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Abstract: The indirect calculation from acceleration of transversal displacement of the piston inside 
the body of a double effect linear hydraulic cylinder during its operating cycle is assessed. 
Currently an extensive effort exists in the improvement of the mechanical and electronic design of 
the highly sophisticated MEMS accelerometers. Nevertheless, the predictable presence of 
measurement errors in the current commercial accelerometers is the main origin of velocity and 
displacement measurement deviations during integration of the acceleration. A bond graph 
numerical simulation model of the electromechanical system has been developed in order to 
forecast the effect of several measurement errors in the use of low cost two axes accelerometers. The 
level of influence is assessed using quality indicators and visual signal evaluation, for both 
simulations and experimental results. The obtained displacements results are highly influenced by 
the diverse dynamic characteristics of each measuring axis. The small measuring errors of a 
simulated extremely high performance sensor generate only moderate effects in longitudinal 
displacement but deep deviations in the reconstruction of piston transversal movements. The bias 
error has been identified as the source of the higher deviations of displacement results; although, 
its consequences can be easily corrected. 
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1. Introduction 

1.1. Research Overview 

At present, acceleration measurements are obtained with considerable simplicity due to the 
small size, low cost and adaptability of the currently available acceleration sensors. In consequence, 
high interest exists in various fields of engineering to use these indirect measures to obtain velocity 
and displacement values, which would be expensive to obtain by direct measurement means. 
Furthermore, this type of measure would be very useful in situations where fixed points of reference 
are difficult to establish or unavailable. It would be the case of measurement systems like LASERs or 
linear variation differential transformers (LVDTs). 

The velocity and the position are easily calculated from the acceleration by means of successive 
integrations, that is: ( ) = (0) +	 ( )	  (1) 

( ) = (0) +	 (0)	 = (0) + (0)	 + ( )	  (2) 
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where v(t) is the velocity, a(t) is the acceleration and x(t) displacement at time t, so, assuming that 
both initial displacement and velocity are known, the position and velocity of an object would be 
obtained at any time from the measurement of the acceleration. 

This strategy of indirect measurement of displacement has been exploited in several fields of 
engineering. For example, Moschas et al. [1] studied the use of accelerometers in monitoring the 
displacement of a high-rise bridge. Thus, an algorithm was developed to obtain the initial conditions 
of position and velocity. In case both velocity and position aren’t zero at the time of integration it’s 
concluded that a large displacement measuring error will be generated. 

On the other hand, accelerometers have been widely used to reconstruct the position and 
velocity of displacement of certain structures during earthquakes. Even in short periods of time, the 
obtained measurements show a drift of up to one meter in comparison with direct measurements of 
displacement by Global Positioning System (GPS) [1]. This drift is the result of the measurement 
device error propagation and the sampling time instability, among others, during the double 
integration process. It should be noted that the study determines that the measurement error of the 
acceleration is magnified at the bottom and end of the sensor measurement scale. 

The estimation of velocity and position is also necessary for the proportional-integral-derivative 
(PID) control of mechanical devices [2]. The existence of noise in both low and high frequencies 
would cause a drift in the velocity and position reconstruction process. In this particular case, a 
spectral noise subtraction method is developed from the signal of the resting periods. 

As can be seen, the literature in general shows the existence of multiple error sources. 
Consequently, the presented Equations (1) and (2) don’t allow an accurate calculation of real velocity 
and displacement from acceleration. Stiros [3] demonstrated, by applying error propagation theory, 
that the velocity measurement error is a function of the measurement errors of the accelerometer and 
the duration of the signal; moreover, the displacement error is a function of the square of the 
duration of the analyzed signal. In particular for acceleration measurements, the main sources of 
error could be summarized as: 

 Non-linearity 
 Noise 
 Bias: like the two previous measurement errors, t is a deviation from the ideal linearity, 

common in measurement equipment. 
 Signal saturation, which could happen both in the sensor itself and the signal recorder. 
 Inadequate bandwidth. Like the signal saturation, it’s a typical error associated with 

inappropriate selection of the measurement equipment range. Usually, it’s due to the a priori 
ignorance of the shape of the vibration signal to be measured, which is defined by the 
frequencies and amplitudes of the involved harmonic signals. 

