
energies

Article

Driving Factor Analysis and Forecasting of CO2
Emissions from Power Output in China Using
Scenario Analysis and CSCWOA-ELM Method

Weijun Wang 1, Weisong Peng 1,*, Jiaming Xu 1, Ran Zhang 2 and Yaxuan Zhao 3

1 Department of Economics and Management, North China Electric Power University, Baoding 071000, China;
wwjhd@ncepu.edu.cn (W.W.); 2172218050@ncepu.edu.cn (J.X.)

2 Shijiazhuang Power Supply Branch, Hebei Electric Power Co., Ltd., Shijiazhuang 050000, China;
sjz_zhangr5@he.sgcc.com

3 Hebei Electric Survey and Design Research Institute, Shijiazhuang 050000, China; 13331393808@163.com
* Correspondence: 2162218066@ncepu.edu.cn; Tel.: +86-0312-7525132

Received: 22 August 2018; Accepted: 1 October 2018; Published: 11 October 2018
����������
�������

Abstract: With power consumption increasing in China, the CO2 emissions from electricity pose a
serious threat to the environment. Therefore, it is of great significance to explore the influencing
factors of power CO2 emissions, which is conducive to sustainable economic development. Taking the
characteristics of power generation, transmission and consumption into consideration, the grey
relational analysis method (GRA) is adopted to select 11 influencing factors, which are further
converted into 5 main factors by hierarchical clustering analysis (HCA). According to the possible
variation tendency of each factor, 48 development scenarios are set up from 2018–2025, and then
an extreme learning machine optimized by whale algorithm based on chaotic sine cosine operator
(CSCWOA-ELM) is established to predict the power CO2 emissions respectively. The results show
that gross domestic product (GDP) has the greatest impact on the CO2 emissions from power output,
of which the average contribution rate is 1.28%. Similarly, power structure and living consumption
level also have an enormous influence, with average contribution rates over 0.6%. Eventually, the
analysis made in this study can provide valuable policy implications for power CO2 emissions
reduction, which can be regarded as a reference for China’s 14th Five-Year development plan in
the future.
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1. Introduction

With the gradual increase of CO2 emissions, global warming tends to be intensified, resulting
in severe damage to the ecological environment [1]. Since 2007, total CO2 emissions in China have
surpassed that of the United States, ranking first in the world [2]. In 2016, the Global Carbon Atlas
showed that the sum of global CO2 emissions was about 34.81 billion tons and 29.16% was from China,
which is more than the aggregate of the United States and the European Union [3–5]. Under heavy
international pressure for CO2 reduction, active measures have been taken to save energy in China,
aiming to cut down CO2 emissions [6]. In 2009, Chinese government promised at the Copenhagen
climate negotiation conference that the CO2 emission intensity in 2020 will be reduced by 40–45%
compared with 2005 [7]. Furthermore, a target was established by Chinese government at the UN
General Assembly in 2015 that CO2 emissions will reach a peak around 2030 and strive to peak as
soon as possible, with the unit GDP of CO2 emissions falling by 60–65% compared with 2005 [8,9].
Simultaneously, China’s 13th Five-Year development plan has put forward the higher goal of having
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the proportion of non-fossil energy consumption account for about 15% of primary energy until 2020
for power development [10].

As regards electrical energy, it plays a significant role in China’s economic development and ranks
first all over the world. Accounting for about 22.6% of terminal energy, electrical energy generates
more than 40% of total CO2 emissions [11]. Obviously, reducing electricity carbon emissions is a
problem to reduce total carbon emissions. Therefore, it is significant to explore the influencing factors
of power CO2 emissions and establish an accurate prediction model, aiming at reducing CO2 emissions
and promoting the development of low carbon economy.

Throughout the study of predecessors, there are many studies with research on the influencing
factors of power CO2 emissions with the method of logarithmic mean Diicks index (LMDI). Klein [12]
utilized Kaya Identity to obtain four factors, including population, GDP per capita, electricity intensity
and the carbon intensity of electricity generation. According to the bottom-up sectoral and industry
comprehensive assessment model (SIAM), Chai et al. [13] evaluated the carbon emission management
performance of China’s power industry and researched on the objectives and policies of total carbon
emission control. With the goal of peak carbon emissions in 2030 and carbon tax as the driving factor
for emission reduction, Ma et al. [14] designed three emission reduction scenarios to forecast energy
demand and carbon emissions under each scenario. Based on LMDI, Huo et al. [15] established a
decomposition model and calculated CO2 emissions from power output, with the influencing factors
decomposed into income effect, power production intensity effects, power production structure
effects, population effects, and coal consumption effects of power generation. By establishing a
factorization model based on the LMDI method, Hou et al. [16] analyzed the influencing factors about
the carbon intensity of electricity, which showed that the impacts from high to low are power generation
structure, coal consumption of generation, line loss rate and plant power consumption rate. In terms
of power production, transmission and consumption, Wang and Xie [17] adopted the LMDI method
to decompose the impact factors of power CO2 emissions into emission factors, energy structure,
power structure, conversion efficiency, transmission and distribution loss, economic scale, population
scale, industry structure, electricity intensity and consumption. Considering power generation and
consumption in the Beijing-Tianjin-Hebei region, Zhang [18] used the LMDI hierarchical decomposition
model to decompose the influencing factors into positive drivers and negative drivers. Specifically, the
former included economic size, population size, thermal power conversion efficiency, and industrial
structure effects, and the latter included industrial power intensity effect, coal consumption effect
of power generation, electricity generation proportion effect, household electricity consumption
intensity, power structure effect and coal consumption effect of generating electricity. As mentioned
above, most scholars have adopted LMDI to decompose the influencing factors intuitively. However,
some influencing factors have less contribution and correlation to power CO2 emissions, resulting in
inaccuracy of predictions.

