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Abstract: Vehicle-to-grid (V2G) is an important component of smart grids and plays a significant
role in improving grid stability, reducing energy consumption and generating cost. However, while
electric vehicles are being charged, it is possible to expose the location and movement trajectories
of the electric vehicles, thereby triggering a series of privacy and security issues. In response to this
problem, we propose a new quadtree-based spatial decomposition algorithm to protect the location
privacy of electric vehicles. First of all, we use a random sampling algorithm, which is based on
differential privacy, to obtain enough spatial data to achieve the balance between large-scale spatial
data and the amount of noise. Secondly, in order to overcome the shortcomings of using tree height
to control Laplacian noise in the quadtree, we use sparse vector technology to control the noise
added to the tree nodes. Finally, according to the vehicle-to-grid network structure in the smart grid,
we propose a location privacy protection model based on distributed differential privacy technology
for EVs in vehicle-to-grid networks. We demonstrate application of the proposed model in real spatial
data and show that it can achieve the best effect on the security of the algorithm and the availability
of data.

Keywords: electric vehicle (EV); location privacy protection; differential privacy; random sampling
algorithm; sparse vector technology; vehicle to grid (V2G)

1. Introduction

Vehicle-to-grid (V2G) is an important sub-system of smart grids. With the characteristics of electric
vehicles charging and discharging, a vehicle-to-grid network can help grid load to “peak-fill”, improve
grid stability, reduce energy consumption and reduce power generation cost [1]. Vehicle-to-networks
is also suitable for some small-scale energy management systems [2]. As we all know, the range of
charging pile locations can affect the degree of participation. In the case of high participation [3],
the total cost of the energy system will decrease [4], and electricity prices will fall [5]. However,
electric vehicle-to-grid accelerates transformer aging [6]. Therefore, vehicle-to-grid is a double-edged
sword [7]. At the same time, the V2G network has also introduced new privacy issues, such as the
user’s home address, place of work, place of entertainment, and places frequented, which may be
reflected in the charging history. Leaking location information has a negative impact on users, being
harassed by location-based spam, unscrupulous merchants selling location-related products or services
to users without permission [8]. In addition, the leaked location information may also expose the user’s
health status, religious beliefs, personal preferences, social relations and other private information [9].
For example, the stay period and frequency of visits of an electric car at a hospital may expose the
user’s health condition. More seriously, location information may also cause security problems, which
might be used by criminals, allowing users to be tracked, looted, and even suffer from personal
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attacks [10]. Therefore, the privacy of EV location is very important to the normal operation of smart
grid, the safety of electric vehicle users and the popularization of electric vehicles. Therefore, it is
important to study the privacy protection of the EV location in vehicle-to-grid networks.

The control center of the power grid optimizes the charging and discharging of the electric vehicle
by monitoring the position of the electric vehicle. When performing location data query and access,
the spatial search tree or grid structure that meets the requirements is usually established based on
the spatial segmentation technique. There is a lot of research work based on the privacy protection
scheme proposed by the spatial segmentation technology, such as adding noise to the established
spatial search tree or network unit, and disturbing the location of the individual. As the degree of noise
is added, the privacy protection of individual locations is better, but the accuracy of search and query
is also reduced. At the same time, most privacy protection algorithms based on spatial segmentation
technology are mostly affected by data distribution. When the amount of data is relatively large, or the
data skew is serious, the accuracy and privacy protection effect of the algorithm are very limited.
Among the problems we studied, the amount of location data in the V2G network is huge, and the
original spatial segmentation algorithm does not have a good effect on accuracy and data availability.
Therefore, in this paper, we proposed a spatial data privacy protection algorithm for V2G networks,
adding noise that satisfies differential privacy in the spatial segmentation algorithm, ensuring the
security of individual location data while keeping data query and access with good precision.

In summary, we make the following contributions in this paper:

(1) We propose a new random sampling algorithm based on differential privacy, which can obtain
enough samples to deal with large-scale spatial data.

(2) We propose a new quadtree-based spatial decomposition algorithm, and use sparse vector
technology to control the depth of the tree to achieve independent tree-depth noise control and
better protect the privacy of the location data.

(3) We propose the vehicle-to-grid location data protection model based on differential privacy to
realize the privacy protection of EVs locations in vehicle-to-grid networks.

(4) We conduct experiments on actual EVs locations data to prove our proposed method and to
achieve the best effect on the security of algorithm and availability of data.

The rest of our paper is organized as follows: in Section 2 we introduce the related work of
privacy protection of vehicle-to-grid in a smart grid; in Section 3 we introduce the network structure of
vehicle-to-grid in a smart grid; in Section 4 we propose the spatial data decomposition method with
differential privacy; in Section 5 we implement experiments to verify the validity of the algorithm; and
in Section 6 we conclude our paper.

