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Abstract: Multi-physical field sensing and machine learning have drawn great attention in various
fields such as sensor networks, robotics, energy devices, smart buildings, intelligent system and
so on. In this paper, we present a novel efficient method for thermal and energy management
based on bimodal airflow-temperature sensing and reinforcement learning, which expedites an
exploration process by self-learning and adjusts action policy only through actuators interacting
with the environment, being free of the controlled object model and priori experiences. In general,
training of reinforcement learning requires a large amount of data iterations, which takes a long
time and is not suitable for real-time control. Here, we propose an approach to speed up the
learning process by indicating the action adjustment direction. We adopt tailor-designed bimodal
sensors to simultaneously detect airflow and temperature field, which provides comprehensive
information for reinforcement learning. The proposed thermal and energy management incorporates
bimodal parametric sensing with an improved actor-critic algorithm to realize self-learning control.
Experiments of thermal and energy management in a multi-module integrated system validate
the effectiveness of the proposed methodology, which demonstrate high efficiency, fast response,
and good robustness in various control scenarios. The proposed methodology can be widely applied
to thermal and energy management of diverse integrated systems.

Keywords: multi-physical field sensing; integrated system; thermal and energy management;
reinforcement learning

1. Introduction

Multi-physical field sensing and control is a technology now widely used in various areas such
as sensor networks, robotics, smart buildings, and instrumentations, to name a few [1–3]. With the
rapid development of artificial intelligence technology, machine learning has become a great potential
strategy to execute measurement and control missions for versatile complex systems [1]. Thermal and
energy management is a general issue that has been commonly observed in electromechanical
equipment, energy devices, constructions and so forth [4–6]. Due to the easy operation and high
efficiency, forced air cooling has been suggested as the most commonly used strategy for dealing
with thermal control in areas such as plug-in hybrid electric vehicle [7], data center [8] and handheld
polymerase chain reaction (PCR) device [9]. The fundamental principle of forced air cooling is adjusting
the airflow to regulate heat dissipation and thermal distribution in a bounded space. In the industry,
the proportional-integral-derivative (PID) algorithm is a popular feedback control method and has been
widely used in various thermal management systems. However, at the same time, it is not suitable for

Energies 2018, 11, 2575; doi:10.3390/en11102575 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-0988-8993
https://orcid.org/0000-0002-9834-5685
http://www.mdpi.com/1996-1073/11/10/2575?type=check_update&version=1
http://dx.doi.org/10.3390/en11102575
http://www.mdpi.com/journal/energies


Energies 2018, 11, 2575 2 of 14

multi-input multi-output (MIMO) control problems [10–12]. The MIMO temperature control problem
is complex because of the strong coupling that exists in the controlled object. The modeling method
is a common decoupling method. Li et al. [13] introduced a decoupling method in a double-level air
flow dynamic vacuum system based on the neural networks and the prediction principle. Gil et al. [14]
presented a constrained nonlinear adaptive model-based control framework applied to a distributed
solar collector field. Shen et al. [15] presented the temperature uniformity control of large-scale vertical
quench furnaces with a proportional–integral–derivative (PID) decoupling control system to eliminate
the strong coupling effects of multi-heating zones. Although the modeling method is an effective
approach to dealing with the coupling effects in some cases, it cannot meet all the demands in a
practical application. Specifically, the control performances of this method usually depend on the
accuracy of the developed model, which mainly relies on professional experience and highly restricts
the robustness of the system.

Miniaturization, modularization, and multi-functionalization have become major development
trends in instrumentation [16–19]. When the equipment gets miniaturized and integrated, it is an
important issue that the thermal control in a narrow space and energy consumption need to be well
managed, especially for the devices integrating multiple functional modules which have different
thermal characteristics [4,5,19]. Generally, thermal control becomes arduous when working space turns
smaller due to the strong thermal coupling [20]. It is essentially a multi-input multi-output system.

The airflow generated by the natural or forced convection is heat-transfer carrier that modulates
thermal behavior [21]. As shown in Figure 1a, thermal energy from a heat source is taken away
by the airflow. The airflow rate can speed up by adjusting the fan’s rotate speed, in which case,
more thermal energy can be taken away and the temperature field lowers down. This suggests that
airflow dominates the spatial thermal behavior. An effective thermal and energy management relies
on the regulation of both temperature and airflow. In this paper, we adopt micro bimodal sensors
that can simultaneously detect spatial airflow and temperature to support a fast, robust, self-adaptive
thermal and energy management.
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environment interaction in reinforcement learning. (c) Representative structure of the temperature 
regulation method consisting of airflow and temperature sensing, control policy of fans. The policy is 
optimized by reinforcement learning with multi-physical field detection. 

