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Abstract: To improve the reliability and reduce power loss of distribution network, the dynamic
reconfiguration is widely used. It is employed to find an optimal topology for each time interval while
satisfying all the physical constraints. Dynamic reconfiguration is a non-deterministic polynomial
problem, which is difficult to find the optimal control strategy in a short time. The conventional
methods solved complex model of dynamic reconfiguration in different ways, but only local optimal
solutions can be found. In this paper, a data-driven optimization control for dynamic reconfiguration
of distribution network is proposed. Through two stages that include rough matching and fine
matching, the historical cases which are similar to current case are chosen as candidate cases.
The optimal control strategy suitable for the current case is selected according to dynamic time
warping (DTW) distances which evaluate the similarity between the candidate cases and the current
case. The advantage of the proposed approach is that it does not need to solve complex model of
dynamic reconfiguration, and only uses historical data to obtain the optimal control strategy for the
current case. The cases study shows that the optimization results and the computation time of the
proposed approach are superior to conventional methods.

Keywords: dynamic reconfiguration; data-driven; coarse matching; fine matching; dynamic
time warping

1. Introduction

The reconfiguration of distribution network is an important mean to improve the reliability and
economy of the distribution network by opening the normally closed sectionalizing switches and
subsequently closing the normally open switches. The reconfiguration of distribution network can be
divided into static reconfiguration and dynamic reconfiguration according to the different optimization
time scales.

The static reconfiguration of distribution network is a multi-objective nonlinear hybrid
optimization problem that focuses on one determined time point. The optimization process requires a
lot of computing time because of its nonlinear characteristics. In addition, the static reconfiguration
neglects the conditions such as load changes and switch operation constraints, which are difficult
to apply directly in practical projects. So far, many scholars have proposed various algorithms to
solve static reconfiguration. The traditional methods mainly include newton method, quadratic
programming, artificial neural network, interior point method, heuristic algorithm and so on. Gomes
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Fonseca proposed an analysis tool for static reconfiguration of distribution network based on the fast
decoupled newton-raphson power flow method [1]. This method uses the information of the state
of the network and does not require previous topology processing. H.P. Schmidt developed a new
quadratic formulation for reconfiguration of distribution systems [2]. It guarantees the global minimum
is unique and hence allows an efficient application of the standard newton method. A mixed-integer
quadratically constrained convex optimization program is implemented in distribution network by
R. Fakhry, which overcomes the main shortcomings of artificial intelligence techniques [3]. K. Sathish
Kumar presented a modified artificial neural network for identifying best switching option to reduce
power loss [4]. JA Momoh proposed a fast integer interior point programming method which
incorporated the interior point linear programming technique with branch and bound technique to
optimize the reconfiguration problem [5]. Arash Asrari proposed a systematic approach to determine
an optimal long-term reconfiguration schedule based on a novel adaptive fuzzy-based parallel genetic
algorithm [6]. In order to combine problem of network reconfiguration and capacitor placement
simultaneously in the presence of non-linear loads, Fahimeh Sayadi proposed a new particle swarm
optimization algorithm [7]. Although many scholars did a lot of work on static reconfiguration of
distribution network, there are still many problems with these traditional methods. For example,
the quadratic programming method has the problem of large computation and poor convergence.
Newton method has good convergence performance, but cannot deal with a large number of inequality
constraints. The artificial neural network method has the disadvantage of relying too much on
the sample. The interior point method is difficult to handle the infeasible solutions generated in
the optimization process. Heuristic algorithm has the long computing time and easy to get into
local optimal solution. In general, when traditional methods are applied to solve complex dynamic
reconfiguration models, they will consume a lot of computation time and not easy to get the global
optimal solution.

On the contrary, the dynamic reconfiguration of distribution network can change the state of
switches with load variation and switch operation constraints. In this case, it can ensure that the
distribution network operates in a safe, high-quality and economic friendly environment, which is
more in accordance with the requirements of the actual operation scheduling compared with static
reconfiguration. At present, most of the articles divided dynamic reconfiguration of distribution
network into two steps. The first step is to divide one day into several time intervals and the second
step is to deal with static reconfiguration in each time interval. Xiaoli Meng proposed a dynamic
reconfiguration method of distribution network with large-scale distributed generation integration.
The whole time period is divided into several time intervals by fuzzy clustering analysis method [8].
Lizhou Xu used power losses and static voltage stability index to get the time intervals of dynamic
reconfiguration [9]. Huping Yang proposed a gradual approaching method to deal well with dynamic
reconfiguration. The optimal time for reconfiguration is determined by time enumeration method [10].
Zhenkun Li presented a multi-agent system that divided one day into o several time intervals and each
was managed by a work agent [11]. In general, the existing dynamic reconfiguration strategies have
the following shortcomings: (1) the number of time intervals needs to be set artificially, which is very
subjective. Some scholars used enumeration method to find the optimal number of intervals, but it
leads to a large amount of computation time. It is hard to find the optimal number of time intervals
within a short time. (2) some traditional methods of solving static reconfiguration can find the optimal
solution, but they also need very long computation time.

