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Abstract: With the increasing interaction between physical devices and communication components,
the substation based on the IEC 61850 standard is a type of cyber—physical system. This paper
proposes a reliability analysis method for substations with a cyber—physical interface matrix (CPIM).
This method calculates the influences from both the physical device failures and the communication
devices failures. Two indices, Probability of Load Curtailments and Expected Demand Not Supplied,
are used in the reliability analysis. Given the simplified model of the practical substation based on
the Chinese IEC 61850 standard, the results show that the substation system had a potential risk of
cascading failure under the cyber—physical fusion trend, as the failure in cyber layer would increase
the power loss of the whole system. The changing magnitude of Expected Demand Not Supplied
increased significantly with increasing transmission delay rate of the process bus.

Keywords: cyber-physical system; intelligent substation; reliability analysis; cyber—physical interface
matrix (CPIM)

1. Introduction

Over the years, cyber—physical systems (CPSs) have attracted considerable attention given their
wide applications in grids, intelligent robot networks, embedded systems, and other fields. A typical
CPS is capable of real-sensing, dynamic control, and information services [1-3]. Smart cyber systems
provide better monitoring, transferring, and controlling functions for the substation, but produce a
trade-off, as the substation will experience more cyber-attacks. The Supervisory Control and Data
Acquisition (SCADA) system of a nuclear plant recently experienced a severe cyber-attack [4], so the
study of cyber security has become a hot topic in smart grids. However, the interactions between cyber
devices and physical devices in substations based on the IEC 61850 standard might create new failure
scenarios to substations. Thus, it is important to address the reliability of the substation considering
the interactions between the cyber layer and physical layer.

In recent years, more research has focused on the cyber-security in power grid. Cyber security in
a typical smart grid is illustrated by S. Lim et al. [5], and four types of cyber-power interdependencies
were categorized by B. Falahati et al. [6]. For evaluating the direct element-element interdependency
between power grid and communication network, B. Falahati et al. [6] proposed a probability
table, denoted as the P-Table, to analyze the reliability in integrated systems. Based on the state
updating-based model, indirect cyber-power interdependency was proposed to evaluate the reliability
of cyber-power networks.
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Because of the transformation from traditional substations to the substations based on the IEC
61850 standard, it is important to model the interaction mechanism of the primary equipment and
communication equipment in the substation [7,8]. The communication system based on IEC 61850
is complex and the security of Intelligent Electronic Devices (IEDs) [9], GOOSE (Generic Object
Oriented Substation Event) [10], and other parts have been discussed. Comprehensive methods
combining the physical equipment and the communication components are rare, but the direct and
indirect influence of the communication components in substation automation systems could be
proposed [6,11]. The influence of the usual parts, widely considered in communication, was analyzed
based on a new method, the CPIM [12]. This matrix uses a mathematical approach to understand
the cyber effects caused by physical failures within one cyber-physical system. However, a specific
analysis was not carried out, so further study of the reliability of the cyber-physical system is required.

This paper proposes a new approach for analyzing the reliability of the IEC 61850 substation,
focusing on the relationship between the cyber device and physical device. There are three types
of failures mentioned and classified in the paper: Low-impact failure, local-impact failure, and
wide-impact failure. Based on the different failures, reliability indices are proposed to quantify the
effects of the failures. Finally, a sensitivity analysis of the Expected Demand Not Supplied is designed
to analyze the IEC 61850 substation reliability.

The remainder of this paper is organized as follows. In Section 2, the interactive mechanism
between the primary equipment and communication components is described for the substation,
and three types of direct impacts are discussed. The impacts of the cyber layer on the cyber-physical
substation and CPIM are defined in Section 3. The reliability of the method based on the CPIM is
studied in Section 4. Case studies based on Monte Carlo simulation are provided in Section 5. Finally,
some remarks provide a conclusion in Section 6.

2. Interactions between Cyber Layer and Physical Layer

2.1. Simplified Model of the Substation System Based on IEC 61850

Figure 1a shows a logical view of an example substation network architecture [13], commonly
known as the substation based on the IEC 61850 standard automation model. IEC 61850 specifies
how instantaneous sampled value (5V) measurements shall be transmitted over an Ethernet network
by a merging unit (MU) or instrument transformer with an electronic interface. The IEC 61850
standard establishes a unified protocol for communication. Based on the standard, the main physical
components are transmission lines, buses, circuit breakers, and main transformers. The cyber layer is
divided into station level, bay level, and process level [14]. As a communication bus and a process
bus can transmit and receive digital signals between the process level and bay level, they establish a
communication connection between the protection unit, merging unit, and circuit breaker.