2. Related Work

In recent years, many researchers have proposed some protocols to protect the privacy of electric
vehicles. Based on the characteristics of vehicle-to-grid networks, Yang et al. first proposed the
privacy issue of electric vehicle users, and proposed a protection privacy communication with an
accurate reward system structure [11]. In this architecture, the user’s “permission” generated by the
ID-based restricted partially blind signature technology can access the V2G network anonymously,
so as to protect the user’s identity and location privacy. Each time the user sells electricity, he can
obtain the “reward” signature, and according to this “reward”, the corresponding reward can be
obtained anonymously. However, it has the problem of key escrow in this scheme [12], which
proposes a new scheme using the restricted partial blind signature technique under the setting of
certificate-free public key. Reference [13] protects the location privacy of charging users by constantly
changing their fake identities to ensure that electric vehicles can change different fake identities in
different parking lots. A secure electric vehicle payment system was proposed to support two-way
anonymous payment while still paying the right fee or getting paid [14]. Their scheme can guarantee
anonymity, while supporting the function of tracking, fraud prevention and arbitration. Reference [15]
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analyzed the impact of honest but curious aggregators on the privacy of EV users and proposed
a model to prevent aggregators from tracking users by reducing the amount of data transferred.
Reference [16] studied the privacy problem when users use advanced measurement systems to
participate in vehicle-to-grid at home, and proposed the vehicle-to-grid architecture to hide the
user’s pseudo-identity information in K gateways to realize the privacy protection of user data. These
methods all use pseudo-identities [13–16] for privacy protection. In this paper, we proposed a location
privacy protection algorithm based on differential privacy. We obtained good effects only by processing
location data. Unlike pseudo-identities technology, we do not need extra computational overhead
when calculating pseudo-identities.

On the other hand, many researches on spatial decomposition technology are based on differential
privacy to protect the location of spatial data privacy. Spatial decomposition technology commonly
uses indexing technology, such as grid structure and tree structure. The HKD-tree proposed in
Reference [17] is an early representative of data-independent decomposition. This method divides
the data by grid and adds noise to each grid cell, which utilizes KD-tree for indexing. However,
this algorithm is valid only if the data distribution is balanced. The uniform-grid (UG) model in
Reference [18] uses a well-distributed grid to decompose two-dimensional spatial data and adds
noise to each of the cells. Although UG can be more reasonable to set the granularity of the division,
it does not consider skew and sparseness of data distribution. If a cell is especially sparse, even
a count of zero, it will result in excessive noise error; on the other hand, if a cell is especially dense,
it cannot be completely divided and will result in an excessive assumption error. The DP-where
method in Reference [19] also uses a well-distributed grid to decompose the working position and
family position of a moving crowd, but the disadvantages of this method are similar to that of UG.
For the lack of UG method, adaptive-grid (AG) model was proposed [18] according to the different
granularity of the high-level division unit, to divide the spatial data adaptively top-down. Although
AG can set the granularity of spatial data adaptively according to the data sparseness, it does not
give the corresponding heuristic rules to distinguish the boundaries between the dense and sparse
data. In addition, this method does not consider the actual distribution of the original data either.
Reference [20] proposed the AG method adapted for spatial decomposition, and then utilizing the
Laplace mechanism to protect the worker’s position information. A complete quadtree is used to
decompose the two-dimensional spatial data top-down in Reference [21]. The complete quadtree
needs to satisfy all leaf-to-root paths with the same length, and all intermediate nodes have the same
fan-out. In order to improve the decomposition accuracy, quadpost uses the geometric distribution
technology to divide the privacy cost and post-processes the noise by the least squares unbiased
estimation. The advantage of this method is that the privacy budget can be rationally distributed,
and the noise error is low. The disadvantage is that the depth of the tree is used to control the noise
value. If the depth of the tree is relatively large, the noise added in each layer is especially high.
Accordingly, the final query accuracy will be low. In addition, this method does not consider the
original data distribution, and the uniform hypothesis error is relatively high. Quadtree and Kalman
filtering were used to decompose dynamic spatial data in Reference [22]. It utilizes a heuristic threshold
to judge whether each partitioned unit is sparse or dense. If the unit is still dense, it will be partitioned
continually. The disadvantages of Reference [22] are similar to those of Reference [21], depending on
the depth of tree to control the noise value. Compared to the first two methods, [23] combined complete
quadtree to partition spatial data, responding to range queries by releasing leaf node noise counts and
non-leaf node domain information. This method does not rely on the tree depth. It reduces the noise
through the offset value of the node count, and then uses a noise constant to determine whether to
divide the node. Meanwhile, this method uses the sparse vector technique [24,25] to calculate the node
decomposition threshold. The b-ary tree is used to partition the data levelly in Reference [26]. The noise
is used to perturb the counts in each node, and the statistical information of each layer is published as
a histogram. However, this method also uses tree depth to control noise. Reference [27] uses b-ary
tree to decompose the data as well. The method discusses the relationship between tree depth, tree
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fan-out and data dimension, and post-processes the query results. Reference [28] used the sampling
method to process the spatial data, and then divided the spatial counts into groups of the same size,
adding noise to the mean of each group. However, the final accuracy of the method was relatively low.
DP-tree method using embedded trees was proposed to decompose multi-dimensional spatial data
and supports range count queries [29]. However, this method uses tree depth to control noise, which
is easily affected by tree fan-out. The decomposition method in References [30–32] considers the actual
distribution of the underlying spatial data, and divides data according to the actual position of the
spatial data points. However, these algorithms must be carried out under the protection of differential
privacy, otherwise it will reveal the privacy of the underlying data.