The distribution network generates massive amounts of data every day. It can be collected by
sensors and stored in the database. When the amount of data accumulated in the database is large
enough, the load series in the future may be very similar to the historical load series. In this case,
the large amounts of historical data make it possible to establish data-driven models for optimization of
distribution network. Ziqiang Zhou proposed a data-driven approach to forecast photovoltaic power,
which was instructive for distribution network planning and energy policy making [12]. A data-driven
approach to fault detection in smart distribution grids was proposed by Younes Seyedi [13]. Simulation
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results confirmed that the proposed networked protection approach can effectively detect faults within
pre-defined fault tolerance time. To determine the maximum penetration level of distributed generation
for active distribution networks, Xin Chen proposed a data-driven method based on distributional
robust optimization [14]. However, the research on dynamic reconfiguration of distribution network
based on data-driven models is relatively limited.

In this paper, a data-driven optimization control for dynamic reconfiguration of distribution
network is proposed. Through two stages of rough matching and fine matching, the historical cases
similar to current case are chosen as candidate cases. The optimal control strategy suitable for the
current case is selected according to dynamic time warping distances which evaluate the similarity
between the candidate cases and the current case. The key contributions of this paper are as follows:

(1) The proposed approach does not need to solve complex model of dynamic reconfiguration,
and only uses historical data to obtain the optimal control strategy for the current case. In addition,
the proposed approach is faster than most of traditional methods in term of computation time.

(2) Some traditional methods such as enumeration can find the optimal strategy for dynamic
reconfiguration, but it will consume a lot of computation time, which is not suitable for real-time
control of distribution network. In addition, these optimal strategies that take a lot of time to
find will not be reused in the future, wasting a lot of potentially valuable data. The proposed
approach can make full use of the value of historical data, recycling the optimal strategies of
historical cases.

(3) Traditional algorithms such as heuristic algorithms find control strategies that tend to be
approximate optimal solutions, but they can’t figure out the probability that the selected control
strategy is the optimal strategy for the current case. In contrast, the probability can be obtained
by proposed approach according to dynamic time warping distance between historical case and
current case.

The rest of this paper is organized as follows. Section 2 presents the mathematical model of
dynamic reconfiguration. Section 3 proposes how to quickly select a historical case similar to current
case from the database. Section 4 discusses the simulations and results. The conclusion is described
in Section 5.

2. The Mathematical Model of Dynamic Reconfiguration

2.1. Objective Function

The objective function of dynamic reconfiguration is to minimize the total costs which include the
power loss costs and switching costs. The total costs can be expressed as follows:

minF =
T

∑
t=1

CtPloss,tt +
Ns

∑
i=1

T

∑
t=1

Cs|Si,t − Si,t−1| (1)

where: F is the comprehensive costs of total time intervals; T is the number of time intervals; Ct is the
power prices of time interval t; Ploss,t is the power loss of time interval t; t is the span of time interval;
Ns is the amount of feasible switches motion; Cs is the unit price of one switch motion; Si,t is the state
of switch i in the time intervals which 1 means switch closed and 0 represents switch open.
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2.2. Equality Constraints and Inequality Constraints

The objective function needs to satisfy many constraints, such as security, technical and topological
constraints. The equality constraints include two nonlinear recursive power flow equations, and it can
be expressed as follows: 

Pi = Vi
N
∑

j=1
Vj(Gij cos θij + Bij sin θij)

Qi = Vi
N
∑

j=1
Vj(Gij sin θij − Bij cos θij)

(2)

where: Pi is the active power of node i; Qi is the reactive power of node i; Vi is voltage of node i; N is
the number of nodes; Gij is conductance of branch between node i and node j; Bij is the susceptance of
branch between node i and node j; θij is the angle difference between node i and node j.

The voltages limit and electric current limit can be expressed as follows:{
Uimin ≤ Ui ≤ Uimax, i = 1, 2, . . . , N
Ii ≤ Iimax, i = 1, 2, . . . , M

(3)

where: N is the number of nodes; M is the number of branch.
The constraints of number of switch motion times can be expressed as follows:

T
∑

t=1
|Si,t − Si,t−1| ≤ Simax

Ns
∑

i=1

T
∑

t=1
Cs|Si,t − Si,t−1| ≤ Smax

(4)

where: Simax is the largest motion time of single switch and Smax is the largest motion time of
all switches.

In addition, the objective function needs to satisfy constraint of network topology. The distribution
network is connected radially without the presence of islanding after dynamic reconfiguration.

3. Dynamic Reconfiguration Based on Data-Driven Model

3.1. The Framework of the Proposed Approach

The dynamic reconfiguration of distribution network can be divided into two steps which include
dividing time intervals and static reconfiguration. The first step is to divide one day into several time
intervals and the second step is to deal with static reconfiguration in each time interval. The framework
of data-driven model is shown in Figure 1.
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Figure 1. The framework of proposed approach. 

Scheme for dividing time intervals: First of all, several candidates of load curves are screened 
out in coarse matching stage according to the symbolic features of the load curves of the distribution 
network. Next, the numeric features of the candidates of load curves will be extracted by piecewise 
aggregate approximation. The dynamic time warping is calculated to evaluate the similarity between the 
current load curve and the candidates of load curves, and the optimal scheme for time intervals is 
selected according to dynamic time warping distance. 