Compared with the research on influencing factors, there are few studies predicting power
CO2 emissions. Wang and Luo [19] used scenario analysis method to predict the power CO2

emissions in Sichuan Province, setting up baseline scenario, technological progress scenario and
energy structure optimization scenario. The results indicated that CO2 emissions could be reduced in
the last two scenarios. Based on the per capita electricity forecast method, the single output method
and the per capita household electricity consumption method, Xu [20] forecasted the medium- and
long-term power load and CO2 emissions of Baoding through the corresponding calculation formula.
Liu et al. [21] combined the autoregressive integrated moving average model and the second-order
polynomial regression model to established a new forecasting mode, which was further optimized
by particle swarm optimization (PSO). The results showed that the thermal power generation will
reach 7258.83 billion kWh in 2020, with CO2 emissions reaching up to 17,379.90 million tons. Through
IPCC and GM (1, 1), Zhang et al. [22] estimated and predicted the carbon emission intensity of
various industries in Anhui province, indicating that the carbon reduction of power sector would
rank third among all industries. In order to forecast the power CO2 emissions, Wang et al. [23] used
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VENSIM software to build a system dynamics model based on baseline scenario, low carbon scenario
and ultra-low carbon scenario, and the results revealed that low carbon technology, power supply
structure and industrial structure had great impact on low-carbon development of power industry.
Wang et al. [24] used the extended STIRPAT model to evaluate the reduction potential of CO2 emissions
in the industrial sub-sectors, which showed that the power industry is one of the industries with the
most potential for emission reduction. In summary, the research scope about forecasting power CO2

emissions is limited to provinces and municipalities. With fewer scenarios set up, existing studies were
overly optimistic about China’s economic growth in the future. Furthermore, the prediction models
mainly adopted mathematical method, which remains over-fitting and poor generalization capability.
Therefore, it is necessary to reset and refine the development scenarios and established an accurate
model for predicting power CO2 emissions.

Given the above, this article selects the influence factors of power CO2 emissions in China by grey
correlation analysis, and the HCA method is adopted to screen key factors with less redundancy as
independent variables. In addition, the CSCWOA-ELM model is firstly adopted to predict the CO2

emissions from power output.
The remainder of this study is organized as follows. Firstly, the GRA is applied to select

11 influencing factors to form a perfect index system, highly correlated with power CO2 emissions.
Secondly, 5 key factors are exacted from 11 influencing factors as input values of the prediction model
by HCA, aiming to reduce redundancy and keep information integrity. Thirdly, CSCWOA-ELM model
is established to predict the powerCO2 emissions, using 21 samples from 1992 to 2012 for training and
5 samples from 2013 to 2017 for testing. Finally, we put forward effective policy recommendations
based on the above research.

2. Materials and Methods

In this section, the process of an extreme learning machine optimized by whale algorithm based
on chaotic sine cosine operator (CSCWOA-ELM) establishment is described in detail.

2.1. Whale Optimization Algorithm Based on Chaotic Sine Cosine Operator (CSCWOA)

The whale optimization algorithm (WOA), a new group intelligent optimization algorithm, was
proposed by Mirjalili et al. from Griffith University in 2016, simulating the hunting behavior of
humpback whales [25]. The position of each humpback whale represents a feasible solution in the
WOA algorithm, which has the advantages of simple operation and fewer adjustment parameters
compared with other optimization algorithms. As the humpback whales navigate by the coordinates
of optimal individual Xbest in the process of spiral predation, the convergence rate is accelerated, and
the individuals of solution space aggregate rapidly, resulting in the accelerated decline of population
diversity and the increased probability of the algorithm’s premature. In order to reduce the possibility
of individuals gathering to local small areas, the sine cosine mechanism and chaos operator are
introduced to control the motion regions of individuals, which improve the ability to jump out of
local optimum [26]. In terms of the sine chaotic spiral predator movement (shown as Formula (1)),
artificial whales use random individuals Xrand as navigation coordinates to do sinusoidal logarithmic
spiral motion, and search for food in a global context, which maintain the diversity of the population
and avoid individual falling into local optimal solutions. Similarly, the cosine chaotic spiral predator
movement (shown as Formula (2)) selects the optimal individual Xbest as the navigation coordinate,
improving the speed of positioning during the optimization process.

