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Abstract: The hierarchical control architecture, including layers of primary, secondary and tertiary
controls, is becoming the standard operating paradigm for microgrids (MGs). Two major factors that
limit the adoption of existing hierarchical control in microgrid are the low accuracy in reactive power
sharing and the requirement for complex communication infrastructure. This paper addresses this
problem by proposing a novel distributed primary and secondary control for distributed generators
dispersed in a multi-bus microgrid. The proposed method realizes voltage control and accurate
reactive power sharing in a distributed manner using minimum communication. Each distributed
generator only needs its own information and minimum information from its neighboring units.
Topology of the network can be flexible which supports the plug-and-play feature of microgrids.
In a distribution system, high R/X ratio and system imbalance can no longer be neglected and thus
the sequence component analysis and virtual impedance are implemented in the proposed control
framework. The proposed framework is validated by simulation results on a MG testbed modified
from the IEEE 13-bus distribution system.

Keywords: distributed generation (DG); microgrid; reactive power sharing; droop control; consensus
control; secondary control

1. Introduction

In recent years, the impact of microgrid has been increasing. It acts as a solution to large-scale
penetration of renewable energy, including wind, photovoltaic (PV) etc. By 2017, the market for
microgrid in the whole world had achieved more than 8 billion US dollars. Moreover, the microgrid
market continues to rapidly grow with the growth of renewable energy [1]. However, due to the
intermittent nature of renewable energy resources, proper scheduling and control of generation units
in MG is often difficult. Equipping the renewables in microgrids with additional storage devices
is regarded as a promising solution. Usually, such a hybrid system is called distributed generation
(DG) [2,3].

In microgrids, there are two typical control strategies: the V-f control and the P-Q control. In most
cases, the V-f control represents grid-forming control and the P-Q control represents grid-following
control [4]. The P-Q control is used when voltage and frequency references are provided by either
master DG(s) in the islanded mode or the main grid in grid-tied mode to regulate the active and reactive
power outputs of a DG based on the given references. On the contrary, the V-f control is an explicit
grid-forming control mostly used in islanded microgrids. DGs use V-f control to regulate the frequency
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and voltage of a microgrid with active and reactive power injection. The control reference of DG units
needs to be adjusted when multiple DG units share loads and the loads change. Considering these
factors, the centralized hierarchical control framework building with primary control and secondary
control is widely used [5–7].

Droop control is a straightforward yet effective automatic generation control (AGC) method for
load sharing in power transmission system. Therefore, researchers take the concept of droop control to
MG for power sharing among DGs when load varies to maintain the MG power balance. Typically,
reactive power is shared within DGs in a microgrid based on the maximum capacity of each DG.
However, it is not trivial but difficult to achieve the reactive power sharing objective among DGs.
The difficulty mainly comes from the fact that droop control of each DG could be quite distinctive
because of various output filters and the network impedance [8]. In fact, the droop control itself
was first proposed to solve the single bus AGC problem. When it comes to a multi-bus system,
the traditional droop control bears several limitations, such as the inaccuracy in reactive power sharing.
It is noted from the literature that the voltage droop control is most effective for the cases when
multiple DGs connecting to one single bus to supply a single load [9–11]. It is necessary to extend the
droop control in microgrids to accurately share reactive power among DGs.

For the sake of eliminating the frequency and voltage deviation resulted from droop control,
a centralized secondary control is proposed in [12]. In the centralized secondary control proposed
in [12], the central controller is required to interact with all DGs in the microgrid. This centralized
control system strongly relies on timely inputs from DGs therefore requires high-bandwidth and low
latency data communication infrastructure. Considering the number of distributed generators that
may exist in a microgrid, adopting the centralized communication and control structure will require a
huge amount of communication channels, which is obviously cost prohibitive. Moreover, the entire
secondary control will defunct in the case the central controller fails, as an inherent limitation of the
centralized control structure.

