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Abstract: This paper presents three phase current reconstruction methods for a three-level neutral
point clamped inverter (NPCI) by measuring the voltage of a shunt resistor placed in the neutral point
of the inverter. In order to accurately acquire the phase currents from the shunt resister, the dwell time
of the active voltage vectors need to exceed the minimum time. On the other hand, if the time of active
voltage is shorter than the minimum time, the current measurement becomes impossible. In this
paper, unmeasurable regions for current are classified into three areas. Area 1 is a region in which both
phase currents can be measure. Therefore, it is not necessary to restore the current. In Area 2, only one
phase current can be measured. Thus, an estimation or restoration method is needed to measure
another phase current. In this paper, the current estimation method using an electrical model of the
motor is proposed. Area 3 is the region in which both phase currents can not be measured. In this
case, it is necessary to move the voltage vector to the current measurable area by injecting the voltage.
In this paper, Area 3 is divided into 36 sectors to inject optimal voltage. The proposed methods have
the advantages of high current measurement accuracy and low THD (total harmonic distortion).
The effectiveness of the proposed methods are verified through experimental results.

Keywords: alternating current (AC) motor drive; current estimation; current reconstruction method;
current unmeasurable areas; total harmonic distortion (THD); single shunt resistor; space vector pulse
width modulation (SVPWM); shift method; minimum voltage injection (MVI) method; three-level
neutral point clamped inverter (NPCI)

1. Introduction

Two-level inverters are used in most home appliances, such as washing machines, refrigerators,
and air conditioners, due to their simple structure, and high reliability and performance.
However, in order to overcome the limitations of the efficiency and harmonics of the two-level
inverter, three-level inverters have been recently investigated. The three-level neutral point clamped
inverter (NPCI) has a structure characteristic of having a neutral point in the direct current (DC)
stage, and thus has excellent electro magnetic interference (EMI) and electro magnetic compatibility
(EMC) characteristics, due to a low voltage variation rate when switching [1–4]. Unlike a two-level
inverter, each arm of a three-level NPCI consists of four switches and two clamping diodes, as shown
in Figure 1. When the DC-link voltage is Vdc, the voltage of each capacitor is Vdc/2. The neutral point is
connected to each phase output node by the clamp diodes and switches. Due to this structural feature,
the three-level NPCI can output either Vdc/2 or −Vdc/2 by turning on the two switches located in the
upper or lower side of a phase. When the switches of Sx3 and Sx4 are turned on, the node voltage of

Energies 2018, 11, 2616; doi:10.3390/en11102616 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-7228-301X
http://dx.doi.org/10.3390/en11102616
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/11/10/2616?type=check_update&version=2


Energies 2018, 11, 2616 2 of 18

the x phase is 0 due to the connection with the neutral point through the diodes and switches, where x
represents A, B, and C.
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Figure 1. Three-level neutral point clamped (NPC) inverter. 

For controlling the AC motor, the controller of the inverter requires the values of the three phase 
currents, which can be acquired through current sensors or a shunt resistor. A phase current sensing 
inverter (PCSI), as shown in Figure 2a, is a typical three-phase voltage source inverter with two phase 
current sensors. It requires at least two current sensors and sensing circuits, which raise the cost of 
the appliances [5]. For this reason, a DC link shunt resistor  can be used to measure the phase 
current, as shown in Figure 2b,c. A multi-shunt inverter (MSI) obtains the phase current from the 
shunt resistor located in the neutral and bottom of the DC link [6]. Measurement of the currents 
through the shunt resistors is possible when the current flows into the shunt resistor. Since the shunt 
resistors are located between the neutral and bottom of the DC link, it is possible to measure the 
phase current only if the active voltage vectors are combined with “O” or “N” switching states. 
However, although the active vectors are combined with “O” or “N” switching states, the phase 
current cannot be measured due to the short dwell time of the active vectors. The portion in the space 
vector diagram where the dwell time of the active vectors is not large enough to measure the current 
is called the current-unmeasurable area (CUA) [7–24]. A shunt resistor at the neutral point of the 
three-level NPCI can be used to measure the phase current, as shown in Figure 2c. This is similar to 
MSI, but a phase current is only obtainable when applying the state of “O” in the switching 
combination of the effective voltage vector. NPCI is effective in terms of volume and cost as compared 
to PCSI and MSI. It also has one current sensing circuit, which reduces the ripples caused by current 
sensor offset and scaling errors [6,7]. However, it has a limited time to sample the phase current in 
the shunt resistor over one period compared to the PCSI and MSI, so that the unmeasurable areas are 
widened in the output voltage hexagon. In order to overcome the limitations, some researchers have 
been interested in NPCI topology for phase current reconstruction. 
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Figure 2. Measurement methods of phase current. (a) Conventional phase current sensing inverter 
(PCSI); (b) multi-shunt inverter (MSI); (c) neutral point clamped inverter (NPCI). 