In conclusion, most of the spatial segmentation are affected by the actual data distribution.
The tree depth is usually used to control the Laplacian noise level, which leads to high computation
overhead and low availability. These methods do not consider well how to balance the noise error and
the uniform hypothesis error. Some decomposition methods, although taking into account the above
two kinds of error balance, did not consider how to use heuristic rules to adaptively set the equalization
parameters. When the count of spatial data reaches millions, these methods usually cannot obtain
accurate results. Although the above methods are able to give rigorous data availability theory bounds,
they did not perform well in data availability and efficiency on the actual data. In the vehicle-to-grid
network, electric vehicle location data is millions-level. The methods of spatial decomposition protect
the location privacy, usually leading to the availability of location data being especially low. In this
paper, we adopt the sampling algorithm based on differential privacy to achieve the balance between
large-scale spatial data and noise volume. To overcome the shortcomings of Laplacian noise controlled
by tree-depth in quadtree, we utilize sparse vector techniques to control when to partition the tree
node. Based on the vehicle-to-grid network structure in the smart grid, we propose a location privacy
protection model for electric vehicles in vehicle-to-grid networks adopting distributed differential
privacy technology.

3. Network Structure of V2G in Smart Grid

Vehicle-to-grid is a system that serves the energy interaction between electric vehicles and the
grid. Electric vehicles want to be able to get power when the grid load is at its nadir, and feed power
back to the grid when the grid load is at its peak [1]. At the same time, it hopes that the electric grid
will feed the electric energy back when the load is at its peak. When the electric vehicle and the grid
are in an energy interaction, they must establish real-time communication for the transmission of
relevant information, such as the status of the electric vehicle and the load of the electric network [10].
Therefore, the main activity in vehicle-to-grid is actually the two-way interaction related to energy and
information between EVs and the grid [8].

The vehicle-to-grid system is mainly concentrated in the distribution domain. In the vehicle-to-grid
network, a large number of electric vehicles, charging stations and parking lots jointly construct
a bidirectional power and communication network through a power distribution network and
a communication network, as shown in Figure 1.
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Figure 1. Network structure of V2G in smart grid.

(1) Control center: Control center is the most important component of the smart grid, solving
the dispatching and control problems of electric vehicles after they are connected to the grid. It is an
indispensable “brain” of the grid operation.

(2) Aggregators: On the one hand, aggregators can receive vehicle-to-grid service requests from
the smart grid control center to provide feedback-related information to the smart grid. On the
other hand, aggregators can gather vehicle-to-grid business services from the smart grid control
center after aggregating the information of multiple EVs, and then completing the subsequent related
resource scheduling.

(3) Distribution network: The distribution network is composed of overhead lines, cables, towers,
distribution transformers, isolation switch, reactive power compensators and some ancillary facilities.
It plays an important role in the distribution of power in the power grid and distributes the electric
energy to the electric vehicles in the vehicle to grid network.

(4) Charging station & charging parking lot: Charging stations and charging parking lots provide
electric vehicles with supplementary electric energy, in which there are many charging piles. The input
end is directly connected with the AC grid, and the output end is equipped with a charging plug for
charging electric vehicles.

(5) Electric vehicle: Electric vehicles are powered by on-board power and are equipped with
on-board battery packs. The batteries of a large number of EVs form a distributed, mobile power
warehouse that can be used to help the grid “fill the valley” (electric vehicles charge at night) during
down periods and “cut the peak” (electric cars discharge during the day) during peak periods.