Recent studies implemented the MG controller with enhanced distributed or decentralized control
strategies requiring only uncritical communication, although the controller may not be running on the
optimal condition. The consensus control theory has been studied and applied in different fields [13,14].
According to consensus control, all agents in a network will achieve an agreement to approach the
predefined states of the entire system. Especially, the first P-f droop controller using consensus control
is introduced in [15], while the first secondary controller using consensus control is introduced and
demonstrated on a four-bus system in [16,17]. However, the reactive power sharing issue remains
unresolved due to the assumption of lossless network model used in the above two controllers. Besides,
the above two controllers require that the voltages in all DG output terminals be uniform, which caused
the secondary voltage controller to be off the target. Actually, this is a common issue in most existing
works in the area of MG control. He et al. [18] claimed that the reactive power sharing issue could be
resolved with considering only purely inductive transmission line. Bidram et al. [19] introduced an
approach with consensus control to solve the power sharing problem for microgrid in islanded mode.
However, large mismatches were observed in reactive power sharing in the above two methods [18,19]
when R/X ratio of distribution network is high. Lu et al. [20] and [21] proposed a P(Q) −

.
V( f )

controller based on consensus control when loss is considered in microgrid network. However, another
issue of voltage convergence came up. In addition, system unbalance is neglected in the distribution
system, which is far from the reality [22].

This paper proposes a distributed cooperative control framework based on the P−
.
f /Q−

.
V

control idea modified from the conventional primary and secondary controls. The idea of consensus
control loop, virtual impedance and sequence component analysis are combined to solve the reactive
power issue for a general distribution network with high R/X ratio and considerable imbalance among
three phases. The following contributions are made.

Firstly, the root cause of the reactive power sharing problem is identified and the communication
between all DGs is proved to be necessary for solving the reactive power sharing and voltage regulation
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problem. Secondly, a two-level control structure is proposed as the consensus based primary and
secondary control, with minimum communication among DGs. The proposed method is not only
flexible and adaptive to system topology changes, but also making plug-and-play possible in MGs.
Thirdly, to make this work as a complete solution for a real practical application, a stationary αβ

transformation based sequence component analysis of an unbalanced three-phase system is employed.
A voltage compensation model is applied [23] to autonomously compensate for the voltage unbalance.
Finally, the virtual impedance loop is proposed to solve the large R/X ratio problem prior to the
consensus based droop control. This paper demonstrates that P−

.
f /Q−

.
V control with a proper

virtual impedance loop can be a potential solution for the reactive power sharing problem in a general
distributed network.

2. Hierarchical Control

Figure 1 shows an inverter with the standard dynamic control model. This model consists of
a current controller in inner loop, a voltage controller in outer loop, an active power and reactive
power droop controller in outer loop and a secondary controller for system-level control. Since the two
inner loop controllers come with very fast response time and do not impact the primary droop and
secondary control loops, the two inner loop controllers are not considered in this work. To simplify
the analysis, the distributed generation resources with power electronic interfaces are considered as
controllable voltage sources (CVSs) in this work, whose output voltages and frequencies are regulated
by the given control signals, as shown in Figure 1 [16–18,20,21].
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Figure 1. Diagram of the inverter with droop loop and secondary loop.

2.1. Conventional Droop Control

The equations conventional DG droop control are listed in Equations (1) and (2). As shown in
Figure 2, the active power and reactive power information is shared among DGs based on the droop
coefficients Dp,i and Dq,i.

Dq,iVi = Q∗i −Qi (1)



Energies 2018, 11, 2710 4 of 17

Dp,i fi = P∗i − Pi (2)

Taking active power sharing as an example, the DGs’ outputs could be satisfied as the following
relationship considering that the generator frequency fi is identical for all DGs in steady state

P∗1 − P1

Dp,1
=

P∗2 − P2

Dp,2
= · · · = P∗n − Pn

Dp,n
(3)

Equation (3) can be further simplified if the active power P∗i is chosen to be proportional to Dp,i

P1

Dp,1
=

P2

Dp,2
= . . . =

Pn

Dp,n
(4)

Equation (4) indicates that the active power is proportionally shared by Dp,i. Consequently,
the active power sharing among DGs is totally determined by coefficients Dp,i no matter how the
system loads vary. Usually, the droop coefficients of DGs are chosen to be proportional to each
DG’s power generation capacity. As a decentralized mechanism to effectively enforce active power
sharing [24], unfortunately, the droop control is limitedly effective for the reactive power.