Figure 1. The framework of proposed approach.
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Scheme for dividing time intervals: First of all, several candidates of load curves are screened
out in coarse matching stage according to the symbolic features of the load curves of the distribution
network. Next, the numeric features of the candidates of load curves will be extracted by piecewise
aggregate approximation. The dynamic time warping is calculated to evaluate the similarity between
the current load curve and the candidates of load curves, and the optimal scheme for time intervals is
selected according to dynamic time warping distance.

Scheme for static reconfiguration: For one thing, calculating the mean load for each node in every
time interval and several candidates of load series are screened out in coarse matching stage according
to the symbolic features of the load series. For another thing, taking the load of each node as the
original feature, the principal component analysis is used to reduce the dimension of the numeric
features whose weights are determined by entropy weight method. The dynamic time warping is
calculated to evaluate the similarity between the current load series and the candidates of load series,
and the optimal scheme for static reconfiguration is selected according to dynamic time warping
distance. Different from the dividing time intervals, if the selected strategy is applied to distribution
network directly, it may cause some inequality constraints to be unsatisfied. Therefore, we need
to apply the selected strategy to the distribution network and then calculate the power flow. If all
constraints are met, the selected strategy can be used. Otherwise, reselect the strategy in the remaining
cases and then check if the constraints are met.

Obviously, implementing the proposed approach requires sufficient historical cases in the database.
If the case in the database is insufficient, we need to simulate the load profiles based on historical
data and then expand the case. For an actual distribution network, we can try to test the proposed
algorithm using historical data for one year. If the testing result is not good, we can try to increase the
historical data or simulate the load to expand the database.

When the network expansion faces faults, we need to do additional processing on the database.
For network expansion, the network adds some power lines and loads. We need to simulate the
load profiles each node and then find the optimal control strategy under various scenes. For lines
faults, the network deletes some power lines and loads, we only need to re-solve the optimal control
strategy for the historical data. Finally, the simulation case and the corresponding strategy are saved
in the database.

3.2. Features Extraction

1. Features for time intervals
The load series can be obtained by sampling the daily load curve of the distribution network.

If the sampling frequency is high, we can get a high-dimensional load series, which will consume a
lot of time if we directly calculate the similarity between the load series. Therefore, it is necessary to
extract the features of the original load series. The main information of the original load series can be
reflected by a small number of features.

At present, many scholars have put forward plenty of methods to extract features, such as
piecewise linear approximation, piecewise quadratic approximation and piecewise aggregate
approximation [15]. Compared with other methods, the piecewise aggregate approximation has
the advantages of fast calculation speed, and low dimension, which is widely used for time series
analysis. So the piecewise aggregate approximation will be used to extract the features of load series.
This method divides the load series of length n into k features of equal size [16]. Then it computes the
mean value of the points inside each feature using the formula:

TPAA(x) =
n
k

n/k×(x+1)−1

∑
i=x×n/k

TS(i) (5)

As we can see from the Figure 2, the initial load series of length 72 is reduced to 12 features which
reflect the overall trend of the original load series. In fact, the more the number of features, the more
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detailed about the trend of the original load series can be described. But analysis and data mining
of the load series will become very difficult because of the features with high dimension. Therefore,
the number of features is also very important to the result, which can be obtained by empirical formula
or experiment.Energies 2018, 11, x FOR PEER REVIEW  6 of 18 
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2. Features for static reconfiguration

When the load of distribution network fluctuates greatly, the topology of the distribution network
is changed by switching the state of switches, so as to affect the power flow of the network and achieve
the purpose of optimizing operation. Figure 3 shows the power loss, voltages and the daily load curve
of a distribution network.
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distribution network; (b) the voltages of distribution network.

As can be seen from Figure 3, the trends of power loss and load curve are roughly the same.
When the load is heavy, the voltage of the node drops. On the contrary, if the load is light, the voltages
will rise. In short, the power loss, voltages and power load have a strong correlation. When the
distribution network load level is similar, the distribution network can use a similar topology to
control the direction of power flow, so that the distribution network can operate in a safe and economic
environment. Therefore, the power load of each node is selected as the original feature of static
reconfiguration to evaluate the similarity between the current case and historical cases.

3.3. Dimensions and Weights of Features

According to the previous analysis, the power load of each node is selected as the original feature
of static reconfiguration. As the number of nodes in the distribution network increases, the number
of features also increases sharply, resulting in a large amount of computation time. It is necessary
to reduce the dimension of features. In addition, each feature has different roles and influences,
so it should be given a reasonable weight based on the function of each feature. Weight reflects the
importance of each feature when calculating similarity, which is related to the contribution of each
feature to global similarity. Therefore, it is important to determine the weight of each feature when
calculating the similarity.
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1. Principal component analysis

Principal component analysis is a statistical method that uses as few features as possible to reflect
the original features on the basis of minimizing the loss of the original information. For example,
the principal component analysis is applied to the covariance matrix of distributed wind power data
in [17]. The principal component analysis was used to investigate dependency in transmission network
flows in [18]. The main steps of principal component analysis are as follows:

(1) Normalization

In order to eliminate the impact of the units of the various features, the features should be
normalized before using the principal component analysis. The features are normalized to get the
matrix of X = (x′)m×p by the method of min-max normalization [19]. Where: m is the number of
historical cases; p is the number of features; x′ is the feature after normalization.