 Cross-axis sensitivity, where the signal measured on one axis affects the measurement of the 
other axis [4]. Be noticed that it also exist in uniaxial accelerometers, where any transversal 
acceleration affects the output signal of the main measurement axis. 

 Integration method. The usual numerical integration methods, such as the Trapeze or Simpson 
rules, calculate averages of the registered discrete signals. Thus, they are performing a filtering 
that minimizes the maximums and maximizes the minimums [5]. 

 Aliasing: typical during the sampling of continuous signals, it’s reduced by increasing the 
sampling time [6]. 

 Analog-to-digital conversion [7]. 
 Unstable sampling frequency. 
 Temperature drifts: to be taken into account particularly in long periods of operation. 
 Lack of knowledge of the initial conditions: being a significant issue in some applications as 

inertial navigation, it’s ruled out when starting from a resting state. 

In our previous work, the 3D movement of a piston inside a hydraulic cylinder during 
cushioning were assessed thanks to an Eddy current displacement sensor [8]. Unfortunately, these 
sensors are costly and have a limited measurement range and difficult installation. The objective of 
this paper is to evaluate the feasibility of an alternative measurement system. Specifically, the 
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reconstruction of piston displacement in this particular mechanical system is performed by means of 
double integration of the measured acceleration. In consequence, the propagation of the errors 
during the double integration of acceleration has been modeled in a multidomain bond graph 
numerical simulation model. Finally, the modeling results have been correlated with experimental 
measurements obtained with a low cost commercial accelerometer. 

This paper is organized as follows: Section 1 presents the state of the art and the introduction of 
the carried out work in this paper. Section 2 details the developed simulation model and the main 
simulation results obtained. Section 3 describes the main results of the experimental investigation, 
depending on the measurement axis, and a correlation with the previous simulation results is 
performed. Finally, in Section 4, conclusions about the feasibility of the indirect measurement of 
velocity and displacement in the studied application are presented. 

1.2. Accelerometers Fundamentals 

Given the essential dynamic nature of the acceleration measurement, multiple measurement 
errors have their origin in the dynamic characteristics of the measurement devices. In other words, 
the dynamic response of the sensor will result in a certain distortion in the characteristics of phase 
and amplitude of the obtained measurements field. 

Nowadays, thanks to thin-film micromachining technologies, many of the commercial 
accelerometers are microelectromechanical systems (MEMS) integrated with the necessary control 
electronics. Usually their integrated circuits are complementary metal-oxide-semiconductor 
(CMOS)-type [9]. Most accelerometers operate by detecting the force exerted on a mass by an elastic 
imitation. It means that it’s possible to obtain the magnitude of the acceleration by the displacement 
x of the mass. Commonly, MEMS accelerometers are based on a capacitive measurement system as a 
mass-sensitive element. The relative distance of the plates of a differential capacitor, under a 
reference voltage VR, is affected in response to the acceleration as detailed in Figure 1. 

 
Figure 1. Capacitive accelerometer operational schema. 

The differential equation of mass displacement x as a function of the external force Fext is 
obtained from Newton’s law: 

	 = 	 = + + 	 −  (3) 

where b is the damping coefficient and k is the elastic constant of the spring. As will be exposed later, 
is considered that when x ≈ 0, Felect ≈ 0. Thus this system can be modeled as a second order transfer 
function, as follows: ( )( ) = 1+ +  (4) 
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being the canonical equation describing a second-order transfer function as: ( ) = · + 2		 	 +  (5) 

So: ( )( ) = ( ) = + +  (6) 

where the gain A, natural frequency of the system ωn and damping coefficient ξ are defined as: =  (7) 

=  (8) 

= 2	√ 	  (9) 

In practice, an accelerometer is a capacitive electromechanical system that measures the 
displacement of the mass as a result of the acceleration experienced and transforms it into an 
electrical signal. In general, an electronic demodulator is used for this purpose, which typically 
contains a signal amplifier, an inverter and a low pass filter. Thus, an ideal demodulator can be 
characterized by a displacement-to-voltage signal linear conversion coefficient Kv. 