Consider a single-bus system with all DGs {1, . . . , n} connected to the same bus labeled as
“PCC”, the distribution lines between PCC and DGs are purely inductive with uniform reactance X.
The reactive power delivery from DGi to the PCC complies:

Vi −VPCC =
XQi
Vi

where Vi is the output voltage of DGi and VPCC is the voltage at bus PCC. Note that Vi = D−1
q,i (Q

∗ −Qi)

and −VPCC = −D−1
q,i Q∗ + (ki + D−1

q,i )Qi, therefore, the output voltage of DGs are determined by their
droop control, or

Qi =
D−1

q,i Q∗ −VPCC

ki + D−1
q,i

(5)

where ki = X/Vi. Consequently,

Q1 : Q2 : . . . : Qn =
1

k1 + D−1
q,1

:
1

k2 + D−1
q,2

: . . . :
1

kn + D−1
q,n

(6)

Equation (6) reveals that the reactive power sharing among DGs is not only determined by their
droop coefficient Dq,i but also constant coefficient ki.

Another scenario is shown in Figure 2. When DG2 is taken as an example, the solid line represents
the ideal V-Q droop curve for DG2 while the dash line represents the actual V-Q droop curve for DG2.
The reactive power sharing is no long necessary.

There are abundant MG control solutions proposed without communication among DGs when
all DGs are connected to a single bus. According to Equation (6), for instance, the reactive power
sharing issue could be resolved by properly adjusting droop coefficients Dq,i. To make the transmission
line impedance predominantly inductive and uniform when transmission lines are assumed to be
non-inductive or transmission line parameters are uniform or even unknown, especially, the virtual
impedance loop technique can be adopted to adjust the virtual transmission line impedances [9–11].
In a meshed network, nevertheless, it can be shown that the communication among DGs connected to
different buses is still required for accurate reactive power sharing.
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2.2. Reactive Power Sharing in a Distribution Network

This section shows that accurate reactive power sharing is infeasible in a microgrid where DGs
connected to different buses do not communicate with each other.

Consider the multi-bus MG shown in Figure 3; there are N DGs connected to N buses numbered
from 1 to n. Suppose a load is connected to bus m (m ≤ n). Assume bus voltage magnitudes is
Vi(i = 1, 2, . . . , n) for DGi and line reactance of every distribution line is X. Equation (7) shows the
reactive power flow approximately, where Qij represents the reactive power flow from bus i to bus
j. Assuming that the reactive power capacity is identical for all DGs, the control objective becomes
sharing the same amount of reactive power through droop control when load varies.

Qij ≈
∑ Vi(Vi −Vj)

X
≈ Vstd

X

n

∑
j
(Vi −Vj) = k

n

∑
j
(Vi −Vj) (7)
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Define Ii as an information set containing all information accessible to DGi. Specifically, Ii can be
written as a collection of {Vi, Qi, Pi} in a MG.

Proposition: The reactive power demand will be distributed equally to DGi if and only if Vi =
∑n

j (Vj)−Vi
n−1 .

Proof:
Q1 = Q2 = · · · = Qn

⇐⇒
n
∑
j
(V1 −Vj) =

n
∑
j
(V2 −Vj) = · · · =

n
∑
j
(Vn −Vj) = b

⇐⇒ Vi =
∑n

j (Vj)−Vi
n−1

(8)

Equation (8) suggests that the terminal voltage of DGi is required to follow
∑n

j (Vj)−Vi
n−1 to achieve

the MG control objective. However, it is impractical to adjust the DG terminal voltage if the controller
of DGi relies on Vj (j = 1,2, . . . ,n) without sharing information among DGs.
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In conclusion, it is required to share information among DGs connected to different buses for
communication based methods to achieve accurate reactive power sharing. �

2.3. Conventional Centralized Secondary Control

The primary control and secondary control will jointly provide a reference point of voltage
regulation for an inverter. For the secondary control, the objective is to regulate the frequency and
voltage magnitude on the critical bus. Regarding the system structure, the secondary voltage control is
usually implemented as a Central Controller (CC) requiring the voltage measurements on the critical
bus. As shown in Equation (9), a control signal δV is generated through comparing with the reference
in a PI controller. In a traditional centralized secondary control, the control signal δV is sent form CC
to all DGs directly through communication links.