(2) Calculating correlation matrix

The correlation matrix consists of p × p elements that can be represented by R = (rij)p×p.
Each element is a correlation coefficient between two features, which can be expressed as follows:

rij =

m
∑

k=1
(x′ki − x′i)(x′ki − x′j)√

m
∑

k=1
(x′ki − x′i)

2 m
∑

k=1
(x′ki − x′j)

(6)

where: x′i is the mean of feature i; rij is the correlation coefficient between feature i and feature j.

(3) Calculating the new features

The eigenvalues of the correlation matrix are calculated and the eigenvalues are sorted in
descending order. In addition, the eigenvectors corresponding to each eigenvalue are calculated.
In order to ensure that the loss of the original information is as small as possible, the number of the
principal components (the new features) should not be too small. The cumulative contribution ratio
will be calculated to control the number of principal components. If the cumulative contribution ratio
is greater than 85%, it can be considered that the new features can reflect the main information of the
original features [17]. The cumulative contribution ratio can be expressed as follows:

αm =
m

∑
k=1

λk/
p

∑
i=1

λi (7)

where: λi is the eigenvalue; αm is the cumulative contribution ratio of the top m eigenvalues.
The ith new feature can be expressed as follows:

zi = ai1x′1 + ai2x′2 + . . . + aijx′j . . . aipx′p (8)

where: aij is the jth element of the ith eigenvectors.

2. Entropy weight method

The methods for determining weight can be divided into two types: objective methods and
subjective methods. Among them, analytic hierarchy process is a typical subjective method,
which depends on experience to determine weights. Because the physical meanings of the new
features are not clear and the number of features is large, the subjective method is difficult to determine
the weights. In this paper, the weight of each feature is determined by the entropy weight method
which determines the weight according to the information contained in each feature. The calculation
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of entropy method is simple and fully utilizes the data to overcome the difficulty of determining the
weights when the physical meaning of the features is not clear.

If the number of new features is n, the matrix of new features becomes Z = (zij)m×n.
The information entropy of each feature can be expressed as follows:

Ej =

m
∑

i=1
zij ln zij

ln m
(9)

where: Ej is the information entropy of jth feature. The smaller the information entropy, the greater
the role it plays in calculating the similarity. The weight of the jth feature can be expressed as follows:

wj = (1− Ej)/
n

∑
j=1

(1− Ej) (10)

3.4. Similarity Search

After extracting features, it is important to use features to search for historical cases that are most
similar to current case. Sequential scanning is one of the most common and direct search methods.
It calculates the similarity between the current case and all the historical cases one by one until finding
the best historical cases. However, if the number of historical cases is enormous, the efficiency of the
Sequential scanning is very low and the computation time will be very long.

In order to improve the efficiency, as shown in Figure 4, this paper divides the search strategy
into two steps which include coarse matching and fine matching.

Energies 2018, 11, x FOR PEER REVIEW  8 of 18 

 

1

ln

ln

m

ij ij
i

j

z z
E

m



 
(9) 

where: jE  is the information entropy of jth feature. The smaller the information entropy, the 

greater the role it plays in calculating the similarity. The weight of the jth feature can be expressed 
as follows: 

1

(1 ) / (1 )
n

j j j
j

w E E


    (10) 

3.4. Similarity Search 

After extracting features, it is important to use features to search for historical cases that are 
most similar to current case. Sequential scanning is one of the most common and direct search 
methods. It calculates the similarity between the current case and all the historical cases one by one 
until finding the best historical cases. However, if the number of historical cases is enormous, the 
efficiency of the Sequential scanning is very low and the computation time will be very long. 

In order to improve the efficiency, as shown in Figure 4, this paper divides the search strategy 
into two steps which include coarse matching and fine matching. 

 
Figure 4. Coarse matching and fine matching. 

1. Coarse matching 

According to the symbolic features of historical cases, several candidate cases similar to the 
current case are screened out by classification tree. However, the number of candidate cases is still 
very large. The candidate cases are screened twice by setting threshold. 

The power load of residents is affected by factors such as holidays, weather and other factors. 
The power load has some similarity in the same environment. For example, the residential load can 
be forecasted by historical days that the factors are similar, such as the lowest temperature, the 
highest temperature, the average temperature, humidity, and so on [20]. As shown in Figure 5, the 
historical cases can be described with seasons, holidays, weather and other symbolic features, and 
the historical cases can be primarily screened according to the symbolic features. 

Figure 4. Coarse matching and fine matching.

1. Coarse matching

According to the symbolic features of historical cases, several candidate cases similar to the
current case are screened out by classification tree. However, the number of candidate cases is still
very large. The candidate cases are screened twice by setting threshold.

The power load of residents is affected by factors such as holidays, weather and other factors.
The power load has some similarity in the same environment. For example, the residential load can be
forecasted by historical days that the factors are similar, such as the lowest temperature, the highest
temperature, the average temperature, humidity, and so on [20]. As shown in Figure 5, the historical
cases can be described with seasons, holidays, weather and other symbolic features, and the historical
cases can be primarily screened according to the symbolic features.
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Figure 5. Classification tree.