Xt+1 = Xt + r1 · eb·r2 · sin(2πr2) · |r3 · Xrand − Xt| (1)

Xt+1 = Xt + r1 · eb·r2 · cos(2πr2) · |r3 · Xbest − Xt| (2)
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here, r3 is the random number between [1,2], which controls the distance from the current individual
Xt to the random individuals Xrand and the optimal individual Xbest.Then, r1 controls the range of
regions for sinusoidal global search and cosine local development, of which the equation is:

r1 = a− a · t
T

(3)

where a is a constant; t is the current number of iterations, and T is the total number of iterations.
As shown in the formula, r1 adaptively decreases with the increase of the number of iterations,
narrowing the optimization area. With the algorithm converging in the same optimal solution,
convergence effect is guaranteed.

In addition, b is the constant for shaping the spiral trajectory; r2 is an optimization operator based
on cubic chaotic map, which has better equilibrium ergodicity and convergence efficiency compared
with the general chaotic operator sequence. The calculation process can be specified as follows:

rt+1
2 =

{
rand[−1, 1], t = 0
4 ·
(
rt

2
)3 − 3 · rt

2, t ≥ 1
(4)

As shown in Formula (4), with the randomness and ergodicity of the chaotic map, the variation
degree of the individuals is adaptively adjusted, enhancing the ability of the artificial whale to jump
out of the local optimal solution in the sine cosine optimization.

As mentioned above, the sine chaotic global search helps the local development of cosine chaos to
reduce the optimal blind spot, avoiding the loss of potential optimal solution. Conversely, the local
development of cosine chaos compensates for the shortcoming of slow convergence in sine chaotic
global search, which improves the efficiency of the algorithm. Comparing the progeny solutions
generated by sine and cosine in chaotic prediction, the greedy mechanism is introduced to select the
optimal solution [27]. To sum up, the sine cosine chaotic crossover optimization is adopted to avoid
premature algorithm, aiming at improving the accuracy and calculation speed.

2.2. Extreme Learning Machine (ELM)

The multilayer perceptron (MLP) neural network trained by backpropagation algorithms is widely
applied, which consists of input layer, hidden layer and output layer. ELM, composed of input layer,
hidden layer and output layer, was proposed by Huang Guangbin to solve the single hidden layer
feedforward neural network [28]. As the input weights and hidden layer thresholds are given randomly,
the number of hidden layer nodes has a significant impact on the performance of the model. In terms
of the single hidden layer feedforward neural network (SLFN), ELM utilizes the number of hidden
network layers for network training, which greatly reduces the time and the computational complexity.
Compared with other neural network algorithms, ELM has obvious advantages including faster
learning speed, fewer input parameters, avoiding local extremum problems, and better generalization
performance [29]. From the structure of the neural network, ELM is a simple SLFN (as shown in
Figure 1). With fast learning speed and good generalization performance, ELM has attracted more
attention from experts and scholars at home and abroad. However, the traditional ELM algorithm has
the defect that the number of hidden layer nodes cannot be determined and the singularity problem is
easy to occur [30].
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2.3. Extreme Learning Machine Optimized by Whale Algorithm Based on Chaotic Sine Cosineoperator 

(CSCWOA-ELM) 

As we know, the ELM output weight matrix is determined by the input weight matrix and the 

hidden layer threshold, which are randomly given during the training process. With the input weight 

matrix and hidden layer threshold invalid, the corresponding hidden layer node will be null [31]. As 

the number of hidden layer nodes directly affects the prediction accuracy of ELM, increasing the 

number of hidden layer nodes is the only way to improve the forecast accuracy, resulting in 

generalization problem at the same time. 

In this paper, a new ELM optimized by whale algorithm based on chaotic sine cosine operator, 

is proposed to calculate the hidden layer weight, using the global optimization ability to optimize the 

connection weight ijw  between the input layer and the hidden layer, and the neuron threshold jb  

in hidden layer. With the space occupied by hidden layer nodes reduced and the network structure 

simplified, the prediction model based on CSCWOA-ELM is established, which improves the 

regression prediction performance of neural networks with fewer hidden layer nodes. Furthermore, 

the sample data from 1992 to 2012 is selected as the training set, and the sample data from 2013 to 

2017 as the test set. The prediction results indicate that the mean square error MSE = 0.00130 and the 

correlation coefficient R2 = 0.99195, which means less error and high prediction accuracy. To sum up, 

CSCWOA-ELM is suitable for predicting the power CO2 emissions in China. The specific 

implementation steps are shown as follows. 

As illustrated in Figure 2, Based on literature research and characteristics of electric power 

industry, part 1 obtains 11 influencing factors of power CO2 emissions by GRA. Furthermore, 5 key 

factors are extracted as the input variables of the prediction model by HCA. Part 2 is whale 

optimization algorithm based on chaotic sine cosine operator. In part 3, the ELM is adopted to forecast 

the power CO2 emissions in China. 

Figure 1. The structure of Extreme Learning Machine (ELM) model.

2.3. Extreme Learning Machine Optimized by Whale Algorithm Based on Chaotic Sine Cosineoperator
(CSCWOA-ELM)

As we know, the ELM output weight matrix is determined by the input weight matrix and the
hidden layer threshold, which are randomly given during the training process. With the input weight
matrix and hidden layer threshold invalid, the corresponding hidden layer node will be null [31].
As the number of hidden layer nodes directly affects the prediction accuracy of ELM, increasing
the number of hidden layer nodes is the only way to improve the forecast accuracy, resulting in
generalization problem at the same time.