δV = kP(Vstd −Vpcc) + kI

∫
(Vstd −Vpcc)dt (9)

3. Basics of Consensus Control

Consensus control theory involves graph theory and system control theory. The consensus control
has been broadly used in large-scale power systems, gene networks and vehicle fleets. The most
important part in consensus control is the consensus protocol or agreement protocol which has been
investigated comprehensively.

3.1. Directed Graph

Using G = {N, E} to represent a directed graph consisting of nodes N = {1, . . . , n} and edges
E. A node in directed graph is equivalent to an agent in consensus control; an edge (i, j) in directed
graph is equivalent to information flow from agent j to agent i in consensus control with weigh factor
aij. The neighbors of agent i are defined as a set Ni = {j ∈ N : (i, j) ∈ E}. An agent i can only read
information from its neighbors in Ni.

The adjacency matrix of graph G is defined as A =
[
aij
]
∈ Rn×n where aij = 1 if (j, i) ∈ E and

aij = 0 otherwise. Correspondingly, a Laplace matrix of graph G is defined as L =
[
lij
]
∈ Rn×n where

lij = −aij when i 6= j and lii = ∑n
j=1,j 6=i aij. In addition, a directed spanning tree of G is defined as a

sub-graph of G. In a directed spanning tree, each node is connected from one and only one node except
the root node, as shown in Figure 4.
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3.2. Consensus Control Representation and Convergence

Assume each agent in consensus control as a system with single state characterized by
.
xi = ui,

where ui is the inputs from agent i’s neighboring agents, the target of consensus control boils down to
search corresponding ui so that the states in all agents converge to an equilibrium which is usually
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the average of initial states in all agents. The following consensus protocol is commonly adopted
in practice:

.
xi = ui = ∑j∈Ni

aij(xj − xi) (10)

Equation (10) can be rewritten as
.
x = −Lx where L is the Laplace matrix of the communication

directed graph. Consensus can always be reached as long as a directed spanning tree is available for
graph G. The convergence is guaranteed by Theorem 1.

Theorem 1. Consensus can be reached iff a directed spanning tree is available in the communication directed
graph G; in addition, the Laplace matrix L of graph G will come with one and only one zero eigenvalue, while the
real part of other eigenvalues will be positive.

3.3. The Concept of Leading Nodes in Consensus Control

Unusually, the target of consensus control is to converge to the average value of the initial states
in all agents. However, consensus control might be required to converge to a desired state independent
on initial states but dependent on external input values. With introducing a leading node to achieve
this target, a control signal v is delivered from the leading node to a subset of nodes B. Then, the state
function can be updated as:

.
xi = ui = ∑j∈Ni

aij(xj − xi) + bi(v− xi) (11)

where bi = 1 if i ∈ B and bi = 0 otherwise. Similarly, consensus can always be reached as long as a
spanning tree is available for the communication directed graph G. The convergence is guaranteed by
Theorem 2.

Theorem 2. The states of all agents will converge to a set point defined by the external control signal v iff a
directed spanning tree with root node i ∈ B is available in the communication directed graph G.

4. Consensus-Based Hierarchical Control

In this section, a consensus-based primary and secondary control framework is proposed to solve
the voltage regulation and reactive power sharing problem. Based on the discussion in Section 3,
communication between DGs is required. However, sparse communication infrastructure is sufficient
for the proposed framework. The sequence component analysis and the virtual impedance are used to
solve the system unbalance and high R/X ratio problems.