Figure 1. (a) Schematic diagram of the relationship among fan, airflow and heat source.
(b) Agent-environment interaction in reinforcement learning. (c) Representative structure of the
temperature regulation method consisting of airflow and temperature sensing, control policy of fans.
The policy is optimized by reinforcement learning with multi-physical field detection.
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Machine learning based control has attracted great attention in the recent years. Reinforcement
learning has been one of the most remarkable approaches, which has been successfully applied
to deal with various problems [22–25], such as game, multi-agent systems, swarm intelligence,
statistics, and genetic algorithms. The main process of reinforcement learning is shown in Figure 1b.
First, the agent gets the state (s) and the reward (r) from the environment. The state represents the
environment condition and the reward is a numerical signal. Second, the agent takes acts (a) onto the
environment. The policy is learned by the agent itself. The environment changes its state with the
effect of action and exports the reward that measures the action taken by the agent at the last state.
Then, the agent adjusts its action policy for a better reward. Through constant exploration and trial
and error, the agent figures out a policy to take action in different states [26]. Reinforcement learning
is an effective way to realize automatic control without human experiences [27,28]. In fact, it is a
self-learning method by interacting with the environment by trial and error, and then self-adjusting
the strategy to the actuator.

In this paper, we propose a novel control method to deal with thermal and energy management
based on multi-physical field sensing and reinforcement learning as shown in Figure 1c. The proposed
methodology achieves a fast, robust, self-adaptive temperature control as well as energy management
by using distributed bimodal airflow-temperature sensing and reinforcement learning. First,
the distributed airflow-temperature sensors detect the airflow velocities and temperatures in the target
space, which represent the environment states. Subsequently, reinforcement learning is introduced to
evaluate the environment state and execute promptly control actions to cooling fans.

The remainder of this paper is organized as follows. Section 2 introduces the fundamental
principle of reinforcement learning. In Section 3, the reinforcement learning control method based
on airflow-temperature field sensing is presented. In Section 4, the proposed method is applied to
thermal and energy management of a multi-module integrated system. The experiment results and
discussions are presented in Section 5. The conclusion is drawn in Section 6.

2. Overview of Reinforcement Learning

As mentioned above, reinforcement learning is a methodology aimed for better reward via trial
and error exploration. The behavior of the agent is defined by a policy π. It is a probability distribution
which maps states to actions π: S→ P(A), where S denotes state space and A denotes action space [24].
The transition dynamics and reward function can be written as p(st+1|st,at) and r(st,at), respectively.
The expectation under policy π is denoted as Eπ. And the reward from a state is defined as the sum of
discounted future rewards [22] by

Rt = ∑T
i=t γ(i−t)r(si, ai) (1)

where γ is the discounting factor varying from 0 to 1. Different policy gains different Rt and the goal
of reinforcement learning is to learn a policy that maximizes the expectation Eπ[Rt].

The action-value function has been used in various reinforcement learning algorithms. It defines
the expected reward after taking an action at in-state st under policy π:

Qπ(st, at) = Eπ[Rt|st, at ] (2)

where Qπ(st,at) denotes the value of state-action pair (st,at) following policy π [23]. The recursive
Bellman equation can be used for calculating Qπ(st,at)

Qπ(st, at) = Eat∼π{r(st, at) + γEπ[Qπ(st+1, at+1)]} (3)

Assume adopting the deterministic policy, which can be described as a function µ: S← A, the
Bellman equation can be written as
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Qµ(st, at) = E[r(st, at) + γQµ(st+1, µ(st+1))] (4)

Therefore, the expectation depends only on the interaction between the agent and the environment.
Q(st,at) is approximated with parameter θQ, which can be optimized by minimizing the loss
function [22,25,26]:

L
(

θQ
)
= E

[(
Q
(

st, at

∣∣∣θQ
)
− yt

)2
]

(5)

yt = r(st, at) + γQ
(

st+1, µ(st+1)
∣∣∣θQ

)
(6)

Employ actor-critic approach based on the deterministic policy gradient, it mainly contains a
parameterized actor function µ(st|θµ), which maps states to actions, and a critic function Q(st,at|θQ),
which describes the value of the state-action pair. The parameters in critic function are updated via the
Bellman equation, while the actor’s parameters are updated by the chain rule [29]:

∇θµ Q = E
[
∇aQ

(
s, a
∣∣∣θQ

)∣∣∣s=st ,a=µ(st)∇θµ µ(s|θµ )|s=st

]
(7)

3. Reinforcement Learning Control Method Based on Airflow-Temperature Field Sensing

As mentioned above, reinforcement learning is an effective approach to realize automatically
adjusting the control strategy only by interacting with the environment, which does not need human
intervention. Multi-dimensional information of environment can enhance the state estimation accuracy.
One of the characteristics of reinforcement learning is to accumulate a large amount of exploration
experiences to predict future rewards and guide the current actions.