Figure 1. Three-level neutral point clamped (NPC) inverter.

For controlling the AC motor, the controller of the inverter requires the values of the three phase
currents, which can be acquired through current sensors or a shunt resistor. A phase current sensing
inverter (PCSI), as shown in Figure 2a, is a typical three-phase voltage source inverter with two phase
current sensors. It requires at least two current sensors and sensing circuits, which raise the cost of
the appliances [5]. For this reason, a DC link shunt resistor Rshunt can be used to measure the phase
current, as shown in Figure 2b,c. A multi-shunt inverter (MSI) obtains the phase current from the
shunt resistor located in the neutral and bottom of the DC link [6]. Measurement of the currents
through the shunt resistors is possible when the current flows into the shunt resistor. Since the
shunt resistors are located between the neutral and bottom of the DC link, it is possible to measure
the phase current only if the active voltage vectors are combined with “O” or “N” switching states.
However, although the active vectors are combined with “O” or “N” switching states, the phase
current cannot be measured due to the short dwell time of the active vectors. The portion in the
space vector diagram where the dwell time of the active vectors is not large enough to measure the
current is called the current-unmeasurable area (CUA) [7–24]. A shunt resistor at the neutral point
of the three-level NPCI can be used to measure the phase current, as shown in Figure 2c. This is
similar to MSI, but a phase current is only obtainable when applying the state of “O” in the switching
combination of the effective voltage vector. NPCI is effective in terms of volume and cost as compared
to PCSI and MSI. It also has one current sensing circuit, which reduces the ripples caused by current
sensor offset and scaling errors [6,7]. However, it has a limited time to sample the phase current in
the shunt resistor over one period compared to the PCSI and MSI, so that the unmeasurable areas are
widened in the output voltage hexagon. In order to overcome the limitations, some researchers have
been interested in NPCI topology for phase current reconstruction.
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(PCSI); (b) multi-shunt inverter (MSI); (c) neutral point clamped inverter (NPCI). 
Figure 2. Measurement methods of phase current. (a) Conventional phase current sensing
inverter (PCSI); (b) multi-shunt inverter (MSI); (c) neutral point clamped inverter (NPCI).
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Previous research has established the effective voltage time by shifting the pulse width modulation
(PWM) or injecting the voltage to restore the current [6–24]. However, these methods cause
a high total harmonic distortion (THD) by injecting relatively large voltages. In [6], the minimum
voltage injection (MVI) method minimizes voltage distortion and operating noise through THD
reduction, but this method does not completely reconstruct the phase current at very high modulation
index (MI). In addition, the PWM shifting method of [7] also generates harmonics due to asymmetric
voltage modulation.

In this paper, the phase current unmeasurable region is classified into three areas, and the current
reconstruction methods are proposed according to each area. First, two phase currents can be measured
in Area 1, and the normal operation is executed in this area. On the other hand, only 1 phase current
can be acquired in Area 2. In this case, the other phase current can be estimated by combining the
q-axis current reference obtained from the speed controller and the electrical model of the motor [10].
Lastly, Area 3 is defined as an area where no current can be measured. For measuring the current in
this area, the optimal voltage injection method is proposed [12]. To realize this, the hexagon of SVPWM
is divided into 36 sectors, and the optimum injection voltage according to the sector is calculated.
In addition, the current accuracy and THD are compared with the conventional method [6] in various
MI conditions. The proposed method is verified through experimental results.