In this paper, a new ELM optimized by whale algorithm based on chaotic sine cosine operator,
is proposed to calculate the hidden layer weight, using the global optimization ability to optimize
the connection weight wij between the input layer and the hidden layer, and the neuron threshold bj
in hidden layer. With the space occupied by hidden layer nodes reduced and the network structure
simplified, the prediction model based on CSCWOA-ELM is established, which improves the regression
prediction performance of neural networks with fewer hidden layer nodes. Furthermore, the sample
data from 1992 to 2012 is selected as the training set, and the sample data from 2013 to 2017 as the test set.
The prediction results indicate that the mean square error MSE = 0.00130 and the correlation coefficient
R2 = 0.99195, which means less error and high prediction accuracy. To sum up, CSCWOA-ELM is
suitable for predicting the power CO2 emissions in China. The specific implementation steps are
shown as follows.

As illustrated in Figure 2, Based on literature research and characteristics of electric power industry,
part 1 obtains 11 influencing factors of power CO2 emissions by GRA. Furthermore, 5 key factors
are extracted as the input variables of the prediction model by HCA. Part 2 is whale optimization
algorithm based on chaotic sine cosine operator. In part 3, the ELM is adopted to forecast the power
CO2 emissions in China.
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Figure 2. Application process of the extreme learning machine optimized by whale algorithm based on
chaotic sine cosine operator (CSCWOA-ELM) model.

3. Data Analysis

In this section, the total carbon emissions of China’s power industry during 1992–2017 were
calculated. Furthermore, key factors were selected by GRA and clustered by HCA. Eventually,
48 different development scenarios were set.

3.1. Data Sources and Usage

In this article, the initial data is from China Statistical Yearbook [32], International Energy Agency
(IEA) and China Energy Statistics Yearbook [33,34]. In order to eliminate the price factors, the actual
GDP and the living consumption level during 1992–2017 are converted into the constant price data
based on 2005. Specifically, real GDP can be obtained by dividing the nominal GDP by the price index.

Up to now, there is no power CO2 emissions data in China. Based on the carbon emission
accounting method of energy balance sheet and the guidelines for China’s greenhouse gas (GHG)
accounting methods for power generation enterprises, this paper calculates the power CO2 emissions
with the carbon emission coefficient of power generation fuels selected in IPCC 2006 [35]. Therefore,
the calculation formula is as follows:

C = ∑n
i=1 FCi × FRi × S× EFi (5)

where C is the amount of power CO2 emissions; i is the type of fuel for power generation; FCi is the
consumption of the fuel i, and FRi is the standard coal conversion coefficient of the fuel i; S is the
low calorific value of the standard coal per kilogram, which is 29,307.6 kilojoules. EFi is the carbon
emission coefficient of the fuel i. The calculation result of power CO2 emissions from 1992 to 2017 is
shown in Figure 3.



Energies 2018, 11, 2709 7 of 17
Energies 2018, 11, x FOR PEER REVIEW  7 of 17 

 

 

Figure 3. The power CO2 emissions of China from 1992 to 2017. 

3.2. Grey Relational Analysis (GRA) 

Throughout the study of predecessors, there are many influencing factors of power CO2 

emissions, which are not simply linearly related to the CO2 emissions and present complex non-linear 

relationship. Namely, the impact of different factors on power CO2 emissions is diverse. With all 

factors considered, it will have a negative impact on the prediction accuracy [36]. In terms of power 

generation, transmission and consumption, this paper selects11 factors by GRA, including 

population, living consumption level, GDP, thermal power conversion efficiency, urbanization rate, 

line loss rate, power structure, industrial structure, disposable income of residents, plant electricity 

consumption, and power generation structure. In particular, power structure refers to the proportion 

of thermal power installed capacity, and power generation structure is the proportion of thermal 

power production [37]. 

In this paper, power CO2 emissions are selected as the parameter series. Furthermore, 11 

influencing factors are selected as comparison series. The results of the correlation analysis are shown 

in Table 1. 

Table 1. Correlation analysis of 11 influencing factors. 

Number Influencing Factors Correlation Number Influencing Factors Correlation 

1 GDP 0.934 7 disposable income of residents 0.814 

2 living consumption level 0.917 8 urbanization rate 0.792 

3 population 0.902 9 power generation structure 0.768 

4 power structure 0.873 10 line loss rate 0.759 

5 industrial structure 0.848 11 plant electricity consumption 0.752 

6 thermal power conversion efficiency 0.822    

As shown in Table 1, the 11 influencing factors have a strong correlation with the power CO2 

emissions, with the correlation degree all above 0.75. In addition, the impact of various influencing 

factors from high to low is GDP, living consumption level, population, power structure, industrial 

structure, thermal power conversion efficiency, disposable income of residents, urbanization rate, 

power generation structure, line loss rate, and plant electricity consumption. 

3.3. Hierarchical Clustering Analysis (HCA) 

As we all know, the GRA mainly studies the correlation between the influencing factors and the 

power CO2 emissions, without exclusion and screening of the repeated influencing factors. In light of 

0

5

10

15

20

25

30

35

40

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

m
il

li
o
n

to
n

s

Figure 3. The power CO2 emissions of China from 1992 to 2017.