The vehicle-to-grid system brings great economic benefits, social benefits and ecological benefits
to people, meanwhile, it also has the potential to leak users’ privacy. In order to meet the requirements
of power load adjustment (usually several million kilowatt hours), the vehicle to grid system must
ensure that a sufficient number of EVs are provided as energy storage resources within a given period
of time. Therefore, as shown in Figure 1, a certain number of EVs must be aggregated through an
aggregator, and monitor the related information of the EVs, such as the location of EVs, the state of
charge of the batteries, the expected departure time, and the real-time capacity of chargeable and
dischargeable, etc. so that the control center can optimally schedule the load requirements of the grid
on the basis of the EVs charge and discharge.

At the same time, the aggregators transfer the collected information to the control center. At this
point, if the original location data is uploaded, the control center can trace the user’s whereabouts and
analyze the user’s privacy information. In this paper, we mainly discuss the issue of privacy protection
of user location in vehicle-to-grid networks in this situation.
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4. Location Privacy Protection Algorithm with Differential Privacy

According to the characteristics of EV location data in V2G network of smart grid and the shortage
of existing spatial decomposition algorithms, we propose a spatial data decomposition algorithm with
privacy protection in this chapter. Based on this, we propose a location privacy protection model of
EVs in the V2G network.

4.1. Data Preprocessing with Differential Privacy

Existing methods of spatial decomposition often deal with small-scale spatial data. However,
spatial data in V2G are usually large-scale and skewed. This often results in tree-based decomposition
methods that cannot be implemented or the availability of final query or analysis results are very low.
Therefore, how to decompose large-scale and skewed spatial data is a very big challenge. Therefore,
we take as many samples as possible with the sampling technique that satisfies the differential privacy
and spatially partition the samples for solving the problem.

4.1.1. Differential Privacy

Differential privacy means that one queries two different data sets with only one record different;
if query results are almost identical, the attacker cannot obtain the data of the individual by analyzing
the query results. This can achieve privacy protection. Assuming there are two datasets with only
one record different, the ratio of probabilities that query results on both datasets is close to 1, which
achieves differential privacy protection.

Definition 1. An algorithm A satisfies ε-differential privacy if, for any two neighboring datasets D and D’ and
for any possible output O of A, where Pr[•] denotes the probability of an event.

ln
(

Pr(A(D) = O)

Pr[A(D′) = O]

)
≤ ε (1)

Definition 2. Let f be a function that maps a dataset D into a vector of real numbers. The global sensitivity of f
is defined as

S( f ) = max
D,D′
‖ f (D)− f

(
D′
)
‖1 (2)

where D and D’ are any two neighboring datasets, and ‖ · ‖1 denotes the L1 norm.

Lemma 1. Let A1, . . . , Ak be k algorithms, such that Ai satisfies εi-differential privacy (i∈[1, k]). Then, for the

same dataset, the sequential composition (A1, . . . , Ak) satisfies (
k
∑

i=1
εi)-differential privacy.

Lemma 2. Let A1, . . . , Ak be k algorithms, such that Ai satisfies εi-differential privacy (i∈[1, k]). Then, for the
different datasets, the sequential composition (A1, . . . , Ak) satisfies (max εi)-differential privacy.

Theorem 1. Let A satisfies ε-differential on dataset D. If take sample from D to get D’ with probability γ,
algorithm A satisfies ln(1 + γ(eε − 1))-differential on dataset D’.

Theorem 2. An algorithm A satisfies ε-differential privacy if,

A(D, di) =

{
di :

∣∣∣∣Pr[di ∈ Ω] ∝ exp
(

εu(D, di)

2∆u

)}
(3)

where ∆u is the global sensitivity of u(D, di), which is a scoring function, di is the output from the
output domain Ω.
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4.1.2. Bernoulli Random Sampling Algorithm Based on Differential Privacy

For the problem of large-scale spatial data, our proposed decomposition method tries to
extract sufficient data as the decomposition data under the conditions of differential privacy.
The Bernoulli random sampling algorithm that satisfies differential privacy will be introduced in
detail as Algorithm 1.

Algorithm 1 Random Sampling Algorithm with Differential Privacy (D, ε)

1 Obtain spatial data sample D̂ =
(

d̂1, d̂2, . . . , d̂m

)
after implementing multiple Bernoulli experiments with

probability γ;
2 Calculate εγ = ln(γ + eε − 1)− ln γ on the basis of Theorem 1.

Firstly, we determine the sampling probability γ, and then make the Bernoulli experiment with γ

on D. If the experiment is successful, obtain the spatial sample, otherwise, abandon the sample. Finally,
calculate the privacy cost εγ required for the entire space decomposition. The key of the process is
how to make the sampling process to meet the differential privacy. Since εγ = ln(γ + eε − 1) − lnγ,

we bring εγ into ln(1 + γ(eε − 1)), and obtain ln
(

1 + γ
(

eln (γ+eε−1)−ln γ − 1
))

= ε. So we can prove
the proposed sampling process satisfies ε-differential privacy.