2. Acquiring Phase Current from Neutral Shunt Resistor

The operation of each three-level NPC inverter phase leg can be represented by a combination
of the three switching states “P”, “O”, and “N”. According to these switching states, the inverter
has 27 possible combinations of switching states consisting of 24 effective voltage vectors and 3 zero
voltage vectors. Because the NPCI has the shunt resistor at the neutral point, the phase current can
be acquired only when the effective voltage vector includes the “O” switching state [6]. For example,
the A phase current can be measured when the effective vector “O”, “N”, and “N” is applied to the
inverter, as shown in Figure 3.

The 27 switching states of the neutral point clamped (NPC) inverter and the respective measurable
phase currents are listed in Table 1. In addition, Figure 4 shows the switching vector in the spatial
coordinates of the hexagon. Figure 4 and Table 1 show that the current cannot be measured through
the neutral-point shunt resistor during the zero vector (V0) and space vectors represented by V1 to V6.
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Table 1. Switching states and acquiring the phase current from the shunt resistor.

Space Vector Switching State Acquiring Current
from the Shunt Resistor Vector Classification

V0 [PPP], [OOO], [NNN] X Zero vector
P-type N-type P-type N-type

V13 [POO] [ONN] −ia ia

Effective vector
(Small vector)

V14 [PPO] [OON] ic −ic
V15 [OPO] [NON] −ib ib
V16 [OPP] [NOO] ia −ia
V17 [OOP] [NNO] −ic ic
V18 [POP] [ONO] ib −ib

V7, V8 [PON], [OPN] ib, ia Effective vector
(Medium vector)

V9, V10 [NPO], [NOP] ic, ib
V11, V12 [ONP], [PNO] ia, ic
V1, V2 [PNN], [PPN] X, X Effective vector

(Large vector)V3, V4 [NPN], [NPP] X, X
V5, V6 [NNP], [PNP] X, X

In one period of the three-level SVPWM, the sampling point and measurable phase current are
expressed as shown in Figure 5. In this case, the “a” phase current can be measured in the “ONN”
switching state and the “c” phase current can be measured in the “OON” switching state. The other
phase current is calculated using Equation (1):

ia + ib + ic = 0 (1)
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3. Current Unmeasurable Areas

The sampling time for measuring the accurate current should have minimum delay from the
point of switching time. This is to avoid the current ripple component in the current damping process
by switching, as shown in Figure 6a. The minimum time Tmin is determined using Equation (2) [9]:

Tmin = Tdead + Tsettling + Tad (2)

where Tdead is the dead time to avoid arm-short of the inverter, Tsettling is the settling time of the
neutral-point current, and Tad is the sample and hold time of the A/D converter. Thus, in order
to acquire the phase current properly, the switching time should be greater than Tmin. Figure 6b
shows switching state when the voltage modulation index is changed from Figure 5. In the case of
“ONN”, since the switching time Ta in the “O” state is larger than Tmin, accurate “a” phase current can
be obtained. However, in the case of “OON”, since the switching time Tc of the “O” state is shorter
than Tmin, it is impossible to obtain current on the “c” phase in this state. The areas where the effective
voltage dwell time is less than Tmin are defined as CUAs (current unmeasurable areas). The CUAs in
sector 1 of the three level SVPWM hexagon are shown in Figure 7a. In Figure 7a, Area 1 is a region
where all phase currents are measurable, Area 2 is a region where only one phase current is measurable,
and Area 3 is defined as a current unmeasurable region. The CUAs in all areas of the SVPWM are
shown in Figure 7b.
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In addition, the amplitude of the CUAs ∆V is obtained by Equation (3) [10].

Tmin :
Ts

2
= ∆V :

Vdc√
3

∆V =
2Tmin√

3Ts
Vdc (3)

where Vdc is the voltage of the DC link capacitor.
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Sector 1 of the output voltage hexagon is divided into four regions composed of effective voltage
vectors for the reference voltage vector Vre f duration, as shown in Figure 8. When the reference voltage
vector is located as shown in Figure 8, the effective voltage vector and the duration time are expressed
as follows:

V13Ta + V7Tb + V14Tc = Vre f Ts

Ta + Tb + Tc = Ts (4)

where Ta, Tb, and Tc are the duration time of V13, V7, and V14, respectively.
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From Equation (4), the duration time of the effective voltage vectors Ta, Tb, and Tc in each region
can be obtained through the equations given in Table 2. When Ta, Tb, and Tc are shorter than Tmin,
phase current cannot be obtained from the shunt resistor accurately. Therefore, it is a CUA.