In fact, these capacitive measurement systems, commonly known as open loop, have several 
non-linearity sources. Their effect is more important for large displacements of the mass; this 
happens because the damping coefficient and the electrostatic force change with respect to the third 
and second power of the displacement, respectively. Although the demodulator design is able to 
limit this effect to a certain extent, a great limitation on its frequency response, measurement range 
and bandwidth is generated [10]. This problem is usually solved by implementing a closed-loop 
control (i.e., PID, as shown in Figure 2); the voltage on the differential capacitance is controlled to 
generate an electrostatic force contrary to the movement in order to constrain the displacement of 
the mass. This control can be carried out analogically or, more commonly, digitally [11]. 

 
Figure 2. Block diagram of a proportional-integral-derivative (PID) closed loop control of an 
accelerometer (based on [12]). KF: Voltage-to-Force linear factor; KV: displacement-to-voltage 
amplification linear factor; LPF: Low Pass Filter. 
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Inevitably, a certain degree of noise exists in the measurement of the accelerometer. The 
minuscule mass of the sensor creates a problem during the design of high sensitivity accelerometers. 
The small mass dynamics are affected by the agitation of the molecules of air at the molecular level 
that exists around it; it’s known as Brownian movement. This noise can be reduced by increasing the 
mass (option very limited by the manufacturing processes of the MEMS) or by reducing the 
damping factor, for instance by making the vacuum. Besides, there are other significant noise 
sources as consequence of the thermal noise in the capacitors of the amplification circuit, the residual 
movement of the mass or the signal processing in the digital control loop, due to the presence of a 
dead band of measurement. An accurate design and dimensioning of the electronic circuit as well as 
the use of signal filters minimize these sources of error [9]. 

The large number of academic works in this field indicates a great interest in the development 
of acceleration measurement systems with the best operational behavior. Therefore, the influence of 
the dimensional and constructive parameters of the capacitance and mass-spring set of the 
accelerometer [13,14] is studied, as well as the design and sizing of the electronic circuit and the 
control and modulation strategy of the closed loop control [15–20]. In all these cases, the main goal is 
the reduction of the different error sources that have been listed above (noise, non-linearity, 
frequency response, thermal drift, bias, cross-axis sensitivity, etc.). 

Multiple correction methods have been developed in order to obtain accurate velocity and 
acceleration curves. An usual strategy for noise suppression is the use of some filters incorporated in 
the transfer function for the reconstruction of displacement from the acceleration in the frequency 
domain [21–24]. Thenozhi [2] proposed a method for the cancellation of decentering (Bias) by 
adjusting the baseline of the acceleration data. Boore [7] proposed a method of suppression of 
Analog to Digital Conversion (ADC) error by dithering technique (adding a small random noise 
signal). Zhu [23] combined the direct measurement of an encoder for position estimation with the 
use of an accelerometer. So, the author establishes an adaptive mechanism for estimating the gain of 
the accelerometer during the velocity calculation.  

In spite of the extensive bibliography existing in this field, a universal error suppression 
method apparently doesn’t exist. The applicability of a correction method would depend on the 
characteristics of the studied system as well as the measuring equipment errors. The case of study 
affects in its amplitude, spatial axes and frequency modes of the registered movements, the initial 
conditions and the presence or absence of final displacement. The measurement chain affects in the 
generated noise, the measurement errors (non-linearity, hysteresis, bias, etc.) or the interaction 
between measurement axes (cross-axis sensitivity). 

Recently, Arias-Lara and De la Colina [25] compared different correction methods, considered 
by the authors of universal application, under conditions of use related with civil engineering. Each 
studied method is a specific combination of baseline correction, low/high pass filters and forcing the 
displacement to zero at the end of the data sample; they are performed in a variable number of steps, 
with or without iterative calculations. The study offers a guide to select an applicable method 
depending on the functional conditions, such as the magnitude of the displacement or final 
displacement existence. Besides, it’s concluded that the excitation frequency doesn’t affect 
significantly the results. 