The circuit breaker, as the connecting and coupling component between the physical layer and
cyber layer, plays the role of a controlling terminal. The components of a cyber layer under IEC 61850
standard mainly include the process bus, merging unit, and physical component protection unit [15].
The protection unit includes the transmission line protection unit, transformer protection unit, and bus
protection unit.
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Figure 1. (a) The components, and (b) structure of cyber—physical substation system. IED, Intelligent
Electronic Devices; MU, merging unit.

2.2. Interaction Framework of the Cyber-Physical Substation

In Figure 1, once one physical device breaks, the physical fault clearing process is the key factor for
maintaining the correct functioning of the substation. The definition of fault clearing is when a physical
component fails, the corresponding transformers or current transformers monitor the fault information,
and then send the analog signal to the merging unit (MU) [13,16]. The MU digitizes the information
and sends the information to the protection Intelligent Electronic Devices (IEDs) of the corresponding
physical components. Protection IEDs generate the tripping-signal through the protection algorithm.
Finally, the process bus sends the signal to the circuit breaker for corresponding actions, thus limiting
the scope of the failure of the physical components. This process is partially affected by the cyber
components. If all the components in the process act normally and actually, the fault clearing is
successful, thus limiting the scope of the failure of the initial physical components. Otherwise, the fault
clearing fails, thus the scope of the failure propagating to other physical components.

As summary above, the reliability of cyber elements, such as MU, IEDs, and the process bus, is
important to alert the primary equipment failure and help the substation continue working. Once some
failures occur in the primary equipment in the substation, three types of scenarios occur during the
physical fault clearing process, low-impact failure, local-impact failure, and wide-impact failure.
Assuming a failure happened to the busbar, the three types of impacts are shown in Figure 2. In the
paper, during the physical fault clearing process, if the e related cyber devices work correctly and
actually, we call it working functionally, otherwise, call it working malfunctioning.

Figure 2. Three types of cascading failures in the substation: (a) Llow-impact; (b) local-impact;
and (c) wide-impact.
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The first type is the low-impact situation where no fault occurs in the cyber components (Figure 2a).
All the information from the primary equipment can be sent out; thus, the physical fault clearing
process can work normally. For example, in Figure 2a, the fault occurs in busbar and it does not
spread elsewhere.

The second type is local-impact. Once some cyber components malfunction during the physical
fault clearing process (excluding the process bus), the failures might spread to their surroundings,
triggering them to malfunction, but the failure can be limited to the local scope by other functional
cyber components. For example, in Figure 2b, the initial fault also occurs in the busbar; the final fault
spreads to the main transformer, due to the MU failures.

The third type is wide-impact. The entire communication of the cyber-physical substation breaks
down if the core of the communication components is damaged. For example, the process bus in
the communication process plays the core role. Once it fails, all the information from the substation
operation states would not be sent out. For example, in Figure 2c, the initial fault still occurs in the
busbar, and the whole system breaks, due to the failure of the process bus.

3. Model Quantifying the Interactions

Considering the three kinds of impact caused by cascading failures in substations, listed in
Section 2, cascading failures chains can be described by a probabilistic model. To describe final
cascading failure impact, we attempted to define the working states of the cyber components. A 0,1
sequence of related cyber components can reflect the final system state under different physical faults.
For example, if 0 means functioning and 1 means malfunctioning, given the original failure in the
substation, the working states of all related cyber components in the cascading failure chain can be
obtained, and the impact of the cascading failure chain can be quantified as:

P11 P12 - Pin
, 22 o P,
cpm= | P2 PR P M
Pm1 Pm2 - Pmn X

In (1), m is the number of the physical components, n is the amounts of cascading scenarios of
each physical component; p;, , is the probability of causing the cascading scenario nth of the physical
component mth, thus, the row vector [py,,;], i € [0, n] is the cascading scenario set of the physical
component mth.

However, in practice, the cyber component working state is not actually 0 or 1. Thus, in the paper,
we modeled this as a two-state model, as shown in Figure 3. The state of the cyber component is set
to [0,1], where 0 represents working functionally (down), and 1 represents working malfunctioning
(up). In Figure 3, A denotes the failure rate of one individual component, and y denotes the repair rate.
The detailed data are given in Table 1.

Up Down

U

Figure 3. Working states of cyber a component.
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Table 1. Data for cyber components.