Table 2. Dwell times of the voltage vector according to the regions.
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(

π
3 − θ

)
) Ts(2− 2

√
3 Vre f

Vdc
sin
(
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4. Conventional Method of Phase Current Reconstruction

4.1. Modified Voltage Modulation Method

The method in [7] with the alternative switching pattern is different from the classical SVPWM.
The zero vector is replaced with a pair of effective voltage vectors in order to increase the duration
time of the effective voltage vector, which does not ensure Tmin. As a result, only one phase current
measurable region (Area 2) can be compensated. If the reference voltage vector Vre f is in Area 2,
as shown in Figure 9a, phase C current is unmeasurable and the zero vector [OOO] is replaced with
a pair of effective voltage vectors V14 [OON] and V17 [NNO], as shown in Figure 10. Therefore, only
the current of one phase can be reconstructed during one PWM period due to the variation of the
switching time. However, if the reference voltage vector Vre f is in Area 3, as shown in Figure 9b,
it needs two switching cycles. Therefore, the THD of phase current is high, because a pair of vectors,
which are located at opposite positions to each other, are used to make the reference voltage.
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(Area 2).

4.2. Minimum Voltage Injection (MVI) Method

In this conventional method [6], the minimum voltage injection method is applied to measure the
phase current, as shown in Figure 11. Figure 11a shows the reference voltage vector Vre f in Area 3,
where two phase currents cannot be obtained. In this case, a constant voltage is added to the reference
voltage vector to reconstruct the phase current. The reference voltage moved to measurable Area 1
is defined as Vm. The compensation voltage vector Vc is applied by subtracting the constant voltage
which has the same magnitude as the added value to the command voltage vector. This compensation
method is shown for one period of the switching pattern in Figure 11b. In this case, both “ONN” and
“OON” are less than the minimum time Tmin. So in a half period of modulation, the voltage Vm for
the reconstruction is injected, and in the other half period, the compensation voltage Vc is injected to
cancel the effect of the injected voltage.
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switching patterns.

However, it is difficult to reconstruct the phase current using the MVI method in the high MI region
shown in Figure 12. At this time, the compensation voltage Vc exceeds the linear modulation area.
Therefore, it is impossible to reconstruct the phase current near the outermost edge of the hexagon.
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5. Proposed Method of Phase Current Reconstruction

5.1. Based Method for Current Reconstruction in Area 2

In order to control the constant speed and constant torque of an AC motor, a current controller
is essential. In general, a proportional integral (PI) controller is used on the synchronous reference
frame of d–q axis [10]. Figure 13 shows the block diagram of the synchronous PI controller, and the
electrical model of the motor system. Where Ra, La, Kp, and Ki mean the stator resistance, stator
inductance, proportional gain, and integral gain, respectively. The proportional and integral gains of
the PI controller are calculated using Equation (5):

Kp = Laωcc , Ki = Raωcc (5)

where La is the stator inductance, Ra is the stator resistance, and ωcc is the bandwidth of the PI regulator.
Then, the closed-loop transfer function Gc(s) of the block diagram is given by Equation (6):

Gc(s) =
ie
dq(s)

ie∗
dq(s)

=
G0(s)

1 + G0(s)
=

ωcc
s

1 + ωcc
s

=
ωcc

1 + ωcc
(6)

According to Equations (5) and (6), the combination of the PI controller and model of the motor
is equivalent to a first low-pass filter whose cutoff frequency is ωcc. In this case, the real d–q axis
current can be estimated using the current reference and low pass filter, as shown in Figures 13 and 14.
Finally, the estimated three phase currents (îabc) can be obtained from reverse transformation of the
estimated d–q axis currents (îdq

e). This estimated current is used to replace the unmeasurable current
when the voltage command lies inside Area 2, where only one phase current is acquired. This current
estimation method does not need PWM shift or voltage injection for current reconstruction.
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5.2. Proposed Method for Current Reconstruction in Area 3

In order to calculate the optimum injection voltage according to the switching sector of SVPWM,
the conventional sector is classified into 36 switching sectors in this paper. These sectors can be
represented by 18 straight lines, as shown in Figure 15. These straight lines can be obtained by using
the two points of the hexagon. As a result, the 36 switching sectors can be defined by three straight lines.
If the reference voltage vector Vre f is located as shown in Figure 15, straight Lines 5, 9, and 13 must be
satisfied to discriminate the switching sector.