2. Bond Graph Simulation 

2.1. Simulation Model 

In order to simulate the behavior of a multiaxial accelerometer a bond graph model has been 
constructed as shown in Figures 3 and 4. With the aim of simplicity, only Z and Y axis are 
considered, being X axis measurements neglected. The model starts from two displacement sources 
(Disp_Z and Disp_Y) constructed from previous experimental direct measurements, as shown in 
Figure 5. The displacements are corresponding with typical piston movements registered in a 
double effect linear hydraulic cylinder during an operating cycle; the Z axis displacement is related 
with the extension and retraction way of the cylinder and the Y axis displacement is the transversal 
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movement of the piston inside the cylinder barrel. It should be noted that, the nature of both 
displacements are very different, where Y axis displacement is several orders of magnitude lower 
that Z axis displacement. Further description of the operational cycle of the studied hydraulic 
cylinder and its displacements can be found in our previous experimental work [8]. The generated 
irregularities in the displacement by the gear pump (Pump_Ripple), as a consequence of the 
transmitted vibrations and pressure pulses over the piston, are simulated adding a sinusoidal signal 
into the main displacement value. After deriving the displacement for obtaining the velocity, this 
complex signal is finally converted into a modular flow source (MSf) in the bond graph model. 

The piston affected by the velocity sources (separated in the two independent axes) is 
represented as a Mass-Spring-Resistance (C, I and R) group experimenting a resulting displacement 
and acceleration (Real). Attached to the piston mass exists a dual-axis accelerometer represented by a 
second order transfer function as described in Equation (6). 

The considered parameters for the accelerometer model are described in the Table 1. They are 
based in a low cost commercial MEMS accelerometer as the model ADXL335 by Analog Devices® 
(Norwood, MA, USA), used later in the experimental work. This accelerometer simulation model 
shows a perfect linearity and a frequency response, as presented in Figure 6, with a maximum error 
of 2% Full Scale Output (FSO) at 550 Hz. 

Table 1. Considered parameters of accelerometer model. 

Parameter Value 
Damping Coefficient 1 0.5 

Natural Frequency 5500 Hz 
Range ±3 g 

Bandwith 550 Hz 
Mass 1 2 μKg 

Noise Density 300 μg/√Hz RMS 2 
Cross-Axis Sensitivity 1% 

Nonlinearity 0.3% 
1 Estimated value; 2 Root Mean Square. 

As described in Section 1, the outlet signal of the mechanical model is processed through an 
electronical circuit; it’s simplified modeled as a displacement-to-voltage amplification linear factor 
(Kv) and a Low Pass Filter (LPF) with a cutting frequency of 550 Hz. 

As described before, this measurement system and its electronical circuit have an expected 
inherent number of error sources that produces an imperfect measurement of the acceleration. In 
this model has been considered the simulation of five usual errors sources, as: 

1. Cross-axis sensitivity, in this case represented by an additive percentage of the measured signal 
in one axis over the other axis. 

2. Noise, represented by an additive random signal of limited amplitude, commonly known as 
white noise. 

3. Bias, represented as an additive fixed value to the reading. 
4. Signal saturation, where the maximum recording value is limited to the full scale range of the 

accelerometer. 
5. Nonlinearity, maximum deviation with respect to the ideal linearity referred to the output, 

defined in percentage on the full scale. It’s represented by a deviation of the ideal linearity 
using a quadratic equation. 
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Figure 3. Bond graph model for Z axis displacement. modular flow source. 
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Figure 4. Bond graph model for Y axis displacement. 
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(a) (b) 

Figure 5. Displacement and velocity sources; (a) Z axis; (b) Y axis. 

 
(a) (b) 

Figure 6. Frequency response of the accelerometer model; (a) Bode diagram; (b) Step response. 
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Thanks to the possibilities of the simulation model, the realistic measurements (Real) are able to 
be compared with a theoretical ideal linearity (Ideal). Starting from the acceleration, as the input 
quantity X, the sensor has a Y output in the way of an electrical signal; applying the gain it’s 
converted into a perfect measure of the acceleration. The representations of ideal linear, biased and 
non-linearity measurements are showed in Figure 7. 

 
Figure 7. Ideal linearity, Bias and non-linearity sensor representation. 

Thus, a gain (K), obtained from a proper calibration, is applied to the resulting lecture in order 
to obtain the acceleration. Finally, the velocity and displacements are obtained from single and 
double integration, as described in Equations (1) and (2). The simulation using the bond graph 
technique is carried out using the simulation software 20-sim © version 4.2.7 developed by the 
company Controllab Products B.V. (Enschede, the Netherlands). The model implemented in the 
20-sim program uses the backward differentiation formula (BDF) calculation method with a step 
size of 2 × 10−6 and an absolute and relative integration error of 10−5. The BDF method is a numerical 
method for the integration of ordinary differential equations, an implicit multi-step method of 
variable order. More specifically, multistep methods approximate the derivative of a given function 
at a given time using information from a previous computation, increasing the accuracy of the result 
with each iteration. In turn, the BDF method is especially useful in the resolution of stiff differential 
equations. In particular, the 20-sim program uses a fifth-order method, which means that up to 5 
iterations are required for the resolution of each step. This method is especially suitable for solving 
Bond Graph models with derivative causalities and/or algebraic loops. 