Mean Time to Failure Rate A Mean Repair Time  Repair Rate u
Failure (Years) (per Year) (h) (per Year)
Protection IED 50 0.02 7.99998 1095.002
Merging Unit 150 0.00667 7.99998 1095.002
Circuit Breaker 100 0.01 7.99998 1095.002
Process Bus 100 0.01 7.99998 1095.002

The occurrence probability of a functionally working state p and unfunctional working state p’
are calculated with Equations (2) and (3), respectively.

M
f— 2
P A+ @
/ A
= — 3
A 3)

There are some delays in the communication process [11]. The delay transmission of the process
bus is denoted by probability 77 ( = 0.3% in the case study). Thus, Equations (2) and (3) can be updated
as Equations (4) and (5) considering the delay, respectively.

__H
P=x-n )

p=1-p (5)

The functional working state and unfunctional working state probabilities of each cyber
components are calculated, as shown in Table 2. The functional working state probability of the
process bus is smaller than that of the other components according to Equation (4).

Table 2. Working state probability of individual cyber components.

Component Functionally Working Statep  Unfunctional Working State p’
Protection IED 0.999981735 0.000018265
Merging Unit 0.999993912 0.000006088
Circuit Breaker 0.999990868 0.000009132
Process Bus 0.996990895 0.003009105

4. Reliability Analysis of the Cyber—Physical Substation

4.1. Indices of Cyber Physical Substation Reliability

Probability of Load Curtailments (Uj) and Expected Demand Not Supplied (EDNS) were used
to calculate the reliability of the cyber—physical substation, and they are displayed in Equations (6)
and (7), respectively.
N
L Tanik
Uy = (6)
g Tupik + Tanik
i=1

where N is the number of the simulation, T, is the duration of load k in ith curtailments, and Toupik 1s
the duration of load k in the ith functionally working state.

Ni
EDNS; = ) PyLy, @)
i=1
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where Ly is the average load not supplied of load-point k during the simulation, Py is the probability
of failure of sub-state i at load-point k, and Nj is the total number of states or sub-states that cause load
curtailment at load-point k.

4.2. Reliability Simulation Method

The simulation was based on the sequential Monte Carlo method. Considering the cascading
failures in the substation, the reliability simulation steps were as follows:

(1) Simulate time t = 0: Initialize both cyber layer and physical components.
(2) Randomly generate states of all physical components. The working state of each physical
component is based on the exponential distribution:

Ti = —%Inll,-, (8)
where Uj; of item i is within the interval [0,1], which obeys uniform distribution. If the current
working state of the item 7 is functional, o; is the failure rate of the physical component; otherwise,
the current state is unfunctional, and o is the repair rate of physical component. Finally, based on
Equation (8), we can find the min{T;}, and its corresponding component j. The working state of
the physical component j will change at the next simulation time.

(3) The simulation time can be described as t = f + 1. Update the working states of all components.

(4) Calculate the cyber-physical interface matrix (CPIM), as shown in Section 3. Identify if a cascading
failure happens according to Equation (9). If so, then repeat step (3). Repeat this step until the
failure no longer spreads. For component j, compare the value p; , in the cyber-physical interface
matrix(CPIM) with a random number P in the interval [0,1]. If P satisfies:

s—1 s
Y Piy <P <} piy )
y=0 y=0

the sth scenario of the physical component j occurs.
(5) Calculate the reliability indices.
(6) Repeat steps (3) to (5) until the variance coefficient is less than the allowable value with:

V(F)/NS

p= TEE) (10)

where V/(F) is the variance of the test function, NS is the number of simulation years, and E(F) is
the expected value of the function.

5. Case Study

5.1. CPIM of the Each Component in the Cyber-Physical Substation

A simplified model of a typical the substation based on the IEC 61850 standard in China is shown
in Figure 4, which is a 220/121/38.5 kV step-down substation. The annual average load of both
load-point-1 and load-point-2 are 100 MW. The details for the primary devices of the substation are
shown in Table 3.