3.2. Grey Relational Analysis (GRA)

Throughout the study of predecessors, there are many influencing factors of power CO2 emissions,
which are not simply linearly related to the CO2 emissions and present complex non-linear relationship.
Namely, the impact of different factors on power CO2 emissions is diverse. With all factors considered,
it will have a negative impact on the prediction accuracy [36]. In terms of power generation,
transmission and consumption, this paper selects11 factors by GRA, including population, living
consumption level, GDP, thermal power conversion efficiency, urbanization rate, line loss rate, power
structure, industrial structure, disposable income of residents, plant electricity consumption, and
power generation structure. In particular, power structure refers to the proportion of thermal power
installed capacity, and power generation structure is the proportion of thermal power production [37].

In this paper, power CO2 emissions are selected as the parameter series. Furthermore, 11 influencing
factors are selected as comparison series. The results of the correlation analysis are shown in Table 1.

Table 1. Correlation analysis of 11 influencing factors.

Number Influencing Factors Correlation Number Influencing Factors Correlation

1 GDP 0.934 7 disposable income of residents 0.814
2 living consumption level 0.917 8 urbanization rate 0.792
3 population 0.902 9 power generation structure 0.768
4 power structure 0.873 10 line loss rate 0.759
5 industrial structure 0.848 11 plant electricity consumption 0.752
6 thermal power conversion efficiency 0.822

As shown in Table 1, the 11 influencing factors have a strong correlation with the power CO2

emissions, with the correlation degree all above 0.75. In addition, the impact of various influencing
factors from high to low is GDP, living consumption level, population, power structure, industrial
structure, thermal power conversion efficiency, disposable income of residents, urbanization rate,
power generation structure, line loss rate, and plant electricity consumption.
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3.3. Hierarchical Clustering Analysis (HCA)

As we all know, the GRA mainly studies the correlation between the influencing factors and the
power CO2 emissions, without exclusion and screening of the repeated influencing factors. In light
of this, hierarchical clustering analysis, hereafter referred to as HCA, is adopted to eliminate the
redundancy, with the influencing information retained.

Without knowing the number and structure of the categories, cluster analysis classifies a large
number of observations into several classes, aiming at exposing a subset of observations in a data set.
Particularly, HCA is most popular in many research fields [38]. According to the degree of similarity
between the observed objects, the aggregation is carried out successively to achieve the purpose of
clustering, that is, the distance between the individuals in the sample is replaced by the distance,
and the samples with similar distances are placed in one class, which is repeated until the clustering
is completed.

Based on the series of dimensionless processing in the GRA, the distance between each influencing
factor is calculated, with the optimal class spacing selected by the composite coefficient R value.
As shown in Figure 4, the clustering results of various influencing factors are obtained by MATLAB.
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As shown in Figure 4, cluster analysis can classify different influencing factors into several
categories, so as to find similarities between similarities and differences between different classes.
Furthermore, analysis and reduction of redundancy between indicators can improve prediction
accuracy. Based on the results of GRA and HCA, expert experience method is adopted to select
5 key factors in space family 7, including GDP, living consumption level, population, power structure,
thermal power conversion efficiency.

3.4. Description of Scenarios

Obviously, various influencing factors have different trend in development, which means that
setting a single forecasting scenario cannot cover the complex factors [39]. Therefore, this paper sets
48 different development scenarios based on different growth rates of the 5 influencing factors.

3.4.1. The Growth Rates of GDP

After a long-term sustained decline, China’s economic growth rate began to increase in 2016 and
2017. As the negative impact of financial crisis gradually decreases, the Chinese economy enters a stable
period, referred as new economic normal. Based on the related research and economic development
planning, the potential growth rate of GDP is set between 6–7% for 2018–2025, which are divided into
high and medium categories (Table 2).
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Table 2. Values set for the growth rate of GDP from 2018 to 2025 (%).

Year High Growth Rate Medium Growth Rate

2018–2025 6.8 6.3

3.4.2. The Growth Rates of Living Consumption Level

According to the China Statistical Yearbook, the average annual growth rate of living consumption
level from 2005 to 2017 was 12.79%. Simultaneously, the growth rate during 2014 to 2016 maintained
around 9.5% [40]. With the economy revived and the living standard improved, the growth rate of
living consumption level is expected to be steady and further promoted. Therefore, the growth rates
are set to high, medium and low categories (Table 3).

Table 3. Annual average growth rate of living consumption level from 2018 to 2025 (%).

Year High Growth Rate Medium Growth Rate Low Growth Rate

2018–2025 15 12 9.5

3.4.3. The Growth Rates of Power Structure

In recent years, structural optimization policies, issued by the National Development and Reform
Commission and the Energy Bureau, strictly limit the scale of thermal power, resulting in the proportion
of installed thermal power capacity decreased by an average of 1.53%. The target of 13th Five-Year
power structure adjustment target indicates that the installed capacity of non-fossil energy will increase
to 39% of the total installed capacity, with the installed coal-fired capacity declined to 55% [41]. It is
estimated that the investment and installed capacity of thermal power will be further controlled by
government in the future. Therefore, the growth rates of power structure are set to high and medium
categories (Table 4).