2.2. Quality Indicators 

The presented simulation model above allows a comparison between velocity and 
displacement drifted signals calculated from the acceleration and measured real values. 
Consequently, it’s necessary to implement objective quality indicators that evaluate the deviation of 
the results with respect to the real signal. First of all, the cross correlation coefficient (CCC) and the 
root mean square error (RMSE) will be used [25]. Additionally, a final error (FE) is defined, as the 
deviation of the final value of the measured signal with respect to the maximum measured value. 

The cross correlation coefficient (CCC) evaluates the similarity of two signals and is calculated 
as: 

	[ ] = = = 1− 1 − ̅ − 	 (10) 

where: 	is	the	cross	correlation	coeficient, CCC [x] defined for the displacement measurement x ( )	is	the	covariance	between	 ( )	and	 ( ) 	is	the	standard	deviation	of	  
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	is	the	standard	deviation	of	   	is	measured	displacement	signal  ̅ 	is	the	average	of	the	measured	displacements 	is	the	calculated	displacemet	signal  	is	the	average	of	the	calculated	displacement 	is	the	number	of	measured	values 
Equivalently the CCC [v] can be defined for the velocity measurement: 

	[ ] = = = 1− 1 − ̅ −
 (11) 

in this case all the variables defined for the velocity. The CCC coefficient takes the value 1 when 
there is a perfect match between the calculated and the real measured curves and 0 when doesn’t 
exist correlation between both data series. 

Root mean square error (RMSE) is calculated, also defined for displacement RMSE [x] and 
velocity RMSE [v], by: 

[ , ] = 	 1 ( ( ) − ( )) 	 (12) 

Finally, it’s necessary to evaluate the deviation from the final value of the calculated velocity 
and displacement curves, being zero in the real operating cycle. Thus, the final error (FE) is defined, 
in a percentage (%) with respect to the maximum measured value , as: [ , ] = 	 − 	 (13) 

In summary, CCC indicator is related with the accuracy of the shape, RSME with the accuracy 
of the values and FE with the deviation in slope between the compared curves. It should be noted 
that these indicators would be useful to numerically compare two signals, where a high CCC value 
and low FE and RSME would be desired. Although, a visual comparison of the studied curves 
should always be eventually took into account. It should be focused on the evaluation of the 
subjective shape of the obtained correlation and possible deviations. 

2.3. Z Axis Simulation Analysis 

The quality indicators of the simulations in the Z axis velocity and displacement reconstruction 
by double integration of the acceleration are shown in Table 2. The calculated signals, each including 
a single error source, are shown in Figures 8–12. 

Table 2. Quality indicators in the Z axis signal calculations by error; velocity [v] and displacement [x]. 

Error CCC [v] 
(Adim) 

RSME [v] 
(m2/s2) 

FE [v] 
(%) 

CCC [x] 
(Adim) 

RSME [x] 
(m2) 

FE [x]  
(%) 

50 mg/√Hz RMS 1.00 0.01 1% 1.00 0.01 2% 
300 mg/√Hz RMS 1.00 0.01 1% 1.00 0.01 7% 

Bias 0.01% 1.00 0.03 5% 0.89 0.13 73% 
Bias 0.1% 0.93 0.16 36% 0.23 0.54 331% 
Bias 0.2% 0.75 0.31 74% −0.02 1.05 651% 

Non-Lineal 0.5% 1.00 0.01 1% 1.00 0.01 4% 
Non-Lineal 1% 1.00 0.01 1% 1.00 0.00 1% 
Non-Lineal 2% 1.00 0.01 0% 1.00 0.02 6% 
Cross-axis 1% 1.00 0.01 0% 1.00 0.01 2% 
Cross-axis 2% 1.00 0.02 2% 1.00 0.01 1% 

Saturation @3 g 0.98 0.05 12% 0.93 0.08 69% 
Saturation @2.5 g 0.94 0.11 26% 0.50 0.27 194% 
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The results show two families of errors depending on the level of influence on the quality of 
results. First, the noise, the non-linearity and the cross-axis sensitivity show a negligible effect over 
the reconstruction of velocity and a very limited effect over the displacement. Only high levels of 
these errors are able to generate visible distortions in the reconstructed signals, creating a light 
twisting in the signals without a clear tendency of change. 