Table 3. Equipment reliability data for the primary device

Failure Rate (per Year) = Mean Repair Time (h)

Bus 0.002 13.0
Transformer 0.025 43.1
Transmission line 0.02 10.0
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In Figure 4, there are 11 breakers, denoted as 1,2, 3 ... ; A and | stand for the transmission lines;
C, D, E are main transformers; MU is the merging unit, and the number of MUs is 8, denoted as by
MU1,MU2...; B, F, G, H, I are the buses. According to (1), the shape of the CPM of Figure 4 is shown
as (11). In (11), there are 10 physical devices, denoted as A, B, ... |, thus the row number is m = 10,
each row vector means the CPIM of a physical device. For example, the CPIM of the physical device
A'is denoted as CPIMy,  ,, where a is the number of cascading scenarios of A; similarly, the CPIM
of the physical device B is denoted as CPIMp,, , where b is the number of cascading scenarios of B;
the CPIM of the physical device ] is denoted as CPI My, ,;, where j is the number of cascading scenarios
of J; Thus, the number of columns of CPMisa + b ... +j. The CPIM of each physical device shows
from Tables 4-13.

CPIMy,,,, : 0 Do 0
: CPI S
CPM = (_) CPIM ., 0 (11)
i 0 : 0 Do CPIMhX]. D 1ox (st

| Transformer Protection IEDs |

L
| | Bus Protection IEDs |

| Line Protection IEDs |

Figure 4. The structure of a real IEC 61850 substation in China.

Based on the CPIM method in Section 3, considering a failure clearing at line A, the CPIM4
are shown in Table 4. In this case, there are three kinds of cascading chains within the substation.
scenario 1: If all the related cyber devices are working functionally, the breaker can obtain the failure
information, and then locate and clear the failure. The failure scope would be limited within A,
which is the low-impact case mentioned in Section 2. In Table 4, the results show that when line
fault clearance occurs at A, more than 99% failures are limited to within A. However, in extremely
few cases, the failure scope would extend to the entire system, due to the dysfunctional working of
the process bus connected to A, which is the wide-impact case mentioned in Section 2. In Table 4,
the probability of this occurrence is the smallest. With a small probability of 0.3%, among breaker
1, merging unit 1, and protection IED of A, more than one cyber device may be malfunctioning;
thus, it leads to breaker 1 failure and then resulting in the failure of B. At this time, breakers 2,
3, and 4 can work functionally, thus limiting the failure scope to within A and B, which is the
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local-impact case mentioned in Section 2. Thus, based on Table 4, the number of cascading scenario is
3, and the CPIM, = [0.996957511, 0.003009105, 0.000033384]; 3; it satisfied sum{CPIMa} = 1. Using the
same method, the CPIM of the line fault clearance at transmission line J can be obtained as the
CPIMy = [0.996957511, 0.003009105, 0.000033384]; 3, results showing as Table 5.

Table 4. Cyber Physical Interface Matrix (CPIMy) of the line fault clearance at A.

Cascading Scenario Effects Scope Probability
1 A 0.996957511
2 The entire system 0.000033384
3 AB 0.003009105

Table 5. CPIMj of the line fault clearance at transmission line J.

Cascading Scenario Effects Scope Probability
low-impact J 0.996957511
wide-impact The entire system 0.000033384
local-impact I 0.003009105

Table 6 shows a similar analysis in the case of a failure clearing at bus B. In this case, consider
all cyber devices are connected to B, such as merging units 1, 2, 3, and 4; breakers 1, 2, 3, and 4; and
the process bus. The three kinds of cascading chains could occur within the substation: Low-impact,
wide-impact, and local impart. In Table 6, more than 99% of failures are limited to within B, due to
all the related cyber devices functioning properly. However, having a smaller probability 0.3%,
the failure scope would extend to entitle system, due to the dysfunctional working of the process bus.
According to the different sizes of failure scopes caused by different related cyber devices, four kinds
of local-impact may occur with minimal probability.

Table 6. CPIMg of the line fault clearance at bus B.

Cascading Scenario Effect Scope Probability
low-impact B 0.996911991
wide-impact The entire system 0.003009105
local-impact 1 (AB)/(BC)/(BD)/(BE) 0.000015173
local-impact 2 (ABC)/(ABD)/(ABE)/(BCD)/(BCE)/(BDE)  1.38564396 10
local-impact 3 (ABCD)/(ABCE)/(ABDE)/(BCDE) 3.51492326 1
local-impact 4 ABCDE 1.82105929°

In Table 6, there are four types of local-impacts, denoted as local-impact 1, 2, 3, 4, and the
number of cascading scenarios is 17. Local-impact 1: If one of the merging units or related breakers
malfunctions, the failure effect scope would be limited to B and one of its connecting physical devices.
The number of cascading scenarios belongs to local-impact 1 is 4. For example, either merging unit 2
or the breaker 2 is dysfunctional, while the others are functional, then the effect scope is limited to
within B and C. Local-impact 2: If two of merging units or related breakers are dysfunctional, this case
would limit the failure effect scope to B and two of its connecting physical devices. The number of
cascading scenarios belongs to local-impact 2 is 6. For example, the effect scope ABE might result from
the failure at breakers 1 and 4, and merging units 1 and 4. Similarly, If three (four) of the merging
units or related breakers malfunction, this would limit the failure effect scope to B and three (four)
of its connecting physical devices. The number of cascading scenarios belongs to local-impact 3 and
local-impact 4 are 4 and 1.