Table 4. Power structure growth rates of China from 2018 to 2025 (%).

Year High Growth Rate Medium Growth Rate

2018–2025 −1.5 −1

3.4.4. The Growth Rate of Population

In the light of the China Statistical Yearbook, the natural growth rate of China’s population
was around 0.5%from 2000 to 2017. The government has announced that the total population will
be around 1.42 billion by 2020, with an average annual natural growth rate of 0.6% [42]. With the
vigorous promotion of the comprehensive two-child policy, the population will increase in recent years.
However, under the impact of the birth concept, the two-child policy will not make the population
increase rapidly. Therefore, the population growth rates are set to medium and low categories (Table 5).
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Table 5. Values set for population growth rates of China from 2018 to 2025 (%).

Year Medium Growth Rate Low Growth Rate

2018–2025 0.8 0.6

3.4.5. The Growth Rates of Thermal Power Conversion Efficiency

With an average growth rate of 0.9%, the thermal power conversion efficiency has increased
from 39.84% to 43.8% during 2005–2017. Specifically, the maximum growth rate was 1.9%, and the
minimum was 0.02%. Based on the 13th five-year plan for power development, about 20 million
kW backward coal-fired power units will be eliminated, aiming to upgrade coal-fired power [43].
Taking the technology and policies into consideration, the conversion efficiency of thermal power
generation will maintain low or steady growth. In this paper, the growth rates of thermal power
conversion efficiency are set to medium and low categories (Table 6).

Table 6. Values set for conversion efficiency of thermal power in China from 2018 to 2025 (%).

Year Medium Optimization Rate Low Optimization Rate

2018–2025 1.5 0.5

As shown in Table 7, based on the different rates of living consumption level, the development
scenarios of power CO2 emissions from 2018 to 2025 are set to 3 essential development scenarios,
including the weakened development scenario (WD), the base development scenario (BD), and the
strengthened development scenario (SD). In combination with the other four influencing factors, each
essential development scenario is decomposed into 16 specific scenarios. As a consequence, this article
totally sets up 48 specific scenarios.
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Table 7. Setting different development scenarios from 2018 to 2025.

Weakened Development Scenario Base Development Scenario Strengthened Development Scenario

SS RG EG GS PG CG SS RG EG GS PG CG SS RG EG GS PG CG

WD1 Low Medium Medium Low Low BD1 Medium Medium Medium Low Low SD1 High Medium Medium Low Low
WD2 Low Medium Medium Low Medium BD2 Medium Medium Medium Low Medium SD2 High Medium Medium Low Medium
WD3 Low Medium Medium Medium Low BD3 Medium Medium Medium Medium Low SD3 High Medium Medium Medium Low
WD4 Low Medium Medium Medium Medium BD4 Medium Medium Medium Medium Medium SD4 High Medium Medium Medium Medium
WD5 Low Medium High Low Low BD5 Medium Medium High Low Low SD5 High Medium High Low Low
WD6 Low Medium High Low Medium BD6 Medium Medium High Low Medium SD6 High Medium High Low Medium
WD7 Low Medium High Medium Low BD7 Medium Medium High Medium Low SD7 High Medium High Medium Low
WD8 Low Medium High Medium Medium BD8 Medium Medium High Medium Medium SD8 High Medium High Medium Medium
WD9 Low High Medium Low Low BD9 Medium High Medium Low Low SD9 High High Medium Low Low

WD10 Low High Medium Low Medium BD10 Medium High Medium Low Medium SD10 High High Medium Low Medium
WD11 Low High Medium Medium Low BD11 Medium High Medium Medium Low SD11 High High Medium Medium Low
WD12 Low High Medium Medium Medium BD12 Medium High Medium Medium Medium SD12 High High Medium Medium Medium
WD13 Low High High Low Low BD13 Medium High High Low Low SD13 High High High Low Low
WD14 Low High High Low Medium BD14 Medium High High Low Medium SD14 High High High Low Medium
WD15 Low High High Medium Low BD15 Medium High High Medium Low SD15 High High High Medium Low
WD16 Low High High Medium Medium BD16 Medium High High Medium Medium SD16 High High High Medium Medium

Note: SS stands for scenario sequence; RG indicates the growth rates of living consumption level; EG is the growth rates of GDP; GS indicates the growth rates of power structure; PG is the
growth rates of population; CG is the growth rates of thermal power conversion efficiency.
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4. Results and Discussions

In different essential development scenarios, the 5 key factors in16 specific scenarios are input
into the CSCWOA-ELM model respectively. Ultimately, the predictions of powerCO2 emissions can be
obtained in different scenarios.

4.1. Predictions in the Weakened Development Scenario

The weakened development scenario includes 16 specific scenarios, with the low-speed growth
rates of living consumption level. Meanwhile, the other four influencing factors select different growth
rates. The results are shown in Figure 5.
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Figure 5. The predictions of power CO2 emissions for the weakened development scenario in 2020
and 2025.