4.2. Spatial Decomposition Algorithm BQ-Tree

By studying the existing spatial decomposition algorithms, we know that the existing algorithms
do not work well in dealing with millions of spatial data. In this part, we combine the proposed random
sampling algorithm with the quadtree algorithm, and propose a new spatial decomposition algorithm
BQ-tree. It can overcome the problem that the traditional quadtree algorithm cannot deal with a huge
number of spatial data. We also prove that the BQ-tree algorithm satisfies the differential privacy.

4.2.1. The Quadtree Algorithm

The specific algorithm of quadtree is as Algorithm 2. It has four input parameters, which are:
(1) a dataset D of spatial data distributed in a multidimensional domain Ω, (2) the Laplacian noise
of size ε added to the tree, (3) the threshold θ of splitting node in the tree, (4) the threshold h of the
maximum height of the tree. The algorithm returns a quadtree, each node contains two parts of
information, namely the sub-domain corresponding to v, and the value of the number of spatial data
in the sub-domain which is added noise. At the same time, the depth of v is defined as the maximum
distance between v and the root node. It is recorded as depth (v).

4.2.2. The BQ-Tree Algorithm

Compared with the traditional quadtree algorithm, the proposed algorithm first initializes the
quadtree based on the sampled dataset, and calculates the size of added noise. BQ-tree specific
establishment process is as Algorithm 2:

Algorithm 2 BQ-Tree (D, ε, θ, h)

1 Compute εγ and D̂ on basis of Algorithm 1;
2 initialize a quadtree T with a root node v1 on dataset D̂, and mark v1 as unvisited;
3 while there exists an unvisited node v do
4 mark v as visited;
5 compute the number c(v) of data points that are contained in dom(v);
6 compute a noisy version of c(v): ĉ(v) = c(v) + Lap(ε);
7 if ĉ(v) > θ and depth(v) < h− 1 then
8 split v, and add its children to T;
9 mark the children of v as unvisited;
10 return T



Energies 2018, 11, 2625 8 of 17

The algorithm starts by computing the privacy cost εγ and sample dataset D̂ by using Algorithm
1 proposed in Section 4.1.2. Next, the quadtree is initialized on D̂ and the root node is set to unvisited.
The subsequent part of the algorithm consists of a number of iterations. In each iteration, we examine
if there are unvisited nodes in the tree. If such v exists, we mark the nodes as visited state, calculate
the number of space points, and add εγ noise to the number. After that, we split v if the following
two conditions simultaneously hold. One of the conditions is that the number ĉ(v) is greater than the
threshold of decomposition θ and the other is the height of the tree is less than the height threshold h
of the tree. If both of the above conditions are met, then we generate v’s children and insert them into
T as unvisited nodes. Finally, when all node have been visited, we return the quadtree.

According to Section 4.1.2, we know that the sampling process satisfies the differential privacy.
To prove that the overall BQ-tree algorithm satisfies the differential privacy, we only need to prove that
step 6 in Algorithm 2 satisfies the differential privacy. Step 6 adds a noise of Lap(εγ) size to each node
because the count up to h nodes is affected when adding or removing a data point in D. Combining
the differential privacy Lemma 1 and Lemma 2, Step 6 satisfies εγ-differential privacy. Then, according
to Theorem 1, the proposed algorithm satisfies ε-difference privacy.

4.3. Spatial Decomposition Algorithm BQ-Tss

The existing tree-based spatial decomposition methods usually adopt tree depth to control
Laplacian noise. However, it is very difficult to set a proper tree depth. If artificially directly adjust the
depth of the tree, the adjustment process will violate the differential privacy and thus the sensitive
information in the spatial data cannot be protected. If we can add noise for the nodes in the tree
without depending on the depth of the tree to control the noise, this will control the added noise better.
In this section, we use sparse vector techniques to set the decomposition conditions of the nodes in the
tree to solve the problem of tree-depth dependent noise control.