 
Figure 8. Calculated velocity and displacement for Z axis; Noise error evaluation. 

 
Figure 9. Calculated velocity and displacement for Z axis; Non-linearity error evaluation. 

 
Figure 10. Calculated velocity and displacement for Z axis; Cross-axis sensitivity error evaluation. 
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On the other hand, the presence of any small level of bias in the acceleration signal produces a 
clear effect on the reconstruction of the velocity and intense influence on the displacement. The 
existence of bias produces a general slope and a light bending in the velocity and displacement, a 
quick shift of the results to unreal high levels. The quality indicators show that the drift in 
displacement is about an order of magnitude higher than velocity deviation; the error produces a 
larger effect during double integration of the acceleration in comparison with single integration, as 
has been already reported in the literature. 

  
Figure 11. Calculated velocity and displacement for Z axis; Bias error evaluation. 

Finally, the saturation of the acceleration signal has been analyzed. Thus, the maximum signal 
of acceleration has been restricted to a certain value, where the full scale of the accelerometer is not 
enough for caption the real accelerations produced in the studied systems. This situation is expected 
to happen during the measurement of unknown operation conditions, where the level of 
acceleration to be measured is uncertain. In this case, there is a clear distortion in the velocity values 
which generates a clear displacement shift, mostly from the start of the movement of the system. The 
more characteristic effect observed in the velocity signal is the shift from the zero velocity level in the 
resting periods. This phenomena is evidently generated by the limited acceleration measurements 
during the velocity change phases of the hydraulic cylinder operating cycle. Mention that signal 
saturation produces limited distortion in velocity and displacement in comparison with the effect of 
the bias. It can be noted by lower EF [x,v] indicators. 

  
Figure 12. Calculated velocity and displacement for Z axis; Signal saturation error evaluation. 

In summary, the bias has been identified as the error more affecting reconstruction of the 
velocity and displacement in the Z axis of movement of the cylinder. At a lower level of influence, 
the signal saturation shows a notable effect during the data processing. Finally, the noise, the 
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non-linearity and the cross-axis sensitivity have low level of influence in the results when restricted 
to expected values of error. 

2.4. Y Axis Simulation Analysis 

In comparison with the analysis of the Z axis, the Y axis simulation shows a clearly different 
behavior in relation with the influence of the errors, due to the different nature of the measured 
phenomena. First of all, the non-linearity has been identified as a negligible source of error, without 
relevant effect in the displacement measurement. On the other hand, the level of noise is a significant 
source of error in the reconstruction of the displacement; only very small levels of noise generate an 
extensive modification of the results, obtaining unreal values. The bias, as observed in the Z axis 
analysis, also generates an important slope in the curves. Both noise and bias errors produce a 
displacement curve several orders of magnitude away from the expected results, both in shape as in 
value. All these high deviations from real displacement of the calculated curves are summarized in 
the quality indicators for Y axis displacement showed in Table 3.  

Finally, the cross-axis sensitivity, which had a negligible effect in Z axis, represents a significant 
source of error in the Y axis displacement reconstruction. In this case, even a very low amount of 
cross-axis sensitivity causes distortion in the results. So, the unreal resulting curve of Y axis 
displacement acquires the same shape of the Z axis but with some orders of magnitude less value. 
It’s clearly due to the low magnitude of the acceleration measured in Y axis in relation with the Z 
axis. Be noticed that the important deviations easily observed in the curves are not traduced in a 
very bad quality indicators. This singularity indicates the importance of the visual evaluation of the 
curves in order to validate the obtained results. In consequence, the quality indicators are mainly 
reliable in the comparison of different levels of similar error sources. 