Line 5 : Vs
qs ≤ −

√
3(Vs

ds −
2
3

Vdc), Line 9 : Vs
qs ≤ −

√
3(Vs

ds −
2
3

Vdc), Line 13 : Vs
qs ≥ 0 (7)
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For simple injection voltage calculation, the reference voltage vector Vre f (Vs
ds,V

s
qs) that rotates

the output voltage hexagon with electrical angle θe, is transformed as shown in Figure 16. Vre f is
transformed to the shifted reference voltage vector Vt

dqs(V
t
ds,V

t
qs) in sector 0 by Equation (8).(

Vt
ds

Vt
qs

)
=

(
cos θn − sin θn

sin θn cos θn

)(
Vs

ds
Vs

qs

)
(8)

where θn = n·π/3.
The range of the shifted sector 0 is from −π/6 to π/6. As a result, the injected voltage is only

calculated in the shifted sector 0.
As shown in Figure 17a, the shifted sector is symmetrical with respect to the d-axis.

Therefore, when calculating the injection voltage, only the positive part needs to be calculated. In the
negative region, the negative sign can be added to the magnitude of the q component.

Vi
dqs

(
Vi

ds, Vi
qs

)
are the vector components for moving Vt

dqs to the measurable region.

After calculating the injection voltage, Vi
dqs is added to Vt

dqs, and reverse-transformation is executed.
This voltage vector is defined as the measurement voltage vector Vs

m. Vs
m is induced during the first half

period of the modulation, and the compensation voltage Vs
c is induced during the other half period.

The relation between Vre f , Vs
m, and Vs

c is given by Equation (9).

Vre f =
1
2
(Vs

m + Vs
c ) → Vs

c = 2
(

Vre f −Vs
m

)
(9)
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In order to recover the phase current by injecting the optimal voltage, the shifted sector 0 for the
positive q-axis is divided into different parts, as shown in Figure 18a, according to the MI. As shown in
Figure 18b, each part is more finely divided to restore the phase current by injecting the optimal voltage.
Part.1 is further divided into Part.1_1 and Part.1_2, and Part.2 is divided into Part.2_1, Part.2_2, Part.2_3,
and Part.2_4. Part.3 and Part.4 are also divided into two parts and four parts, respectively.
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When the reference voltage vector Vre f is located in Part.1_1, as shown in Figure 19, the optimal
voltage is injected, and the measurement voltage vector Vs

m is pushed to the measurement point.
At this time, the measurement point is on the boarder of Area 2. The magnitude of the injected
voltage Vi

dqs(V
i
ds, Vi

qs) can be calculated by using both the measurement point and Vt
dqs, as shown

in Equation (10).
Part.1_1

Vi
ds =

(
2∆V/

√
3
)
−Vt

ds , Vi
qs = −Vt

qs (10)

When the reference voltage vector is located in Part.1_2, as shown in Figure 20, the measurement
voltage vector is moved to the measurement line by the optimal voltage injection. The measurement
line is defined by Equation (11), with two points (2∆V/

√
3, 0) and (

√
3∆V, ∆V), as the boarder of

Area 2. The magnitude of the injected voltage is obtained by Equation (12), which gives the minimum
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distance from the point to the measurement line through the Pythagorean theorem, as shown in
Equation (13). The optimal voltage injection method is used to classify each part of Area 3 in more
detail, and then bring Vs

m to the closest measurement line or measurement point for reconstructing
the phase currents. At this time, the measurement line or measurement point is at the boarder of
Area 1 or Area 2. Each part of Area 3 has a different type of optimal voltage injection, as shown in
Equations (10) and (13)–(23), and in Figure 21.

y =
√

3
(

x−
√

3∆V
)
+ ∆V (11)

d =
1
2

∣∣∣√3Vt
ds −Vt

qs − 2∆V
∣∣∣ (12)

Part.1_2

Vi
ds =

√
3

2
d =
√

3× 0.25
(√

3Vt
ds −Vt

qs − 2∆V
)