4.1. Sequence Component Analysis

Considering that negative sequence voltage is normally caused by voltage imbalance, the voltage
imbalance can be compensated by reducing the negative sequence voltage. To reduce negative sequence
voltage, a sequence component analysis module is used in the droop control. The diagram of droop
control with sequence component analysis is shown in Figure 5.
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4.2. Virtual Impedance

Virtual impedance loop is adopted to adjust the output impedance of DGs. It is implemented right
after the droop control, as shown in Figure 6. For the inverter, when the droop control output is defined
as v∗o , the reference voltage becomes vre f = v∗o − ZV io, where io is the output current measurement and
ZV is the virtual impedance.Energies 2018, 11, x FOR PEER REVIEW  8 of 17 
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In a virtual impedance loop, the output voltage vo and output current io satisfy vo = vinverter−Zoio

where vinverter is the inverter terminal voltage and Zo is the output line impedance. The equation can
be derived as vo = vre f − ioZo = v∗o − ZV io − ioZo = v∗o − (ZV + Zo)io since the inverter a controlled
voltage source holding that vinverter = vre f . The above equation suggests an equivalent view of DG
as an inverter with voltage v∗o and impedance ZV + Zo, as shown in Figure 7. As an adjustable
virtual line impedance, ZV can be chosen as inductive and large enough to make the line impedance
predominantly inductive and approximated by ZV .
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4.3. Consensus Based Droop Control

To follow the consensus protocol ui = ∑j∈Ni
(xj − xi), based on Equation (10), all states xis are

made identical by setting the derivative of xi. Similarly, the reactive power Qi can be make proportional
to Dq,i if Qi

Dq,i
s are set to be identical. Thus, a straightforward control design would be to substitute the

xi in (10) to Qi
Dq,i

. A new reactive power control algorithm in Equation (12) is proposed by setting the

control protocol ui = ∑j∈Ni
(

Qj
Dq,j
− Qi

Dq,i
) with controllable quantity

.
Vi instead of

.
Qi

Dq,i
.

.
Vi = ∑j∈Ni

(
Qj

Dq,j
− Qi

Dq,i
) (12)

Equation (12) can be used to make Qi
Dq,i

identical with proof shown as follows.
The equilibrium in Equation (12) can be obtained by setting all derivative terms to be 0

∑j∈Ni
(

Qj

Dq,j
− Qi

Dq,i
) = 0 (13)

or
LDQ = 0 (14)

where L is the Laplacian matrix of the communication directed graph, D = diag( 1
Dq,1

, . . . , 1
Dq,n

) and

Q = (Q1, . . . , Qn)
T . Since a directed spanning tree is available in the communication directed graph,

according to Theorem 1, the rank of matrix L is n − 1 and x = (1, . . . , 1)T must be the solution of
Lx = 0. Consequently, the solution of Equation (14) is DQ = H(1, . . . , 1)T , H ∈ R which can be
expanded as

Qi
Dq,i

= H, ∀i (15)

In other words, all Qi
Dq,i

’s will converge to the equilibrium.

4.4. Consensus-Based Secondary Control

In the consensus control protocol of Equation (12), a control signal v is sent to a set of agents
through a sparse communication network. To send δV from CC to all DGs, a secondary voltage control
rule based on consensus protocol is formulated in Equation (16).

δ
.

Vi = ∑j∈Ni
(δVj − δVi) + bi(δV − δVi) (16)

where δV is the control signal calculated in the CC with Equation (9), δVi is a local secondary control
signal to track the CC signal δV with the consensus protocol in Equation (16), and bi = 1 represents
the DGs with direct communication to the CC and bi = 0 otherwise. Equation (16) is in a similar form
as Equation (11). According to Theorem 2, all local secondary control signals δVi will converge to δV if
and only if a directed spanning tree with root can communicate directly with CC in the communication
directed graph. Using the proposed method in the secondary control, consequently, the communication
cost could be significantly reduced.