Thus, based on Table 6, the number of cascading scenarios is 17, and the CPIMp = [0.996911991,
0.000015173, 0.000015173, 0.000015173, 0.000015173, 1.38564396 °, 1.38564396 1°, 1.38564396 **,
13856439610, 1.38564396 10, 1.38564396 10, 3.5149232671°, 3.51492326~'°, 3.51492326 1,
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3.51492326715,1.82105929>, 0.003009105]; 17, it satisfied sum{CPIMg} = 1. Using the same method,
the CPIM of the line fault clearance at bus F, H, G, I can be obtained as follows: The CPIMg =
[0.996957511, 0.003009105, 0.000033384] « 3, the CPIM¢ = [0.996957511, 0.003009105, 0.0000333841 3,
the CPIMy = [0.996957511, 0.003009105, 0.000033384];x3, CPIM; = [0.996911991, 0.000015173,
0.000015173, 0.000015173, 0.000015173, 1.38564396 19, 1.38564396 10, 1.38564396 10, 1.38564396 19,
13856439610, 1.38564396 10, 3.51492326 15, 3.51492326° 15, 3.51492326 15, 3.51492326 1%,
1.82105929°, 0.003009105]; 17, all results showing from Tables 7-10.

Table 7. CPIMg of the line fault clearance at bus F.

Cascading Scenario Effects Scope Probability
low-impact F 0.996957511
wide-impact The entire system 0.000033384
local-impact FC 0.003009105

Table 8. CPIMg of the line fault clearance at bus G.

Cascading Scenario Effects Scope Probability
low-impact G 0.996957511
wide-impact The entire system 0.000033384
local-impact GD 0.003009105

Table 9. CPIMy of the line fault clearance at bus H.

Cascading Scenario Effects Scope Probability
low-impact H 0.996957511
wide-impact The entire system 0.000033384
local-impact HE 0.003009105

Table 10. CPIMI of the line fault clearance at bus I.

Cascading Scenario Effect Scope Probability
low-impact I 0.996911991
wide-impact The entire system 0.003009105
local-impact 1 (1)/(IC)/(ID)/ (IE) 0.000015173
local-impact 2 (IIC)/(IJD)/(IJE)/(ICD)/(ICE)/(IDE)  1.38564396 10
local-impact 3 (IICD)/(IJCE)/(IJDE)/ (ICDE) 3.51492326~ 1
local-impact 4 IBCDE 1.82105929 5

Using the same analysis method, Table 11 shows the results under failure clearing at transformer
C. The results summary is similar to Table 6: (1) More than 99% failures are low-impact, limited to
within C; (2) within a smaller probability of 0.3%, the failure scope extends to the entire system, due to
the dysfunctional working of the process bus, being a wide-impact; and (3) local-impact are classified
according to the failure number of the related cyber device, of which the occurrence has low probability.
Thus, based on Table 11, the number of cascading scenarios is 9, and the CPIM¢ = [0.996927164,
1.51734070°, 1.51734070 >, 1.51734070 >, 2.30941925 1, 2309419251, 2.30941925 ', 1.82100387 °,
0.003009105]; » 9, satisfied sum{CPIM¢} = 1.
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Table 11. CPIM( of the line fault clearance at transformer C.

Cascading Scenario Effect Scope Probability
low-impact C 0.996927164
wide-impact The entire system 0.003009105
local-impact 1 (BC)/(CF)/(CI) 1.51734070~>
local-impact 2 (BCF)/(CIF)/(BCI) 2.30941925-10
local-impact 3 BCFI 1.82100387 5

Using the same method, the CPIM of the line fault clearance at transformer D, E can
be obtained as follows: CPIMp = [0.996927164, 1.517340707°, 1.51734070°, 1.517340707°,
2.30941925710 2.30941925-10, 2.309419251°, 1.82100387 >, 0.003009105]; x9, CPIMg, = [0.996927164,

1.51734070~2, 1.51734070~2, 1.51734070~>, 2.30941925— 10 2.30941925-19, 2.30941925~10, 1.82100387 5,
0.003009105] «9, all results showing from Tables 12 and 13.