,

Vi
qs = −

1
2

d = −0.25
(√

3Vt
ds −Vt

qs − 2∆V
) (13)

Part.2_1

Vi
ds = −

√
3× 0.25

(√
3Vt

ds + Vt
qs −

Vdc√
3

)
, Vi

qs = −
√

3× 0.25
(√

3Vt
ds + Vt

qs −
Vdc√

3

)
(14)

Part.2_2

Vi
ds =

√
3× 0.25

(√
3Vt

ds −Vt
qs −

Vdc√
3

)
, Vi

qs = −0.25
(√

3Vt
ds −Vt

qs −
Vdc√

3

)
(15)
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Part.2_3

Vi
ds =

√
3× 0.25

(√
3Vt

ds + Vt
qs −

Vdc√
3
− 2∆V

)
, Vi

qs = 0.25
(√

3Vt
ds + Vt

qs −
Vdc√

3
− 2∆V

)
(16)

Part.2_4

Vi
ds = −

√
3× 0.25

(√
3Vt

ds −Vt
qs −

Vdc√
3
+ 2∆V

)
, Vi

qs = 0.25
(√

3Vt
ds −Vt

qs −
Vdc√

3
+ 2∆V

)
(17)

Part.3_1

Vi
ds = 0 , Vi

qs = (

√
3Vdc
6
− ∆V)−Vt

qs (18)

Part.3_2

Vi
ds =

√
3·0.25

(√
3Vt

ds −Vt
qs −

Vdc√
3

)
, Vi

qs = −0.25(
√

3Vt
ds −Vt

qs −
Vdc√

3
) (19)

Part.4_1

Vi
ds = −

√
3·0.25

(√
3Vt

ds + Vt
qs −

2Vdc√
3

+ 2∆V
)

,

Vt
qs = −0.25(

√
3Vt

ds + Vt
qs −

2Vdc√
3

+ 2∆V)

(20)

Part.4_2

Vi
ds =

(
2Vdc

3
− 2∆V√

3

)
−Vt

ds , Vi
qs = −Vt

qs (21)

Part.4_3

Vi
ds =

(
2Vdc

3
− ∆V√

3

)
−Vt

ds, Vi
qs = ∆V −Vt

qs (22)

Part.4_4
Vi

ds = 0, Vi
qs = ∆V −Vt

qs (23)
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5.3. Comparison of Conventional and Proposed Method 

Figure 22 shows the comparison between the proposed method and MVI method for a MI of 0.1 
and 0.97. The proposed method restores the phase current by injecting a small amount of voltage 
when MI = 0.1 and MI = 0.97. However, the conventional method injected a large amount of voltage 
compared with the proposed method when MI = 0.1. In addition, the compensated voltage vector of 
the conventional method lies outside of the output voltage hexagon when the MI is 0.97, which makes 
the reconstruction of the phase current impossible. 

Figure 21. Optimal voltage injection method in Area 3 for each part. (a) Optimal voltage injection
method in Part.1; (b) optimal voltage injection method in Part.2; (c) optimal voltage injection method
in Part.3; (d) optimal voltage injection method in Part.4.



Energies 2018, 11, 2616 13 of 18

5.3. Comparison of Conventional and Proposed Method

Figure 22 shows the comparison between the proposed method and MVI method for a MI of
0.1 and 0.97. The proposed method restores the phase current by injecting a small amount of voltage
when MI = 0.1 and MI = 0.97. However, the conventional method injected a large amount of voltage
compared with the proposed method when MI = 0.1. In addition, the compensated voltage vector of
the conventional method lies outside of the output voltage hexagon when the MI is 0.97, which makes
the reconstruction of the phase current impossible.Energies 2018, 11, x FOR PEER REVIEW  13 of 18 
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proposed current reconstruction method. The system was composed of the three-level NPC inverter, 
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As shown in Table 3, when the proposed method is applied, it can be seen that the area of the
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6. Experimental Results