Combining the secondary control signal δVi in Equation (17) with the primary control signal Vi in
Equation (12), the inverter voltage control law is shown below:

.
Vre f ,i =

.
Vi + δ

.
Vi

.
Vre f ,i = ∑j∈Ni

(
Qj

Dq,j
− Qi

Dq,i
) + ∑j∈Ni

(δVj − δVi) + bi(δV − δVi)
(17)
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The block diagram of the proposed distributed voltage control law based on consensus control is
visualized in Figure 8.
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Combining the secondary control signal 𝛿𝛿𝑉𝑉𝑖𝑖 in Equation (17) with the primary control signal 𝑉𝑉𝑖𝑖 
in Equation (12), the inverter voltage control law is shown below: 
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The block diagram of the proposed distributed voltage control law based on consensus control 
is visualized in Figure 8. 

 
Figure 8. Architecture of the distributed voltage controller based on consensus control. Figure 8. Architecture of the distributed voltage controller based on consensus control.

5. Simulation Results

5.1. Simulation Setup

To validate the proposed control methodology, a microgrid testbed is set up, which is a modified
version of the 4.16-kV IEEE standard 13-bus test feeder [25]. The testbed is shown in Figure 9. Bus 650
is selected as the critical bus, or the Point of Common Couple (PCC), whose voltage and frequency are
to be regulated. The communication graph is shown in Figure 10. Simulations in this section are carried
out in the Matlab/Simulink environment, using the Simscape Power System toolbox. The model built
in Matlab is shown in Figure 10.
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The network parameters are listed below:

a) System basics: 3-Phase, 4.16 kV (L-L), and 60 Hz.
b) The impedances of transmission lines are shown in Table 1 with R/X ratios ranging from 0.3 to 3.
c) Information of loads is shown in Table 2.
d) The ratio of DG capacities is 1:2:3:4.

Table 1. Parameters of Transmission Lines.

From To
Impedance (Ohm per km) Length (Feet)
Resistance Reactance

650 632 0.1162 0.3730 2000
632 633 0.3700 0.4751 500
633 634 0 0.3770 -
632 645 1.3294 1.3471 500
645 646 1.3294 1.3471 300
632 671 0.1162 0.3739 2000
671 692 - - -
692 675 0.3046 0.2594 500
671 684 1.3238 1.3569 300
684 611 1.3292 1.3475 300
684 652 1.3425 0.5124 800
671 680 0.1162 0.3730 1000

Table 2. Load Information.

Node
Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3

Model kW kVAr kW kVAr kW kVAr

634 Y-PQ 160 110 120 90 120 90
645 Y-PQ 0 0 170 125 0 0
646 D-Z 0 0 230 132 0 0
652 Y-Z 128 86 0 0 0 0
671 D-PQ 385 220 385 220 385 220
675 Y-PQ 485 190 68 60 290 212
692 D-I 0 0 0 0 170 151
611 Y-I 0 0 0 0 170 80
650 Y 30 30 30 30 30 30

There are two scenarios tested in this work, using the traditional centralized control and the
proposed control, respectively:
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In Scenario I, DGs adopt the conventional droop control and the centralized secondary control.
Droop control parameters are listed in Table 3. Centralized secondary control parameters are listed in
Table 4.

Table 3. Conventional Droop Control Coefficients.

DG
Voltage Droop

Qi
* Dq,i

×1011 Var MVar/V

671 2.08 50
650 4.16 100
680 6.24 150
634 8.32 200

Table 4. The Coefficients of Secondary Controllers.

Voltage Regulation Frequency Regulation

Vref KV,P KV,I fref Kf,p Kf,I

4160 0.01 20 60 0.1 20

In Scenario II, DGs adopt the proposed consensus based droop control and secondary control.
Control parameters are listed in Table 5.

Table 5. The Coefficients of Primary Controller based on Consensus Control.

DG at Bus
Voltage Droop

kq,i
Var/(Vs−1)

671 0.5
650 1.0
680 1.5
634 2.0

A sudden increase of 100 + j100 kVAR each phase at t = 1.0 s is applied to the load connected to
the critical bus. The outputs of active power and reactive power of all DGs along with voltage and
frequency in PCC will be observed in the simulations of the above two scenarios.