Table 12. CPIMp, of the line fault clearance at transformer D.

Cascading Scenario Effect Scope Probability
low-impact D 0.996927164
wide-impact The entire system 0.003009105
local-impact 1 (DB)/(DG)/(DI) 1.517340705
local-impact 2 (DBG)/(DBI)/(DGI)  2.30941925~10
local-impact 3 DBFI 1.82100387°

Table 13. CPIMg of the line fault clearance at transformer E.

Cascading Scenario Effect Scope Probability
low-impact E 0.996927164
wide-impact The entire system 0.003009105
local-impact 1 (EB)/(EH)/EI) 1.51734070 5
local-impact 2 (BEF)/(EBI)/ (EIH) 2.3094192510
local-impact 3 BEHI 1.82100387 >

5.2. Reliability Analysis Results

Consider the reliability of load-point-1, load-point-2, and the entire system in Figure 4.
The Probability of Load Curtailment (PLC) was calculated, as shown in Table 14. A traditional
simulation without considering the impact of the cyber layer and our method with integrated CPIM
was carried out. As seen from the growth rate (A%), the probability of load curtailment slightly
increased to 4.43% compared to without considering the influence of cyber layer. The improvement as
not obvious compared with the traditional simulation, especially for the entire substation. The risk of
cascading failure was low, due to the high reliability of the cyber components.

Table 14. CPIM of the line Probability of Load Curtailments (PLC) comparison.

Probability of Load Curtailments

Load Point without Cyber Layer with Cvber Laver Growth Rate A(%)
(Traditional Simulation) y Yy
(1) 3.78466667 > 3.952333337° 443
() 3.81300000~°> 3.92400000> 291
Entire System 7.59766667 > 7.734333337° 1.80

Compared that in the traditional simulation. The EDNS of entire substation than that with
traditional simulation increase 7.41%. Compared the results of Table 15 with Table 14, the failures in
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the cyber layer have more significant impacts on electricity unavailability than on the probability of
load curtailment.
The comparison of EDNS is shown in Table 15. The EDNS in load-point 1 increased 11.93%.

Table 15. Expected Demand Not Supplied (EDNS) comparison.

EDNS (MWh/Year)
Load Point without Cyber Layer with Cvber Laver Growth Rate A(%)
(Traditional Simulation) y y
(1) 3.785 4.236 11.93
) 3.813 4.208 10.36
Entire system 7.598 8.160 741

5.3. Effects of Delay Rates

Values from 0 to 0.005 were assumed to be the delay rates for all process buses. In practice,
a delay rate may be prolonged, due to electromagnetic interference was be influenced by other factors.
The quantitative relationship between simulation time and the ENDS is studied, and the results are
shown in Figure 5. The value of the system ENDS increased considerably, and the growth rate of
ENDS increased linearly with prolonged switching time. This illustrates that the delay rate of the
process bus signifies the fault clearing. Advanced technologies for smart grids are important. Highly
reliable control components and fast information transmission accelerate the process of cyber failure
identification and physical fault clearing.

(%) 18 18 (MWh/year’
. ] ENDS1(MWh/year) .
16 | - 1 16
. A ENDS1(%)
14 F 4 14
[ ]

12 | 4 12
10 | 4 10
]
8r 4 8

.
6 | 4 6
®
4 - = & . - 4 4
1 1
0.000 0.002 0.004 0.006 |
n

Figure 5. Expected Demand Not Supplied (EDNS) and EDNS changing with delay rate at load-point 1.
6. Conclusions

With the development of substation system automation applications, the interdependency
between the communication network and the primary equipment must be considered. This paper
extended the Cyber Physical Interface Matrix (CPIM) methodology to reliability analysis.
Two reliability indexes were presented, and the results of the case study verified that failures in
the cyber layer increase the substation system’s reliability, and the sensitivity analysis revealed that
the process bus plays a key role in the reliability of the entire substation. Although the probability of
time delay in information transmission is small, it is the critical factor leading to reliability changes in
cyber—physical substations.
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The proposed reliability assessment method can also be used to address the reliability problem
faced by cyber physical power systems. In such systems, for future study, more detailed analysis on
the interdependency between physical side and cyber layer is needed.
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