No historical cases which are similar to the current case will be selected by the classification tree.
In order to reduce the computational tasks, the historical cases are screened two times by setting
a threshold. As shown in Figure 6, set the allowable deviation of the feature as α, and exclude the
candidate cases whose values of features fall outside the allowable range to further reduce the number
of candidate cases. If the number of candidate cases is large, α can be set smaller to exclude candidate
cases that are not very similar to the current one. On the contrary, if the number of candidate cases
is small, α can be set to a larger size to avoid all candidate cases being excluded. If it is difficult to
determine the value of α in the first place, dichotomy can be used to quickly determine the size of α.
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2. Fine matching

After screening candidate cases, it is also important to use numerical features to find the historical
case that is most similar to the current case. So far, scholars have proposed many different methods
to discover the similarities or hidden trends of time-series data. The most used distance measures
are: Euclidean Distance (ED), Dynamic Time Warping (DTW), Singular Value Decomposition (SVD),
and Point Distribution (PD). The ED and its variations are very sensitive to the small distortion of
time and cannot adapt to the data conversion of the time axis [21]. SVD and PD are the methods
for calculating similarity based on statistics. They do not consider the actual shape of load series.
With different constraints applied to the search, DTW can tolerate different degrees of time distortion,
or exclude unreasonable cases to reduce the search time [22].

The dynamic time warping is used to evaluate the similarity between the candidate cases and
the current case, and the optimal control scheme suitable for the current case is selected according to
dynamic time warping. Given two load series of X and Y which have length m and n respectively:

X = x1, x2, . . . xmY = y1, y2, . . . yn (11)
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As shown in Figure 7, the DTW attempts to find a best warping paths with a minimum distance
value. First, it needs to construct a matrix D with size m× n. We can calculate the every element of the
matrix as follows:

D(1, 1) = d(1, 1)
D(i, 1) = d(i, 1) + D(i− 1, 1) If i > 1
D(1, j) = d(1, j) + D(1, j− 1) If i > 1

D(i, j) = d(i, j) + min


D(i− 1, j)
D(i, j− 1)

D(i− 1, j− 1)

(12)

The matrix D needs to be calculated as order of the above formula. It must calculate D(1,1) first,
then D(i,1), D(1,j) and calculate D(i,j) at last. In this case, the distance between X and Y can be expressed
as follows:

DTW(X, Y) = D(m, n) (13)

In addition, some constrains of DTW are proposed to accelerate computational time. For more
detail about DTW and its constraints, readers can refer to [23].
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3.5. Processing of Approaches

Summarizing the above analyses, the steps to implement the proposed algorithm are as follows:

Step 1: Import current power load and extract features.
Step 2: The principal component analysis is used to reduce the dimension of the feature, and then

the weight of each feature is determined based on the entropy weight method.
Step 3: In the stage of coarse matching, several historical candidate cases are selected according to

the symbol features.
Step 4: In the stage of fine matching, the dynamic time warping distance between candidate cases

and the current case are calculated according to the numerical feature, and the candidate cases are
sorted based on the dynamic time warping distance.

Step 5: The strategy of the candidate case with the smallest dynamic time warping distance
is selected.

Step 6: The selected strategy is applied to the distribution network and the power flow is
calculated. Determine if the distribution network meets all constraints.

Step 7: If all constraints are met, the chosen strategy is available. Otherwise, return to step 5.

3.6. Indicators for Evaluating Results

The results are evaluated by the indexes of accuracy rate, compression rate and satisfaction. The n0

cases which are the most similar to the current case are selected from the database. The comprehensive
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costs of the n0 schemes of dynamic reconfiguration are calculated respectively at current load level.
Among them, n1 comprehensive costs belong to the optimal solution at the current load level.
The accuracy rate can be expressed as follows:

AR =
n1

n0
× 100% (14)

If Fgood is the optimal solution of comprehensive costs, Fbad is the worst solution of comprehensive
costs. The satisfaction of current case can be expressed as follows:

Sa =
Fcurrentcase − Fbad

Fgood − Fbad
× 100% (15)

It is assumed that principal component analysis transforms the dimension of feature from n to m.
The compression rate can be calculated as follows:

CR = (1−m/n)× 100% (16)

4. Study Case

4.1. Setting Parameters

The proposed method will be tested on modified IEEE 33-bus system whose topology can be seen
in Figure 8. For more detail about the parameters of branch, readers can refer to [24]. The hourly load
factor is derived from Karnataka Power Transmission Corporation Limited, which contains actual
historical data from 2010 to 2017. The largest motion time of single switch is 3 and the largest motion
time of all switches is 15. The energy purchased price is 0.11$/kWh, and the switch motion cost is
1.11$/time. The dynamic reconfiguration strategy of historical cases belong to the global optimal
solution which obtained by enumeration method. The algorithms were implemented by MATLAB
R2014a, Windows7, Intel(R) Core(TM) i3-3110M CPU@2.40GHz,6.00 G RAM.
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4.2. The Results of the Time Intervals

1. Compared with traditional algorithms

We choose one day in 2017 as the current case randomly and use the classification tree to select
240 candidate cases according to the symbolic features. Taking 1 h as the step size, 48 numeric
features of each load series are extracted by piecewise aggregate approximation. As shown in Figure 9,
the threshold is set to 0.1 by dichotomy, and 37 candidate cases are screened out.
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Figure 9. The 37 candidate cases which are similar to the current case.