Figure 23 describes the system configuration of the experimental setup for the verification of the
proposed current reconstruction method. The system was composed of the three-level NPC inverter,
including the shunt resistor, connected to the neutral point, the control system based on the digital
signal processor (DSP, TMS320C28346), and the resistive-inductive load. The upper and lower DC
capacitors were connected with the 30 V power source.
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A resistor of 10 Ω and inductor of 5 mH were used as the load. The resistance of the shunt resistor
was 0.2 Ω and its power capacity was 3 W. In addition, the minimum time Tmin needed to acquire the
precise phase current from the shunt resistor was set to be 4.5 µs. The reconstructed current from the
shunt resistor using the proposed algorithm was compared with an actual current measured using
two current sensors in order to verify its precision.
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In the experiment, the inverter system was operated by the V/F open-loop control algorithm.
The system was controlled with a fixed operating frequency of 12 Hz and variable output voltage to
change the MI. The experimental results were classified in 6 cases to compare with the conventional
MVI method. Figure 24a,b shows the experimental results with the condition of MI = 0.1 (Vre f = 3.56 V).
In this case, the inverter was operated in Area 3 where the two currents cannot be measured from the
shunt resistor. As presented in Figure 24b, the injected d–q voltage for the current reconstruction is
smaller than the voltage in Figure 24a. The experimental results of Figure 24c,d was measured when the
inverter was operated in Area 1 and 2 with MI of 0.4 (Vre f = 13.86 V). In Area 1, it is possible to obtain the
two phase currents from the shunt resistor, and only one current can be acquired in Area 2. As shown
in Figure 24c, the conventional method injects the q-axis voltage to reconstruct the phase current.
In contrast, the proposed method can reconstruct the phase current without the voltage injection,
as presented in Figure 24d, because the phase current is reconstructed using the estimated current.
In Figure 24e,f, Vre f is passed through Area 1 and 3 when the MI is 0.6 (Vre f = 20.78 V). As shown in
Figure 24f, a smaller voltage is injected to reconstruct the phase current in the proposed method in
comparison with the conventional method. The waveforms presented in Figure 25e,f was measured
when the MI was 0.97 (Vre f = 33.6 V). In this case, the trajectory of the voltage reference is near the
inscribed circle of the space vector hexagon. In the case of the conventional method, the phase current
cannot be reconstructed even if the voltage injection method is used, because the compensated voltage
reference exceeds the hexagon. On the other hand, the proposed method can reconstruct the phase
current, as presented in Figure 25f, because the voltage reference can be compensated on the boundary
of the hexagon.

The accuracy of the phase currents reconstructed using the conventional and proposed methods
were calculated to show the superiority of the proposed algorithm. The equation for the accuracy of
the phase current is expressed in Equation (24).

Accurcy (%) =

(
1− Variance o f [isensor − ireconstructed]

RMS o f isensor

)
× 100 (24)
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Figure 24. Comparison of the conventional and proposed methods at MI = 0.1, 0.4, and 0.6. (a) 
Conventional method at MI = 0.1; (b) proposed method at MI = 0.1; (c) conventional method at MI = 
0.4; (d) proposed method at MI = 0.4; (e) conventional method at MI = 0.6; (f) proposed method at MI 
= 0.6. 
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Figure 25. Comparison of the conventional and proposed methods at MI = 0.8, 0.9, and 0.97. (a) 
Conventional method at MI = 0.8; (b) proposed method at MI = 0.8; (c) conventional method at MI = 
0.9; (d) proposed method at MI = 0.9; (e) conventional method at MI = 0.97; (f) proposed method at 
MI = 0.97. 

As the difference between the current measured by the sensor and the reconstructed current is 
increased, the variance of the calculated results increases. This means the accuracy of the 

Figure 24. Comparison of the conventional and proposed methods at MI = 0.1, 0.4, and 0.6.
(a) Conventiona method at MI = 0.1; (b) proposed method at MI = 0.1; (c) conventional method at MI = 0.4;
(d) proposed method at MI = 0.4; (e) conventional method at MI = 0.6; (f) proposed method at MI = 0.6.