As illustrated in Figure 5, the predictions of power CO2 emissions will increase by 29.96–35.23%
from 2020 to 2025 in the weakened development scenario. In detail, the growth rates will remain at
33.35–35.23% in the scenarios WD1–WD8, and at 29.96–31.99% in the scenarios WD9–WD16. In general,
the power CO2 emissions in the scenarios WD9–WD16 are more than those in the scenarios WD1–WD8.
Particularly, the power CO2 emissions in the scenario WD15 will reach a maximum, with the growth
rates of GDP and power structure at high level, the population growth rate at medium level, and
the growth rates of the living consumption level and the thermal power conversion efficiency at low
level. Meanwhile, the power CO2 emissions in the scenario WD2 will reach a minimum, with the
growth rates of GDP, the growth rates of power structure and the growth rates of thermal power
conversion efficiency at medium level, the growth rates of population and the living consumption
level at low level.

Furthermore, the results indicate that the growth rates of thermal power conversion efficiency is
negative correlation with the power the CO2 emissions, while the others are positive. By comparing
BD1 to BD9 (BD2 to BD10, BD3 to BD11, BD4 to BD12, BD5 to BD13, BD6 to BD14, BD7 to BD15, BD8 to
BD16), the contribution rate of the GDP growth rate to the power CO2 emissions is 1.24%. Similarly, the
contribution rates of the power structure growth rate, the thermal power conversion efficiency growth
rate, and the population growth rate are0.63%, 0.47%, and 0.35% respectively. Based on the above, the
contribution rates of the4 influencing factors from high to low are the growth rates of GDP, the growth
rates of power structure, the growth rates of thermal power conversion efficiency, and the growth rates
of population. As the growth rate of GDP increase by 1%, the power CO2 emissions will rise 1.24%.
Similarly, the growth rate of power structure, the growth rate of thermal power conversion efficiency,
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and the growth rate of population increase by 1%, with the power CO2 emissions rising0.63%, 0.47%,
and 0.35% in turn.

4.2. Predictions in the Based Development Scenarios

The based development scenario includes 16 specific scenarios, with the medium growth rates
of living consumption level. As the other four influencing factors select different growth rates, the
predictions of power CO2 emissions are shown in Figure 6.
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Figure 6. The predictions of power CO2 emissions for the based development scenario in 2020 and 2025.

According to Figure 6, compared with 2020, the predictions of power CO2 emissions in 2025
will increase by 30.38–35.22% in the based development scenario. In detail, the growth rates will
remain at 33.46–35.22% in the scenarios WD1–WD8, and at 30.38–31.44% in the scenarios WD9–WD16.
Furthermore, the power CO2 emissions in the scenarios WD9-WD16 are higher than those in the
scenarios WD1–WD8. Obviously, the power CO2 emissions in the scenario WD15 will reach a
maximum, with the growth rates of GDP and power structure at high level, the growth rates of
living consumption level and population at medium level, and the growth rates of thermal power
conversion efficiency at low level. In addition, the power CO2 emissions in the scenario WD2 will
reach a minimum, with the growth rates of population at low level, and the others at medium level.

By comparing BD1 to BD9 (BD2 to BD10, BD3 to BD11, BD4 to BD12, BD5 to BD13, BD6 to
BD14, BD7 to BD15, BD8 to BD16), the contribution rate of the GDP growth rate to the power CO2

emissions is 1.33%. Similarly, the contribution rates of the power structure growth rate, the thermal
power conversion efficiency growth rate, and the population growth rate are 0.61%, 0.46%, and 0.37%
respectively. Therefore, the contribution rates of the 4 influencing factors are ordered in turn: the
growth rate of GDP, the growth rate of power structure, the growth rate of thermal power conversion
efficiency, and the growth rate of population. As the growth rate of GDP increases by 1%, the
power CO2 emissions will rise 1.33%. Similarly, the growth rates of power structure, thermal power
conversion efficiency, and population increase by 1%, leading to the power CO2 emissions rising 0.61%,
0.46%, and 0.37% respectively.

4.3. Predictions in the Strengthened Development Scenarios

The strengthened development scenario includes 16 specific scenarios, with the living
consumption levels all maintaining high growth rates. Meanwhile, the other 4 influencing factors
select different growth rates. The predictions of power CO2 emissions in 2020 and 2025 are shown in
Figure 7.
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Figure 7. The predictions of power CO2 emissions for the strengthened development scenario in 2020
and 2025.

As shown in Figure 7, the predictions of the power CO2 emissions will increase by 29.68–35.16%
from 2020 to 2025 in the strengthened development scenario. Specifically, the growth rates will
remain at 33.44–35.16% in the scenarios WD1–WD8, and at 29.68–32.06% in the scenarios WD9–WD16.
Generally, the power CO2 emissions in the scenarios WD9–WD16 are higher than those in the scenarios
WD1–WD8. In particular, the power CO2 emissions in the scenario WD15 will reach a maximum, with
the growth rates of GDP, living consumption level, and power structure at high level, the growth rates
of population at medium level, and the growth rates of thermal power conversion efficiency at low
level. Simultaneously, the power CO2 emissions in the scenario WD2 will reach a minimum, with the
growth rates of living consumption level at high level, the population growth rate at low level, and the
others at medium level.