The difficulties in realizing the on-line reinforcement learning mainly lie in two aspects. First, it is
difficult to accurately estimate the future rewards by a short exploration period. Second, in some cases,
it is hard to receive the rewards at every moment, for example, a score can’t be obtained until the end
of the game. In real control, more concerns are given to whether the change direction of the action
is correct rather than the accuracy of the reward itself. Aiming at the characteristics of the control
system, the theoretical methods of reinforcement learning can be appropriately simplified to realize
practical applications.

As shown in Equation (1), the reward from a state can be defined as the sum of discounted future
rewards obtained from the environment. Making the estimating depth as 1 for indicating the action
adjustment direction gives

Rt = r(st, at) (8)

where r(st,at) denotes the received reward at time t + 1 after taking action at at state st. Then there is

Q(st, at) = E[r(st, at)] (9)

A key point in reinforcement learning mission is the choice of the reward r(st,at). The reward function
is related to the system performance. It is needed to convert the control object to the corresponding
reward function. In real control systems, there is often more than one control objective to be achieved,
such as minimizing energy consumption while meeting the thermal control accuracy. Without losing
the generality, the above multi-objective control requirement can be expressed as

[ fi(x)]2 − Di
2 ≤ 0 (i = 1, 2, · · · , n) (10)

min g(x) (11)

where fi(x) is an objective function with a threshold requirement, Di represents a constraint condition,
and g(x) is an objective function pursuing an extreme value. Then r(st,at) can be expressed as
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r(st, at) = g(x) +
n

∑
i=1

αimax
{
[ fi(x)]2 − Di

2, 0
}

(12)

The control objective is converted to minimizing reward function r(st,at), where αi is the scale
factor. fi(x) and g(x) are determined by the state of the environment and the definition of r(st,at) can be
rewritten as

r(st, at) = g(st+1) +
n

∑
i=1

αimax
{
[ fi(st+1)]

2 − Di
2, 0
}

(13)

Based on the accurate prediction of the reward at time t + 1, the action strategy is adjusted
automatically to make the reward function turn to the minimum.

Another two critical issues that need to be considered are the ways to get the state information
and comprehending the mechanism of the reward affecting the action strategy. The state information
includes various types of information related to the controlled object. The changes in controlled
variables are related to multiple variables. The state information can be expressed as

st = st
(

x1t/x0, · · · , xit/x0, · · · , y1t/y0, · · · , yjt/y0, · · ·
)

(14)

where xi and yi denote different information types and x0 and y0 are their respective base values.
The mechanism of the reward affecting the action strategy determines the actor-critic approach

based on the deterministic policy gradient and the selection of actor function µ(st|θµ) and critic
function Q(st,at|θQ). Two neural networks are proposed. One is the policy network and the other is
the value network. The schematic diagram is seen in Figure 2.
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Figure 2. Schematic diagram of on-line reinforcement learning control method.

Policy network is used to form a behavior strategy. It acquires the state information st of the
controlled object and exports control signal at to the actuators. The value network is used to evaluate
the behavior strategy. It inputs the state st, action at, and outputs critic function value Q(st,at|θQ).
The value network updates its parameters by minimizing the deviations between the output and
the received reward, while the policy network updates its parameters to reduce the value network’s
output by gradient descent. Therefore, through the continuous interaction with the controlled object
and the learnings of the value and policy networks, r(st,at) gradually decreases.