In summary, the results of the simulation of the reconstruction of the piston displacement in the 
Y axis show that this measurement is highly affected by the presence of errors. Thus, even 
simulating a hypothetical high quality acceleration sensor with extremely low level of errors (as 
showed with the blue line in Figures 13 and 14), the experiment would result in false displacement 
values. 

Table 3. Quality indicators in the signal reconstruction of displacement [x] in Y axis. 

Error CCC [x]  
(Adim) 

RSME [x]  
×1000 (m2) 

FE [x]  
(%) 

50 mg/√Hz RMS 0.72 0.49 321% 
5 mg/√Hz RMS 0.16 0.57 1147% 

Bias 0.01% −0.14 107.75 302,247% 
Bias 0.001% −0.14 10.81 30,348% 

Non-Lineal 0.5% 0.96 0.01 5% 
Non-Lineal 0.1% 0.95 0.01 2% 

Cross-axis 1% 0.89 2.40 4% 
Cross-axis 0.01% 0.90 0.24 5% 
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(a) (b) 

Figure 13. Calculated displacement for Y axis; (a) noise and (b) non-linearity error evaluation. 

 
(a) (b) 

Figure 14. Calculated displacement for Y axis; (a) bias and (b) cross-axis sensitivity error evaluation. 

3. Experimental Results 

The experimental assembly described in our previous work [8] has been updated by installing a 
triaxial accelerometer inside the piston. This sensor is able to monitor the accelerations generated by 
the extension and retraction movement (Z axis) and transversal displacements of the piston inside 
the cylinder body (X and Y axes), as described in Figure 15. Therefore, direct displacement and 
velocity readings (Measured) can be compared with the results obtained through the integration of 
the acceleration records (Calculated), as has been done in the simulation model. Integration of 
experimental data is performed by means of the trapezium rule; this method generates an estimated 
RSME [x] = 0.002 in the Z axis displacement calculation. 
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Figure 15. Hydraulic cylinder and accelerometer assembly schema. 

In summary, the experimental setup monitors a double effect hydraulic cylinder during its 
extension-retraction cycle. The Z axis, extension displacement of the cylinder, and Y axis 
displacements, axial piston displacement inside the cylinder barrel, are obtained by direct measure 
and indirect acceleration measure. The hydraulic circuit schema and the main components of the 
experimental set-up are described in Figure 16 and listed in Table 4. All the experiments have been 
performed with a hydraulic fluid temperature of 40 °C, inside the operating temperature range of 
the utilized sensors. The accelerometer used is a commercial model ADXL335 MEMS accelerometer 
by Analog Devices (Norwood, MA, USA), being its functional characteristics described in Table 1.  

 
Figure 16. Hydraulic circuit and instrumentation schema. 

Table 4. Identification of the experimental set-up components. 

Description Component 
Variable flow piston pump P1 

Electric motor M1 
Reservoir Z1 

Directional valve V1 
Pressure relief valve V2 
Hydraulic cylinder A1 

Pressure Transmitter—Range 0 to 250 bar ± 1% FSO S1 to S5 
Eddy-current Displacement transducer—Range 0 to 0.5 mm ± 0.02% FSO S6 

Displacement transducer—Range 0 to 950 mm ± 0.02% FSO S7 
Accelerometer—Range ±3 g ± 0.3% FSO S8 

Figure 17 presents a comparison between the measured and calculated velocity and 
displacement, obtained during an experiment at 100 Bar pressure supply and a flow of 30 L/min. 
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Right hand (a) is presented the raw data obtained, appearing a behavior mainly affected by bias 
error as already predicted by the model in Figure 10. The use of a simple correction method confirms 
the presence of this bias error; the subtraction of a 0.1% FS of bias in the acceleration data produces a 
big improvement in the results, as presented in Figure 17b. As can be noticed, the resulting corrected 
curves are already affected by other minor error sources, presumably a combination of non-linearity 
and cross-axis sensitivity. The corresponding quality indicators are showed in Table 5. It’s assumed 
that the noise is not a significant error source after any filtering of the acceleration records doesn’t 
improve after the double integration.  

 
(a) (b) 

Figure 17. Experimental and calculated results of velocity and displacement in Z axis; (a) raw 
calculated results; (b) bias corrected calculated results. 

Table 5. Quality indicators in the Z axis signal calculations; Velocity [v] and displacement [x]. 