Energies 2018, 11, x FOR PEER REVIEW  15 of 18 

 

20[ms]

Shifted_sector

ia_shunt

q_injectionV

ia_shunt

d_injectionV

ia_sensor

5

0

2

(A)

-2

0

2
(A)
-2
2

(A)

-2

(V)

5
-3

-5

20[ms]

Shifted_sector

ia_shunt

q_injectionV

ia_shunt

d_injectionV

ia_sensor

5

0

0.5

(A)

-0.5

5

4
(V)
-4
0.5
(A)

-0.5
0.5
(A)

-0.5

3

20[ms]

Shifted_sector

ia_shunt

q_injectionV

ia_shunt

d_injectionV

ia_sensor

5

0

1.5

(A)

-1.5

0

5

1.5
(A)

-1.5
1.5
(A)

-1.5

(V)

-5

 
(a) (c) (e) 

20[ms]

Shifted_sector

ia_shunt

q_injectionV

ia_shunt

d_injectionV

ia_sensor

5

0

1.5

(A)

-1.5

0

0

1.5

(A)

-1.5
1.5
(A)

-1.5

(V)

-0.5

-2.5

-0.5

-0.5

Shifted_sector

q_injectionV

ia_shunt

d_injectionV

ia_shunt

5

0

0.5

(A)

4

0
2.5
(V)

0.5

(A)

0.5
(A)

20[ms]

ia_sensor

20[ms]

Shifted_sector

ia_shunt

q_injectionV

ia_shunt

d_injectionV

ia_sensor

5

0

2

(A)

-2

0

2
(A)
-2
2

(A)

-2

(V)
1

-2

-1

 
(b) (d) (f) 

Figure 24. Comparison of the conventional and proposed methods at MI = 0.1, 0.4, and 0.6. (a) 
Conventional method at MI = 0.1; (b) proposed method at MI = 0.1; (c) conventional method at MI = 
0.4; (d) proposed method at MI = 0.4; (e) conventional method at MI = 0.6; (f) proposed method at MI 
= 0.6. 
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Figure 25. Comparison of the conventional and proposed methods at MI = 0.8, 0.9, and 0.97. (a) 
Conventional method at MI = 0.8; (b) proposed method at MI = 0.8; (c) conventional method at MI = 
0.9; (d) proposed method at MI = 0.9; (e) conventional method at MI = 0.97; (f) proposed method at 
MI = 0.97. 

As the difference between the current measured by the sensor and the reconstructed current is 
increased, the variance of the calculated results increases. This means the accuracy of the 

Figure 25. Comparison of the conventional and proposed methods at MI = 0.8, 0.9, and 0.97.
(a) Conventional method at MI = 0.8; (b) proposed method at MI = 0.8; (c) conventional method at MI = 0.9;
(d) proposed method at MI = 0.9; (e) conventional method at MI = 0.97; (f) proposed method at MI = 0.97.

As the difference between the current measured by the sensor and the reconstructed current is
increased, the variance of the calculated results increases. This means the accuracy of the reconstruction
is low. The difference in accuracy between the conventional method and the proposed method is
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compared according to the MI, and shown in Figure 26a. The accuracy of the proposed method is
higher than the conventional method in the whole range of the MI.

The comparison results for the THD of the phase current between the conventional method and
the proposed method are presented in Figure 26b.
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conventional method, and hence results in better performance in terms of THD and accuracy of the 
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Figure 26. Comparison of the conventional and proposed methods according to the variation in the MI.
(a) Phase current Accuracy; (b) total harmonic distortion (THD) of phase currents.

The THD result for the proposed method is lower than the result for the conventional method in
the whole range of the MI, because the THD of the phase current is proportional to the injected voltage.
On average the THD of the proposed method is improved by 44.5 % compared with that of the
conventional method.

7. Conclusions

This paper proposed a phase current reconstruction method using a neutral shunt resistor,
which lowers both the cost and volume of a three-level inverter system.

First, the paper proposes the method for dividing the switching sectors, the rotated sectors,
and the region. Each region is separated by the equation of a straight line.

In addition, in Area 2 where there is only one measurable phase current, the remaining phase
current is reconstructed by the estimation method. The electrical model of the motor and PI current
controller are used to estimate the current.

Finally, the optimal voltage injection method is used in Area 3, where no current is acquired
through the shunt resistor (CUAs). Area 3 is divided and defined as parts in more detail. When the
reference is located on Area 3 of the hexagon, the phase currents are reconstructed by moving the
reference vector to the border of Area 1 or Area 2.

The proposed method utilized a small magnitude injection voltage compared to the conventional
method, and hence results in better performance in terms of THD and accuracy of the
estimated currents. The validity of the proposed algorithm is proven by the experiments.
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