The above method can be written as the following flowchart shown in Figure 3. A random
variable with a mean of 0 is added to the output of the policy network as the actual action, and its
variance gradually reduces with time.
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4. Application of On-Line Reinforcement Learning Method

As mentioned above, effective thermal control and energy management rely on the regulation
of both temperature and airflow. We developed micro bimodal sensors that can simultaneously
detect airflow velocity and temperature. The bimodal sensor is comprised of micromachined hot-film
anemometer and thermistor. The airflow sensing relies on the convective heat transfer from the
electrically heated hot-film to the surrounding air. When a hot-film is heated to a higher temperature
than the surrounding, the heat transfer related to the airflow velocity dominates its resistance by
the thermoelectricity of the hot-film [30–32]. Therefore, the hot-film serves as an airflow detector.
The temperature sensing is based on the thermoelectric conversion of the thermistor.
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The circuit schematic diagram and the developed prototype of the bimodal sensor is shown in
Figure 4a, where a hot-film resistor (hot-film), a temperature sensor, a compensating resistor and
two balance resistors comprise a Wheatstone bridge. The hot-film resistor is used to detect airflow.
The temperature resistor is used to detect the ambient temperature and also provides the temperature
compensation for the anemometer. The hot-film resistor is fabricated by Pt. The bimodal sensor is
operated in a constant temperature difference (CTD) feedback circuit shown in Figure 4a, which keeps
the heating temperature of the hot-film resistor from the ambient temperature constant [30,31].
The compensating resistor Rc is used to adjust the heating temperature of the hot-film resistor Rh.
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between the output voltage U shown in (a) and airflow rate.

The characterization of the airflow sensor was conducted by using a wind tunnel experiment.
The airflow rate was controlled by a mass flow controller (Fluke molbloc-L, Fluke Calibration, Everett,
WA, USA). The relationship between the airflow velocity (denoted as V) and the output voltage U of
the sensor was formulated as U2 = a + bVn [30,31], where a, b, and n are constants that were determined
through the least squares estimation. Figure 4b shows the output voltage U against the airflow velocity.

The detected temperature can be deduced by the sensor outputs and calculated by

T = − 1
αt

+
UtRc

αtR0(Uc −Ut)
(15)

where R0 is resistance value of Rt at 0 ◦C, αt is temperature coefficient of Rt.
Characterization of the temperature sensor was conducted by putting the sensor in a

temperature-controlled oven (Thermoscientific OGH60). The comparison of the temperature
detected by the airflow-temperature sensor and the actual temperature is shown in Figure 5a,b.
The measurement error is less than 0.5 ◦C.
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The schematic diagram of the on-line reinforcement learning control method for the thermal
and energy management is shown in Figure 6, where multiple airflow-temperature sensors were
distributed to detect the airflow-temperature fields as the environment state in the control system.
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energy management.

Using the neural network approach mentioned in Section 3, the value network is to evaluate the
state and action pair. It maps the environment state and the action to reward. The value network gets
a reward from the outputs of the controlled object and updates the network parameters to optimize
the evaluation. The policy network exports the control commands to drive cooling fans according to
the airflow and the temperature information. The parameters of the policy network are adjusted on
the basis of the evaluation of the value network. The selection of the reward function is conducted by
considering the accuracy of temperature control and the power consumption of the fans. The reward
is formulated as

r(st, at) = P(t + 1)/P0 +
n

∑
i=1

αimax
{
[Ti(t + 1)− Ri(t + 1)]2 − Di

2, 0
}

/T0
2 (16)

where P(t + 1) denotes the power consumption of the fans at time t + 1. Ti(t + 1) and Ri(t + 1) denote
the sampled and target temperature values of sensor i at time t + 1, respectively. Di represents the
requirement of temperature control precision and αi is the factor that regulates the ratio of each control
target. P0 and T0 are the basic values of power consumption and temperature respectively.

5. Experiments and Discussion

5.1. Experiment Setup

The proposed control method incorporating bimodal airflow-temperature sensing with
reinforcement learning is applied to execute the temperature and energy management in a mockup of
a multimodal instrument as seen in Figure 7.

The configuration of the mockup is shown in Figure 8, which contains six fans (Fan1 to Fan6) and
six inside modules (Module1 to Module6). There is a heater in each module. The different module
has a different shape, size and heating power. Six cooling fans are installed at the back of the mockup,
serving as the actuators to generate airflows inside the mockup. Six airflow-temperature sensors are
distributed at the tops of six modules and used to detect the airflow velocities and temperatures in situ.
The power distribution and data conversion board supplies power to cooling fans, and acquires the
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sensor data and transmits them to the computer. The computer executes the reinforcement learning
algorithm and exports the control commands. The commands are transmitted through the data
conversion board to actuate the cooling fans, formatted as pulse width modulation (PWM) signals.
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5.2. Experiment Results and Discussion

Two experiments were conducted. The first experiment was aimed at the selection of the control
target. Dual indices of the temperature and energy-saving were considered as the control targets,
the results of which are compared with that of only accounting for the temperature as shown in
Figure 9. The second experiment aimed at the evaluation on the temperature control by using dual
physical fields of airflow and temperature, the results of which are compared with that of using only
the temperature sensing as shown in Figure 10.
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Figure 10. The control effect comparison when taking temperature only as input and taking airflow
speed and temperature as input. (a,b) Temperature signals with airflow information when setting the
same or different temperature targets. (c,d) Temperature signals without airflow information when
setting the same or different temperature targets. (e,f) Cost function comparison with or without
airflow information.

