This would be even more noticeable when:

• Large historical datasets are available for training the prediction models;
• High number of weather variables (e.g., humidity, wind speed, etc.) are available that might

have an influence on the PV power productions. This would necessitate the selection of the most
representative variables for accurate production predictions (feature selection);

• Several base prediction models must be, individually, trained within an ensemble whose outcome
is the aggregation of the predictions obtained by the base prediction models, and/or

• The prediction models are required to be updated each period when new solar radiation-power
values become available or when the context (environment) in which the plant is working changes
(evolves). The former entails the availability of additional training patterns that can be exploited
by the prediction models for enhancing their prediction accuracy, whereas the latter entails the
presence of an evolving environment for which the existing prediction models need to be informed
and updated for adapting to the new “not seen” weather conditions.

Examples of the 24 h-ahead solar power predictions obtained by the BP-ANN for four different
days in 2017 representative of two different weather conditions, i.e., normal and anomalous,
are shown in Figure 8 in circles (together with those obtained by the ELM model of Section 4.2
in squares). The predictions provided by the two approaches are comparable: the ELM provides
accurate productions predictions in the four days than those obtained by the BP-ANN model,
i.e., RMSE = 8.5202, 14.2107, 31.9605 and 39.8360 kW (compared to 8.4046, 9.6898, 22.4060 and
39.7119 kW obtained by the ELM), respectively. In particular, during the days’ hours, that is of
paramount importance for the PV system owner.

For completeness, the prediction performances of the ELM model and the BP-ANN model are
further evaluated by computing the average values of the three performance metrics for the months
of 2017-year test dataset (Table 4). One can easily recognize that the ELM model outperforms the
BP-ANN for most of the 2017-year months.

All these findings highlight the effectiveness of the ELM model with respect to the current
BP-ANN model and suggest its development for the 24 h-ahead solar power production predictions at
the ASU solar system.
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Table 4. Average performance metrics obtained by the developed BP-ANN model on the months of
the test dataset, with respect to the proposed ELM.

Month
RMSE MAE WMAE

BP-ANN ELM BP-ANN ELM BP-ANN ELM

January 21.63 21.33 12.19 11.99 0.54 0.53
February 30.74 29.39 18.36 17.47 0.59 0.56

March 30.72 29.10 18.83 17.79 0.56 0.54
April 28.86 28.15 17.63 17.33 0.56 0.55
May 6.09 5.97 4.46 4.37 0.12 0.11
June 1.42 0.99 1.08 0.68 0.06 0.05
July 8.08 8.45 5.57 5.63 0.10 0.10

August 8.15 9.15 5.73 6.30 0.11 0.12
September 7.67 7.02 4.85 4.17 0.10 0.09

6. Conclusions

In this work, we investigate the capability of a new learning algorithm for single-hidden layer
feedforward neural networks, the ELMs, for the prediction of power production in solar photovoltaic
system of a capacity of 264 kWp installed on the roof of the Faculty of Engineering at ASU, Amman,
Jordan. Thanks to the simplicity, fast computational and good generalization capability of ELM,
it has been shown capable of providing slightly accurate 24 h-ahead solar power productions with
no computational constraints with respect to the BP-ANN, currently adopted by the ASU PV system
owner for the prediction task.

Thus, the ELM-based model can be attractive for the development of empirical, data-driven
models capable of providing as accurate as possible solar PV power productions predictions with
negligible computational efforts. As mentioned previously, in practice, this would be even more
appreciated when (i) large historical datasets are available; (ii) huge numbers of weather variables are
available; (iii) ensemble approaches are needed to be developed to further enhance the production
predictions; and (iv) context change has been detected. These could be objects for future research works.
In addition, the investigations of other data-driven techniques, e.g., SVMs, and their comparisons for
24 h-ahead solar PV power productions predictions task could be of interest to provide the ASU solar
PV system owners with guidelines for their deployment in practice.
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Abbreviations

The following notations are used in this manuscript:

Acronyms
RE Renewable Energy
TNSP Transmission Network Service Provider
NEPCO National Electric Power Company
JEPCO Jordan Electric Power Company
IDECO Irbid District Electricity Company
EDCO Electricity Distribution Company
PV Photovoltaic
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ML Machine Learning
BP-ANNs Back Propagation Artificial Neural Networks
AI Artificial Intelligence
WT Wavelet Transform
RBFNN Radial Basis Function Neural Network
SARIMA Seasonal Auto-Regressive Integrated Moving Average
SVMs Support Vector Machines
NWP Numerical Weather Prediction
PSO Particle Swarm Optimization
ELMs Extreme Learning Machines
ASU Applied Science Private University
Notations
→
W Weather variables
→
P Solar PV power productions

∆t Measurements time step
Irr Global solar radiation (W/m2)
T Ambient temperature at 1 m altitude (◦C)
P Solar power production (kW)
Irrmin Minimum solar radiation value
Irrmax Maximum solar radiation value
Irrnorm Normalized solar radiation value
Tmin Minimum temperature value
Tmax Maximum temperature value
Tnorm Normalized temperature value
Pmin Minimum solar power value
Pmax Maximum solar power value
Pnorm Normalized solar power value
=
Xtrain Training dataset matrix
=
Xvalid Validation dataset matrix
=
Xtest Test dataset matrix

Ntrain Number of patterns used for training
Nvalid Number of patterns used for validation
Ntest Number of patterns used for testing
N Number of available patterns used for training, validation, and testing
j Index of pattern, j = 1, . . . , N
H Number of ELM/ANN hidden neurons
i Index of number of hidden neuron, i = 1, . . . , H
h Index of hour, h = 1, . . . , 24
d Embedding dimension (number of historical days)

Irrh,1
j

Solar radiation value of the j-th pattern, at the h-th measurement time of
the day 1

Th,1
j

Ambient temperature value of the j-th pattern, at the h-th measurement
time of the day 1

Ph,d+1
j

Solar power production value of the j-th pattern, at the h-th
measurement time of the day d + 1

→
wi The input-hidden weight vector of the i-th neuron, i = 1, . . . , H
→
β i

The hidden -output weight vector of the i-th neuron, i = 1, . . . , H

bi The bias of the i-th neuron, i = 1, . . . , H
G ELM/ANN neuron activation function
CV Cross-Validation procedure
RMSE Root Mean Square Error
MAE Mean Absolute Error
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WMAE Weighted Mean Absolute Error
Pj True power production of the j-th pattern
P̂j Predicted power production of the j-th pattern
pgMetric Performance gain of a Metric
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