By comparing BD1 to BD9 (BD2 to BD10, BD3 to BD11, BD4 to BD12, BD5 to BD13, BD6 to
BD14, BD7 to BD15, BD8 to BD16), the contribution rate of the GDP growth rate to the power CO2

emissions is 1.28%. Similarly, the contribution rates of the power structure growth rate, the thermal
power conversion efficiency growth rate, and the population growth rate are 0.61%, 0.5%, and 0.38%
respectively. Based on the above, the contribution rates of the 4 influencing factors ordered from high
to low are the growth rate of GDP, the growth rate of power structure, the growth rate of thermal
power conversion efficiency, and the growth rate of population. As the growth rate of GDP increases by
1%, the power CO2 emissions will rise 1.28%. Similarly, the growth rates of power structure, thermal
power conversion efficiency, and population increase by 1%, resulting in the power CO2 emissions
rising 0.61%, 0.5%, and 0.38% respectively. In addition, through the comparison of WD1, BD1, and SD1
(WD2, BD2, and SD2; WD3, BD3, and SD3; ...; WD16, BD16, and SD16), the contribution rate of the
living consumption level growth rate is 0.76%. That is, when the growth rate of living consumption
level increases by 1%, the power CO2 emissions will rise 0.76%.

4.4. Comparisons of the Three Essential Development Scenarios

As shown in the comparison results, the power CO2 emissions in the corresponding specific
scenarios from the three essential scenarios, such as WD1, BD1 and SD1 (WD2, BD2 and SD2, WD3,
BD3, and SD3; ...; WD16, BD16, and SD16), increase in turn. Furthermore, the growth rates of the power
CO2 emissions show a significant decline in general, fluctuating between 29.68–35.23%. Meanwhile,
it is found that GDP, power structure, and the living consumption level are the main influencing factors
of the power CO2 emissions, with the contribution rates all above 0.6%. Nevertheless, the impacts of
the thermal power conversion efficiency and population are small, with the contribution rates less than
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0.5%. As consequence, the contribution rates of each influencing factor in the three essential scenarios
are shown in Table 8.

Table 8. Comparison results of the three essential development scenarios from 2018 to 2025.

Contrastive Terms WD BD SD

Predictions of power CO2 emissions lower average higher

Moving trend of the power CO2
emissions growth rate from 2020 to 2025

WD1–WD8: 33.35–35.23%;
WD8–WD9: 29.96–31.99%

BD1–BD8: 33.46–35.22%;
BD8–BD9: 30.38–31.44%

SD1–SD8: 33.44–35.16%;
SD8–SD9: 29.68–32.06%

The contribution rates of GDP 1.24% 1.33% 1.28%

The contribution rates of living
consumption level 0.76% 0.76% 0.76%

The contribution rates of the
power structure 0.63% 0.61% 0.61%

The contribution rates of the thermal
power conversion efficiency 0.47% 0.46% 0.51%

The contribution rates of population 0.35% 0.37% 0.38%

5. Conclusions

In this study, based on the correlation of influencing factors, 5 key factors are selected from
11 influencing factors through HCA. Furthermore, the prediction model of CSCWOA-ELM is established
to forecast the power CO2 emissions in 48 specific development scenarios, with the contribution rates
of 5 influencing factors calculated. Through the comparison within the three essential development
scenarios, it is regarded as evident to conclude that: (1) With an average contribution rate of 1.28%, GDP
is the biggest influencing factor of the power CO2 emissions. (2) With an average contribution rate of
0.62%, the power structure is also a significant influencing factor. Through the comparison among the
three essential development scenarios, we can draw the conclusion that: (3) the average contribution
rate of the living consumption level is 0.76%, which is higher than that of the power structure. To sum
up, GDP, the power structure, and the living consumption level are the most important influential
factors of the power CO2 emissions in China.

As we know, the power output in China generates a large number of CO2, posing a serious threat
to the reduction of CO2 emissions. Based on the above, some recommendations for the reduction of
the power CO2 emissions in China are proposed as follows: (1) As industry plays a significant role in
China’s economy, the industrial power consumption accounts for around 71.6% of the total, and the unit
power consumption is 23.45 kWh/million, which was 15.95 times than that of the service. Therefore,
it is recommended that High-tech industries and service industry should be promoted to achieve the
economic growth without considerable CO2 emissions. (2) The thermal power production, accounting
for around 73.7% of power output, is main source of CO2 emissions, resulting in serious air pollution.
Hence, improving the proportion of clean power generation is an effective measure to reduce power
CO2 emissions, based on the implementation of clean energy policies. Furthermore, new technologies
and equipment should be applied to increase the conversion efficiency of thermal power, which is
conducive to reducing the consumption of coal and petroleum. (3) With regard to the power waste,
more attention should be taken to the awareness of energy conservation. With the living standards
improving gradually, the degree of household electrification continues to increase, driving the power
consumption and CO2 emissions. In order to solve the above problem, the government should also
strengthen propaganda to cultivate the conservation awareness, and the focus of emission reduction
should be concentrated on the optimization of the power structure. Finally, these recommendations
can be regarded as a reference for China’s 14th Five-Year development to cut down CO2 emissions.
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