4.3.1. Sparse Vector Technology

Sparse vector technique is commonly used to respond to a limited number of count queries
greater than a certain threshold. The technique consists of two main steps: One is to find a suitable
threshold θ and obtain θ̃ after adding noise; the other one is to obtain c̃(v) after adding noise to each
query result c(v) and compare it with the noise threshold. One of comparison results is to output c̃(v)
if = c(v) + Lap

(
2
ε1

)
≥ θ̂, otherwise an identifier ⊥ is output. The specific application of sparse vector

technology in our work is shown as Equation (4):

ĉ(v) =

{
c(v) + Lap

(
2
ε1

)
i f c(v) + Lap

(
2
ε1

)
≥ θ̂

⊥others
(4)

4.3.2. The BQ-Tss Algorithm

In order to overcome the shortcomings of the original algorithm, which control noise dependent
on the depth of tree, we combine the sparse vector technique with the algorithm shown in Section 4.2.2,
and propose a new spatial decomposition algorithm BQ-Tss. The specific algorithm is shown as
Algorithm 3.
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Algorithm 3 BQ-Tss (D, ε, θ)

1 Compute εγ and D̂ on basis of Algorithm 1;
2 initialize a quadtree T with a root node v1 on dataset D̂, and mark v1 as unvisited;
3 while there exists an unvisited node v do
4 mark v as visited;
5 compute the number c(v) of data points that are contained in dom(v);

6 compute noise threshold θ̂ = θ + Lap
(

2
εγ

)
;

7 compute a noisy version of c(v): ĉ(v) = c(v) + Lap
(

2
εγ

)
;

8 if ĉ(v) > θ̂ and v is not the leaf then
9 split v, and add its children to T;
10 mark the children of v as unvisited;
11 return T

In the vehicle-to-grid network, there exists large-scale skewed data, which most existing spatial
decomposition algorithms cannot handle. In BQ-Tss, we use the privacy-based random sampling
algorithm, which is proposed in Section 4.1, to solve this problem. We use random sampling to obtain
enough electric vehicles’ position data from raw data, which represents the overall data distribution.
The selected data can be used to replace raw data. Then, we perform spatial decomposition on the
selected data.

Tree-based spatial decomposition algorithms usually control the Laplace noise by the depth of
the tree, which is very difficult to determine. In BQ-Tss, we use a different way to control the size of
noise. The method is based on sparse vector technology. When adding noise to the nodes of tree, it can
provide the appropriate size of noise without depending on the depth of the tree. Therefore, compared
with other spatial segmentation algorithms, BQ-Tss can handle large-scale skew data in V2G, and it can
ensure the addition of appropriate scale noise, while realizing the protection of location data privacy.

According to Algorithm 3, the BQ-Tree satisfies the differential privacy. The newly proposed
algorithm uses extra privacy cost only on the SVT step. Therefore, BQ-Tss can be inferred to satisfy
ε-differential privacy as long as it is proved that SVT satisfies εγ-differential privacy.

In BQ-Tss algorithm, we use SVT technology to determine whether the tree node should be
divided, and this seems likely to judge yes or no. Therefore, to prove conveniently, we use the binary
vector V = 〈x1, x2, . . . , xt〉 to record whether the nodes should be divided. If ĉ(v) > θ̂, then xi = 1, that
represents node vi is divided; otherwise xi = 0, which represents node vi is not divided and vi is a leaf
node. Given the two adjacent spatial datasets D and D’, Pr1(v) and Pr2(v) denote the probabilities of
SVT acting on D and D’ with the output of V, respectively. Let x<i denote the first (i− 1) responses in
vector V. We can conclude the distribution of ĉ(vi) and θ̂ satisfies Laplace distribution based on the
Equation (5) shown as follows:

Pr1(v)
Pr2(v)

=

t
∏
i=1

Pr1
(

xi = 1or0
∣∣x<i )

t
∏
i=1

Pr2
(

xi = 1or0
∣∣x<i

) = ∏
Pr1
(
xi = 1

∣∣x<i )
Pr2
(
xi = 1

∣∣x<i
) ×∏

Pr1
(
xi = 0

∣∣x<i )
Pr2
(
xi = 0

∣∣x<i
) (5)

We suppose that x is a decomposition threshold on D, let Hi(x) denote the probability of xi = 1 on
D, and H′i (x) denote the probability of xi = 1 on D′. Therefore, Hi(x) can be described as the following
Equation (6), Lap(λ) represents the independent noise generated by the Laplace distribution.

Hi(x) = Pr
(

xi = 1
∣∣∣x<i

)
= Pr

(
ĉ(vi) ≥ x

∣∣∣x<i
)
= Pr

(
Lap(λ) + c(vi) ≥ x

∣∣∣x<i
)

(6)
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Based on the Laplace distribution, λ = 2
ε1

and f (y : u, λ) = 1
2λ exp

(
− |y−u|

λ

)
, Hi(x) can be

represented as Equation (7):

Hi(x) =
∫ ∞

x
f
(

y : c(vi),
2
ε1

)
dy (7)

According to the global sensitivity Definition 2, the sensitivity of the count c(v) is 1, that is
∆ = 1. Let c(v) and c′(v) denote the counts of nodes vi on D and D′ respectively, and c′(v) = c(v) + 1.
Therefore, µ = λ + 1. Hi(x) can be expressed as the following Equation (8):