The schemes of the candidate cases are calculated based on a gradual approaching method which
determined the time intervals by time enumeration method [10]. The dynamic time warping between
the current case and the candidate cases are calculated and the scheme of the candidate case with the
smallest dynamic time warping will be used to divide one day into several time intervals. As shown
in Figure 10, the daily load curve is finally divided into six time intervals, and the results are basically
in line with the trend of the curve.
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Figure 10. The scheme that one day are divided into 6 time intervals.

In order to verify the reasonableness and correctness of the time intervals based on data-driven
model, the following four schemes are used for simulation. Case A: Maintain the original topology
without reconfiguration. Case B: The whole time period is divided into several time intervals by fuzzy
clustering analysis method [8]. Case C: The whole time period is divided into several time intervals
based on the indexes of power losses and static voltage stability [9]. Case D: one day is divided into
several time intervals based on data-driven model. The four cases are optimized respectively and the
results are shown in Table 1.

As shown in Table 1, the power loss of case A which maintains the original topology without
reconfiguration is 2716.3 kW, and its total cost is 301.3$. In case B, the power loss is reduced to
1954.6 kW through 12 switching operations. The total cost is reduced to 230.1$. The number of
switching operations of case C is 10. Its power loss is 1983.9 kW and the total cost is 231.1$. In case
D, the power loss is reduced to 1954.6 kW through 6 switching operations. The total cost is reduced
to 227.7$. Compared case A with other cases, it can be found that the dynamic reconfiguration is
beneficial to reduce the power loss and reduce the comprehensive costs. Compared with case B and
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case C, although the power loss of case D is relatively large, the operation frequency of the switch is
smaller, so the total cost is the minimum. In conclusion, the rationality and validity of the proposed
algorithms are verified by comparing with other traditional algorithms.

Table 1. The comparison of optimized results from different cases.

Schemes Time Switch Open The Number of Switch
Operations

Comprehensive
Costs/$

Cases A All day 33,34,35,36,37 0 301.3

Cases B

00:00–05:00 8,13,16,24,33

12 230.1
05:00–08:00 8,13,15,28,33
08:00–18:00 8,13,17,27,33
18:00–20:00 8,13,27,31,33
20:00–00:00 8,13,28,31,33

Cases C

00:00–06:00 8,13,16,24,33

10 231.1
06:00–13:00 8,13,15,28,33
13:00–19:00 8,13,26,33,36
19:00–00:00 8,13,28,33,36

Cases D
00:00–06:00 8,13,16,24,33

6 227.706:00–16:00 8,13,26,33,36
16:00–00:00 8,13,28,33,36

2. The influence of parameters on results

In order to test the performance of different methods, four methods of SVD, PD, ED and DTW are
used to evaluate the similarity between historical cases and current case. The compression ratio is set
to 0, and experiments are repeated 50 times respectively. The average accuracy rate of the statistics is
shown in Table 2.

Table 2. The accuracy rates of different methods.

The Number of Historical Cases Which Are the
Most Similar to the Current Case (n0)

SVD PD ED DTW

1 69.7% 58.7% 96.5% 99.4%
5 67.4% 57.0% 93.5% 98.2%
10 57.3% 56.5% 92.7% 97.3%

As shown in Table 2, the accuracy rates of SVD and PD accuracy are very low. This is because
SVD and PD are the methods that could calculate similarity based on statistics. They do not consider
the actual shape of load series. Compared with SVD and PD, ED can effectively evaluate the similarity
while considering the actual shape of the two cases. In this case, the accuracy rate of ED is higher than
SVD and PD. In addition, the DTW overcomes the shortcoming of ED which is sensitive to a small
distortion of load series and cannot adaptively shift data with the axis of load series. The accuracy rate
of DTW is the highest, which shows that DTW is the most suitable for evaluating the similarity in the
problem of dynamic reconfiguration.

In order to analyze the effect of compression ratio on the results of time intervals, 48 original
features of daily load curve are extracted by piecewise aggregate approximation and the dimensions of
features are reduced by principal component analysis. It assumes that n0 is equal to 10, and experiments
are repeated 50 times respectively. The average accuracy rate of the statistics is shown in Table 3.



Energies 2018, 11, 2628 14 of 18

Table 3. The effect of different compression ratio on results.

Compression Rate (CR) 0% 25% 50% 62.5% 75%

Accuracy Rate (AR) 97% 92% 83% 77% 76%
Time/s 0.53 0.30 0.13 0.07 0.03

As shown in Table 3, although the principal component analysis can effectively reduce the
dimensions of features and reduce the computational complexity, it will also lose some information of
features and make the accuracy rate of the results decrease. Therefore, in order to ensure a sufficient
accuracy rate, the compression ratio of features should not be too low.