5.2. Simulation Results

Simulation results of Scenario I are shown in Figures 11 and 12. Simulation results of Scenario II
are shown in Figures 13 and 14. Measurement of power sharing for all DGs, voltage and frequency
at PCC in steady state are compiled in Tables 6 and 7 respectively. It is noted from the simulation
results that:

• In both scenarios, as Figures 12 and 14 show, the objectives of active power sharing can be
accurately achieved.

• By comparing Figures 12 and 14, only the proposed approach can realize accurate sharing of
reactive power while the traditional centralized control algorithm cannot. As the control objective
of the power sharing is to make sure both real and reactive power sharing among generators
follows the capacities of DGs, obviously the results shown in Figure 12 do not meet this target
while the results shown in Figure 14 do.

• As Figures 13 and 15 show, accurate regulation of frequency and voltage at the point of common
coupling is achieved using both the traditional centralized control and the proposed distributed
control algorithm.



Energies 2018, 11, 2710 13 of 17

• By comparing Figures 12 and 14, reactive power sharing of DG1 can go to a negative value (or
decrease) although the overall reactive sharing target for all DGs increases, using traditional
centralized control approach. The proposed algorithm does not suffer from this problem.

• In Scenario II (proposed control), dynamic performance and convergence speed is improved
against Scenario I (traditional control), as shown in Figures 12 and 14, respectively. The proposed
algorithm improves the convergence speed and dynamic performance of the microgrid system.
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Table 7. Summary of Simulation Results in Scenario II.

Bus
Primary Control Secondary Control

Pi Pi/P1 Qi Qi/Q1 V f
kW 1 kVar 1 V Hz

671 498.5 1.00 291.2 1.00
650 998.0 2.00 582.5 2.00
680 1495.1 3.00 873.8 3.00
634 1995.7 4.00 1165.2 4.00

PCC 416 60.00

6. Conclusions

In this paper, a consensus-based primary and secondary control is proposed for voltage
regulation and reactive power sharing among DGs in MGs. Communication infrastructure bandwidth
requirement is low due to the nature of distribution ratio in the proposed method. Moreover,
plug-and-play becomes possible in MGs because the proposed method supports flexible network
topology. As reduced information exchange is required using the proposed control as compared to
the traditional centralized one, the bandwidth requirement for the communication channel has been
reduced significantly. As discussed in [26], consensus based distributed control is generally robust to
communication latency with relatively high tolerance for delays. Lastly, the accuracy of reactive power
sharing, and the performance of voltage and frequency regulation can be significantly improved by
employing the proposed method.

Extension can be done to further improve this work, including but not limited to: (1) introduction
of communication delay to examine/improve the robust characteristics of the proposed algorithms;
and (2) adding a higher-level optimal consensus control (tertiary control) layer to make the MG an
autonomous system.
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Nomenclature

DGi The ith DG
Vi Voltage magnitude of DGi
fi Frequency of DGi
Dp,i Multiplicative inverse of DGi’s active power droop coefficient
Dq,i Multiplicative inverse of DGi’s reactive power droop coefficient
Qi

* Reference initial reactive power of DGi
Pi

* Reference initial active power of DGi
Pi Active power output of DGi
Qi Reactive power output of DGi
Vcb Critical bus voltage magnitude
k Constant number
Vstd Microgrid nominal voltage
Ii Local information set that DGi’s controller can get without interacting with other DGs
Ni Neighboring buses of bus i (The set of buses that can send signals to bus i)
L Laplace matrix of the communication graph
D A diagonal matrix made up of each DG’s droop coefficient, D = DIAG( 1

Dq,1
, . . . , 1

Dq,n
)
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Q Q = [Q1, Q2, ..., Qn]T

CC The central controller
δV Secondary control signal of CC
kP PI controller proportional gain at CC
kI PI controller integral gain at CC
δVi Local secondary control variable to track the central secondary control signal δV
bi Binary variable to identify whether node i is a leading node of the consensus network
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