Error 
CCC [v]  
(Adim) 

RSME [v]  
(m2/s2) 

FE [v]  
(%) 

CCC [x]  
(Adim) 

RSME [x]  
(m2) 

FE [x]  
(%) 

Raw calculated −0.22 0.29 493% 0.30 0.07 1086% 
Bias corrected 0.99 9 × 10−4 7% 0.99 6 × 10−4 6% 

The same measurements are repeated for other experiment using 150 bar pressure supply and a 
maximum flow of 90 L/min. In this case, more severe functional conditions turn into a calculated 
behavior with big similarities with the observed for signal saturation, as exposed in Figure 11. More 
precisely, a certain degree of bias in the measured acceleration is also considered considering the 
previous results. As can be seen in the Figure 18, a modeled signal including 0.15% bias and signal 
saturation reveals similarities with the experimental results. Even so, there are several differences; 
first, the observed variable velocity slope, probably caused by the simplifications of the simulation 
mechanical model; second, the resulting acceleration response, that would minimize the effect of the 
saturation. Both modeled and experimental acceleration responses are depicted in Figure 19. 
Experimental records show concrete high power signals at high frequencies and good match with 
modeled medium and low frequencies records. Besides, possible crossed affectations between 
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simultaneous measurement errors would be also a potential cause of the observed deviations, not 
considered in the presented study. 

(a) (b) 

Figure 18. Experimental and calculated results of velocity and displacement in Z axis; (a) 
experimental results; (b) simulation results. 

Evidently, the application of correction methods is not practical due to the saturation of the 
sensor and the resultant loss of information in the acceleration measurement. Hence, it’s 
recommended the selection of a suitable measurement sensor range or the restriction of the 
functional range of the measured system. 

In case of Y axis measurement, the experimental results present a significant drift due to an 
important cross-axis sensitivity affectation. They are displayed in Figure 20 in comparison with Z 
axis records. In this case the displacement curve acquires the shape of the Z axis records but with 
several orders of magnitude less value. This undesirable behavior has already been predicted by the 
simulation results, as described in Figure 14b. 
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(a) (b) 

Figure 19. Z axis acceleration records and power spectrum; (a) simulation model; (b) experimental 
records. 

 

Figure 20. Calculated results of displacement in Y and Z axes; Cross-axis sensitivity affectation 
observed. 

4. Conclusions 

The development of a bond graph model for the simulation of a multi-axis low cost 
accelerometer has been successful in the forecast of the accuracy of velocity and displacement 
reconstruction from imperfect acceleration measurements, as has been corroborated from 
experimental results. Thus, the knowledge of the influence of the main error sources allows a 
suitable assessment of the measuring devices and eventual suppression methods during the signal 
manipulations. 

More precisely, a significant difference in measurement reliability has been observed between 
the extension/retraction and transversal piston displacements inside the hydraulic cylinder body. 
The main cause is the distinct nature of the acceleration signals obtained of the two different 
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movements. In consequence, the proposed simulation model of indirect displacement reconstruction 
can be useful in other interested engineering applications. It could be the case of similar 
electromechanical systems as displacement controllers of proportional valves spools. It would be an 
advantage during measuring strategy and sensor selection, results forecast and evaluation of data 
processing requirements. 

The bias is the main distortion source detected in the calculation of the extension/retraction 
velocity and displacement, which has, fortunately, an easy suppression method. On the other hand, 
caution has to be taken in selection of the measurement range. A compromise is required between 
the best possible accuracy, associated with the tightest measuring range, and the avoidance of signal 
saturation during more extreme operating conditions measurement. Unpredictably, other error 
sources as noise and non-linearity, even considering an important level of error, have moderate 
effects in the observed performance of the studied system. 

In contrast, the transversal displacements and velocities numerical results show important 
issues as a consequence of the acceleration measurement errors. Even simulating a hypothetical 
extremely high performance sensor the measurement of transversal displacements shows very high 
deviations to unreal values. Besides, the measurement strong affectation by several errors makes 
very difficult to get reliable results using correction algorithm. 

Being the main objective of the acceleration measurement to obtain a simply procedure for 
measure the transversal displacements of the piston, the proposed model allows a reliable 
evaluation of different levels of accuracy in the acceleration measurement. From the results 
described above, the evaluated strategy for the required application isn’t suitable with the current 
low cost devices.  
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