3. Relationship between dynamic time warping and result of time intervals

In order to analyze the relationship between the dynamic time warping and the results of time
intervals, the schemes of historical cases are applied to the current case. The compression rate is set to
0, and experiments are repeated 50 times respectively. The average accuracy rate and satisfaction of
every interval is shown in Figure 11.

Energies 2018, 11, x FOR PEER REVIEW  14 of 18 

 

As shown in Table 3, although the principal component analysis can effectively reduce the 
dimensions of features and reduce the computational complexity, it will also lose some information 
of features and make the accuracy rate of the results decrease. Therefore, in order to ensure a 
sufficient accuracy rate, the compression ratio of features should not be too low. 

3. Relationship between dynamic time warping and result of time intervals 

In order to analyze the relationship between the dynamic time warping and the results of time 
intervals, the schemes of historical cases are applied to the current case. The compression rate is set 
to 0, and experiments are repeated 50 times respectively. The average accuracy rate and satisfaction 
of every interval is shown in Figure 11. 

 
Figure 11. The average accuracy rate and satisfaction of every interval. 

As can be seen from Figure 11, the smaller the dynamic time warping is, the higher the 
satisfaction is. This phenomenon shows that if we apply the scheme of historical cases whose 
dynamic time warping is smaller into current case, the comprehensive costs will also be smaller. In 
addition, it can be found that the smaller the dynamic time warping between the historical case and 
the current case is, the higher the corresponding accuracy rate is. It shows that if the dynamic time 
warping is smaller, the probability that the scheme of the historical cases is the optimal solution of 
the current cases is higher. 

4.3. The Results of the Static Reconfiguration 

1. Compared with traditional algorithms 

The active power of each node is taken as the original feature, so the original number of 
features is 32. According to the symbolic features of historical cases, the classification tree are used 
to screen several candidate cases for the first time, and adjust the threshold by dichotomy until 50 
candidate cases are selected. It assumes that 0n  is equal to 10, and the compression ratio is equal 
to 0. In addition, the optimal control strategy for static reconfiguration is obtained by the 
enumeration method. The basic steps of the enumeration method are as follows: 

Step 1: Close all switches of the distribution network. We assume that the number of rings in 
the current distribution network is n, and the number of branches that make up the ring network is 
m. 

Step 2: If n branches are disconnected from the m branches, there are a total of n
mC  species 

solutions. Among them, some of the solutions should be excluded because there are islands or ring 
networks in the distribution network. 

Step 3: We exclude solutions that do not satisfy the topological constraints, and calculate the 
power flow of the remaining solutions and the objective function. 

Step 4: The optimal control strategy for a case can be obtained according to the value of the 
objective function. 

In order to verify the validity and correctness of the scheme of static reconfiguration based on 
data-driven model, the proposed method is compared with the traditional methods such as Genetic 

Figure 11. The average accuracy rate and satisfaction of every interval.

As can be seen from Figure 11, the smaller the dynamic time warping is, the higher the satisfaction is.
This phenomenon shows that if we apply the scheme of historical cases whose dynamic time warping is
smaller into current case, the comprehensive costs will also be smaller. In addition, it can be found that
the smaller the dynamic time warping between the historical case and the current case is, the higher
the corresponding accuracy rate is. It shows that if the dynamic time warping is smaller, the probability
that the scheme of the historical cases is the optimal solution of the current cases is higher.

4.3. The Results of the Static Reconfiguration

1. Compared with traditional algorithms

The active power of each node is taken as the original feature, so the original number of features
is 32. According to the symbolic features of historical cases, the classification tree are used to screen
several candidate cases for the first time, and adjust the threshold by dichotomy until 50 candidate
cases are selected. It assumes that n0 is equal to 10, and the compression ratio is equal to 0. In addition,
the optimal control strategy for static reconfiguration is obtained by the enumeration method. The basic
steps of the enumeration method are as follows:

Step 1: Close all switches of the distribution network. We assume that the number of rings in the
current distribution network is n, and the number of branches that make up the ring network is m.

Step 2: If n branches are disconnected from the m branches, there are a total of Cn
m species solutions.

Among them, some of the solutions should be excluded because there are islands or ring networks in
the distribution network.

Step 3: We exclude solutions that do not satisfy the topological constraints, and calculate the
power flow of the remaining solutions and the objective function.
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Step 4: The optimal control strategy for a case can be obtained according to the value of the
objective function.

In order to verify the validity and correctness of the scheme of static reconfiguration based on
data-driven model, the proposed method is compared with the traditional methods such as Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA) and Artificial Bee
Colony (ABC). The parameters of the GA are set as follows: The number of chromosomes is 50, and the
maximum number of iterations is 50. The probability of crossover is 0.8 and the probability of mutation
is 0.2. The parameters of the PSO are set as follows: The number of particles is 50, and the maximum
number of iterations is 50. Inertia weight factor is 0.9, learning factors c1 = c2 = 2. The parameters of
the SA are set as follows: The maximum number of iterations is 20,000 and the temperature coefficient
is 0.999. The initial temperature is 1 and the final temperature is 1−9. The parameters of the ABC are
set as follows: The number of employed bees and onlooker bees is 20. The number of scout bees is
10 and the number of local searches is 5. The maximum number of iterations is 50. Every method is
repeated 50 times respectively and the average result is shown in Table 4.