Hi(x) =
∫ ∞

x+1
f
(

u : c(vi) + 1,
2
ε1

)
dµ =

∫ ∞

x+1
f
(

u : c′(vi) + 1,
2
ε1

)
dµ = H′ i(x + 1) (8)

And ∏ Pr1
(

xi = 1
∣∣x<i ) can be expressed as the following Equation (9):

∏ Pr1
(

xi = 1
∣∣x<i )

=
∫ ∞
−∞ Pr(x)∏ Hi(x)dx

=
∫ ∞
−∞ Pr(x)∏ H′i (x + 1)dx

≤ exp
( ε1

2
)∫ ∞
−∞ Pr(x + 1)∏ H′ i(x + 1)dx

= exp
( ε1

2
)∫ ∞
−∞ Pr(x)∏ H′ i(x)dx

= exp
( ε1

2
)
∏ Pr2

(
xi = 1

∣∣x<i )
(9)

Similarly, we can obtain Equation (10) as follows:

∏ Pr1

(
xi = 0

∣∣∣x<i
)
≤ exp

( ε1

2

)
∏ Pr2

(
xi = 0

∣∣∣x<i
)

(10)

And the Equation (11) as follows:

Pr1(V)

Pr2(V)
≤ exp(ε1) (11)

So, we can obtain Equation (12) as follows:

Pr1(V) ≤ exp(ε1)× Pr2(V) (12)

As we can see from the Definition 1 of differential privacy and Equation (12), SVT operation
satisfies εγ-differential privacy. Therefore, BQ-Tss satisfies ε-difference privacy.

4.4. Location Protection Model in V2G Network

In the V2G network, a new network equipment is added between the electric vehicle and the smart
grid control system, commonly referred to as an aggregator. V2G manager through the aggregator to
monitor the location of the EV, charging status and other related information so that the manager can
optimally schedule EVs’ charge and discharge according to the load requirements of the grid. Each
aggregator’s connected charging equipment and electric vehicles can compose a small independent
network. Therefore, if we can ensure the privacy of electric vehicles in each independent network is
secure, the location privacy of electric vehicles in the whole V2G network can be guaranteed. In this
section, we apply the distributed differential privacy technology to the location privacy protection
algorithm proposed in Section 4.3. Combining with the specific V2G network structure, we propose
a EVs location privacy protection model with differential privacy in the V2G network.
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4.4.1. Distributed Differential Privacy

Theorem 3. Let ε ∈ (0, 1) be arbitrary. For c2 > 2 ln
(

1.25
δ

)
, the gaussian mechanism with parameter δ ≥ c∆2 f

ε

is (ε, δ)-differentially private.

Assuming that all parties in a distributed structure are honest, if each party generates gaussian
distribution noise with a standard deviation of δi =

δ√
t

and t represents the number of participants
who generate the noise, then the overall standard deviation of noise is σ, that is to say, the distributed
structure satisfies the differential privacy of (ε, δ) as a whole.

4.4.2. EVs’ Location Privacy Protection Algorithm with Differential Privacy

In the V2G network architecture proposed above, we assume that each aggregator is trustworthy.
If we assign a privacy budget of δi =

δ√
t

to each aggregator and t represents the number of aggregators,
the overall V2G network location protection algorithm satisfies the differential privacy of (ε, δ).

We assign the appropriate privacy budget to each aggregator network based on distributed
differential privacy. Combining the BQ-Tss algorithm proposed in Section 4.3, we propose EVs
location protection algorithm with differential privacy in V2G network. The specific location protection
algorithm is shown in Figure 2.
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5. Experimental Results and Analysis

Our experiments were conducted on an 8-core Intel i7-3612 CPU (2.10 GHz), 8G RAM, Win7
system platform and all algorithms were implemented in Python. The experiment used collected 1500
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public charging posts in Beijing and the charging position of 100,000 electric vehicles in a certain week,
with a total of 600,000 messages.

The relative error (RE) is used to measure the data availability of quardtree, BQ-tree, DP-tree and
BQ-Tss algorithms. The relative error is calculated using Equation (13):

RE
(

Q̃(D)
)
=

∣∣∣Q̃(D)−Q(D)
∣∣∣

max{Q(D), ∆} (13)

where Q(D) denotes the true range query result on D and Q̃(D) denotes the noise result of the range
query on D. ∆ is a smoothing factor whose value is 0.1% of the experimental dataset size.