The temperature target was set to 20 ◦C in the first experiment and the control accuracy was
required to be less than 1 ◦C. The Figure 9a,b show the change curves of temperature and PWM
signals when only considering temperature as the target, while Figure 9c,d account for the temperature
and energy-saving.

The T1–T6 in the figures denote the temperatures sampled by the sensors placed at Module1 to
Module6 separately. T-Target denotes the target temperature. P1–P6 denote the PWM signals sent to
Fan1 to Fan6. The fan’s rotate speed increase with the rising of PWM signal’s value. At first, the fans
didn’t work, and the sampled temperatures located away from the target temperature. Then the control
algorithm started working. The sampled temperatures varied in the predefined target temperature.
Due to the different control purposes, the temperature and PWM signals had their own features.
The learning rate was set the same and with the purpose of making the system work stably. As shown
in Figure 9a,b, when considering the temperature as target only, the temperature signals surrounded
the target temperature under a steady state. But when taking into account the temperature and
energy-saving as illustrated in Figure 9c,d, although the steady state error increased slightly, the PWM
signals were lower, which made less power consumption. An examination of Figure 9c,d revealed
that when the temperature and PWM signals moved away from the optimal running state, the PWM
signals could be clearly adjusted to make a better result. The temperature control error and power
consumption varying curves of the two conditions can be obtained in Figure 9e,f. The duration of
response was about 1000 s.

It can be observed that the temperature controls with and without considering energy-saving
both satisfied the temperature control requirement, which is less than 1 ◦C. However, the power
consumption could be also controlled by using dual-objectives of temperature and energy-saving.
The comparison of the cost function value and power consumption in the two cases is shown in Table 1,
where the cost function is formulated as Equation (17).

J(n) =

√√√√1
2

6

∑
m=1

e2
m(n) (17)

where e represents the difference between the target and actual temperature, m represents the number
of the module, and n represents the sample number.
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Table 1. Comparison of cost function value and power consumption with different control targets.

Index Temperature as Target Temperature and Power Consumption as Targets

Cost Function/◦C 0.43 0.97
Power Consumption/W 6.53 4.97

Figure 10 shows the temperature control results of using only the temperature sensing and
using dual physical field information of airflow and temperature. Figure 10a,b were the temperature
control performance with airflow information, while Figure 10c,d were without airflow information.
These curves could all move toward their targets at last and the duration of response were about 1000 s
and 2000 s, respectively. In both settings, it is not hard to see that by using two physical parameters
of airflow and temperature as sensing information, the temperature control became more accurate
and faster than only sensing the temperature. The airflow information accelerated the temperature
control process, shortened the response time and improved control accuracy. The comparison of the
cost function values is shown in Table 2.

Table 2. Comparison of cost function value with different sensing information.

Cost Function With Airflow-Temperature
Information

With Temperature
Information

Cost function with same
temperature target/◦C 0.46 0.80

Cost function with different
temperature targets/◦C 0.47 0.71

Experiment results demonstrate the advantages of taking dual parameters of airflow and
temperature as sensing information and selecting dual-objectives of temperature and energy-saving as
the control targets. The aforementioned on-line reinforcement learning method can effectively solve
multi-objective control problem, especially for coupling MIMO integrated system.

6. Conclusions

In this paper, we proposed a novel efficient method incorporating bimodal airflow-temperature
sensing with the reinforcement learning for fast and accurate thermal and energy management with
good robustness and adaptability. The methodology is easily operated by self-learning in no need of
controlled object model and human priori experiences. The bimodal airflow-temperature sensing is
achieved by a micromachined sensor that can simultaneously detect the dual fields of airflow and
temperature, which provides comprehensive information for the reinforcement learning approach of
thermal and energy management. The experiment results validate the effectiveness of the proposed
control method and demonstrate its superiorities on intelligence, control accuracy, and efficiency.
The proposed method can be extended to apply in various systems, such as electronic equipment,
energy devices, construction, plug-in hybrid electric vehicle, and data center.
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