Table 4. Results of different methods.

Algorithms Optimal Power
Loss/kW

Worst Power
Loss/kW

Average Power
Loss/kW Time/s AR

Proposed algorithms 138.4 146.3 139.5 1.4 0.96
GA 138.4 147.5 143.1 41.3 0.65
PSO 143.2 148.2 146.4 46.7 0.45
ABC 139.8 149.1 144.6 58.9 0.64
SA 144.7 151.3 148.5 51.2 0.33

Enumeration 138.4 138.4 138.4 63.0 1.00

As shown in Table 4, the heuristic algorithms have the potential of finding the global optimal
solution in solving the static reconfiguration of distribution network, but it also has the disadvantage
of being easily trapped in the local optimal solution. The optimal power loss, the worst power loss
and the average power loss of proposed algorithms are smaller than other algorithms. It means that
the proposed algorithm can get a better solution than the traditional methods. In terms of computing
time, the computation time of the proposed algorithm is far less than the heuristic algorithms and
enumeration method. There are three main reasons which result in it. Firstly, the heuristic algorithm
searches for the optimal solution by random searching, which consumes a lot of time. Secondly,
it needs to satisfy the constraint of topology, and the searching space of heuristic algorithms has
a large number of unfeasible solutions, which seriously affects the speed of optimization. Thirdly,
the proposed algorithm excludes a large number of historical cases during coarse matching stage,
so the number of cases that need to calculate the similarity is very small. In addition, the dimension of
features is reduced by principal component analysis, which reduces the complexity of the algorithm.
As far as the accuracy rate is concerned, the accuracy rate of the proposed algorithm is higher than that
of the other algorithms, which shows that the solution of proposed method has a higher probability as
a global optimal solution.

2. The influence of parameters on results

In order to analyze the effect of compression ratio on the results of static reconfiguration,
32 original features are extracted and the dimensions of features are reduced by principal component
analysis. It assumes that n0 is equal to 10, and experiments are repeated 50 times respectively.
The average accuracy rate of the statistics is shown in Table 5.
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Table 5. The effect of different compression ratio on results.

Compression Rate (CR) 0% 25% 50% 62.5% 75%

Accuracy Rate (AR) 97% 93% 85% 76% 72%
Time/s 0.31 0.14 0.05 0.03 0.01

As shown in Table 5, the computation time is less than 1 s, which can not only be used for offline
calculation, but also can meet the requirement of real-time calculation on line. The principal component
analysis can reduce the dimensions of the features to a certain extent and reduce the computation time,
but it also leads to the reduction of accuracy. Therefore, when the principal component analysis is
used, the computation time and accuracy rate should be taken into account simultaneously.

The weight of the feature is determined by using the same weight and the entropy weight
respectively to analyze the influence of the weight on the optimization result. It assumes that the
compression ratio is equal to 0. The result of the static reconfiguration is shown in Table 6.

Table 6. The accuracy rate of different methods.

The Number of Historical Cases Which Are
the Most Similar to the Current Case (n0)

Weights Are Same Entropy Weight Method

1 96.5% 98.6%
5 95.4% 98.3%
10 93.2% 97.5%

As can be seen from Table 6, compared with the same weight method, the entropy weight method
can make full use of the data of each feature to determine the weights so that the accuracy rate of the
static reconfiguration is very high.

3. Relationship between dynamic time warping and result of static reconfiguration

The schemes of historical cases are applied to the current case to analyze the relationship between
the dynamic time warping and the results of static reconfiguration. The compression rate is set to
0, and experiments are repeated 50 times respectively. The average accuracy rate and satisfaction of
every interval is shown in Figure 12.
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As can be seen from Figure 12, if the values of dynamic time warping is smaller than 1, the accuracy
rate and satisfaction is high, which means the schemes of historical cases can be applied to current
case. The smaller the dynamic time warping is, the higher the satisfaction is. On the contrary, if the
values of dynamic time warping is bigger than 1.5, it is not appropriate to apply the schemes of the
historical cases to the current case, because this historical case is not very similar to the current case.
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5. Conclusions

This paper proposed a dynamic reconfiguration method of distribution network based on
Data-driven model from the perspective of data mining, which can make good use of historical cases
to guide the operation of current case. Through theoretical analysis and case simulation, following
conclusions can be drawn:

(1) The historical cases which are similar to the current case can be selected accurately and quickly
by two steps of coarse matching and fine matching.

(2) The principal component analysis can reduce the dimension of features and reduce the
computational complexity. However, it will also lose some information of features and make
the accuracy rate of the results decrease. Therefore, in order to ensure a sufficient accuracy rate,
the compression ratio of features should not be too low.

(3) Entropy weight method can determine the weights according to the information of features and
improve the accuracy rate and satisfaction of results.

(4) The smaller the dynamic time warping between the historical case and the current case is,
the higher the corresponding accuracy rate is. It shows that if the dynamic time warping is
smaller, the probability that the scheme of the historical cases is the optimal solution of the
current cases is higher. This probability can be judged by dynamic time warping distance,
which is not available in traditional methods.

(5) Compared with the traditional algorithms, optimization results and the computation time of the
proposed method are superior to conventional algorithms.
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