In this experiment, we set Bernoulli random sampling probability as 1% and privacy budget
parameters ε values of 0.1, 0.3, 0.5, 0.7, 1.0 and 1.2. When ε is 0.5, we extract 16,000 position information
from the data set. The overall position maps of the electric vehicle, before and after noise addition, are
shown in Figure 3a,b, respectively. The local position maps are shown in Figure 4a,b, respectively.
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Figure 4. The local position maps of EVs. (a) before noise addition; (b) after noise addition.

We can see from Figure 3a,b that, after adding noise, the change of the overall position distribution
is slight. It indicates that the position data after noise addition is relatively accurate. If we use position
data in Figure 3b instead of that in Figure 3a, the query of data can still achieve high accuracy. To better
illustrate this point, we have partially enlarged the overall image to generate Figure 4a,b. In Figure 4a,b,
we can clearly see that each position coordinate has a slight change after adding noise. Applying the
spatial decomposition algorithm, we divide the small area into four parts. In each part, the number
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of electric vehicles in Figure 4b is approximately equal to the number in Figure 4a. Therefore, when
querying the position data in Figure 3b, the accuracy remains very high.

We set the range of query Q to cover 1%, 3%, 5%, 7%, 10% and 12% of the data set respectively,
and 5000 queries are randomly generated within each query range.

We compare our BQ-Tss algorithm with quardtree, BQ-tree, and DP-tree algorithms. When the
fixed-range query is fixed, we obtain the relative error of four different algorithms by changing the
privacy budget ε value, and then compare the data availability of the each algorithm.

The figure above shows the query range results of EVs location dataset. As can be seen from
Figures 5–7, when the query range is fixed to 1%, 5%, 10%, ε changes from 0.1 to 1.2, the accuracy of
the proposed algorithm is almost three times that of the BQ-tree algorithm, and is nearly 10 times
more than the DP-tree and quardtree algorithms. Especially when the query range is 1%, it is nearly
13 times more than the quardtree and DP-tree algorithm. From this we can conclude that as the range
of query increases, the query accuracy of the algorithm is improved. When the query range is fixed,
the query accuracy of the algorithm decreases with the increasing of the privacy budget. Under the
same condition, the accuracy of our proposed algorithm is obviously better than that of quardtree
and DP-tree, and is also superior to BQ-tree. When the query range is fixed at 10%, the algorithm can
achieve an accuracy of 99.97%, which shows that the proposed algorithm is suitable for a big data
environment and can guarantee the data availability under the condition of protecting the privacy of
the location data.
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Figure 7. Query range Q = 10%.

Figures 8–10 shows that when the query range is changed from 1% to 12% and the ε is fixed to 0.1,
0.5, and 1.0 respectively, the query accuracy of BQ-Tss is nearly twice that of BQ-tree, which is nearly
12 times that of the quardtree and DP-tree algorithm. In addition, as shown in Figures 6–8, the BQ-tree
algorithm is also superior to quardtree and DP-tree. From this, we can conclude that when the privacy
budget is fixed, the accuracy of the algorithm decreases as the query scope increases. The accuracy
of the proposed algorithm is obviously superior to quardtree, DP-tree and BQ-tree when the privacy
budget is same. When the privacy budget is fixed at 1.0, the accuracy rate of 99.93% can be achieved,
which shows that the sampling technique we use can avoid the skew problem of data distribution well.
We also avoid multi-level decompose privacy cost by using SVT technology, which is obviously better
than other similar algorithms. This can also prove, even in the case of unbalanced data distribution,
that our method can still achieve high query accuracy.
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Figure 8. Privacy budget ε = 0.1.
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Figure 9. Privacy budget ε = 0.5.
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Figure 10. Privacy budget ε = 1.0.

6. Conclusions

The privacy-protected spatial decomposition algorithm for V2G networks needs to be able
to handle large-scale skewed data in V2G, and add the appropriate noise to nodes in the tree
without relying on the depth of the tree. In order to meet these requirements, we propose a spatial
decomposition algorithm called BQ-Tss. Compared with other existing spatial decomposition
algorithms, BQ-Tss algorithm achieves higher query accuracy. When adding the same noise, the error
rate of BQ-tree is twice that of BQ-Tss, and quardTree and DP-tree are 10 times that of BQ-Tss. Therefore,
our proposed algorithm can deal with large-scale skewed data better and get a higher precision query
result. Under the slight noise of different scales, the accuracy of our query can be kept at around 99.9%.
The proposed algorithm is based on the quad-tree spatial segmentation algorithm, including a random
sampling algorithm with privacy protection and a method for segmenting nodes in a tree based on
a sparse vector technique. Our proposed algorithm can overcome the shortcomings of the existing
spatial segmentation algorithm and is more suitable for V2G networks. Therefore, our proposed
algorithm can guarantee the normal control of the V2G network by the grid control center, while
ensuring the privacy of the location data.
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