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Abstract: In this paper, an intelligent sliding mode controlled voltage source inverter (VSI) is
developed to achieve not only quick transient behavior, but satisfactory steady-state response.
The presented approach combines the respective merits of a nonsingular fast terminal attractor (NFTA)
as well as an adaptive neuro-fuzzy inference system (ANFIS). The NFTA allows no singularity and
error states to be converged to the equilibrium within a finite time, while conventional sliding mode
control (SMC) leads to long-term (infinite) convergent behavior. However, there is the likelihood of
chattering or steady-state error occurring in NFTA due to the overestimation or underestimation of
system uncertainty bound. The ANFIS with accurate estimation and the ease of implementation is
employed in NFTA for suppressing the chatter or steady-state error so as to improve the system’s
robustness against uncertain disturbances. Simulation results display that this described approach
yields low distorted output wave shapes and quick transience in the presence of capacitor input
rectifier loading as well as abrupt connection of linear loads. Experimental results conducted on a
1 kW VSI prototype with control algorithm implementation in Texas Instruments DSP (digital signal
processor) support the theoretic analysis and reaffirm the robust performance of the developed VSI.
Because the proposed VSI yields remarkable benefits over conventional terminal attractor VSIs on
the basis of computational quickness and unsophisticated realization, the presented approach is
a noteworthy referral to the designers of correlated VSI applications in future, such as DC (direct
current) microgrids and AC (alternating current) microgrids, or even hybrid AC/DC microgrids.

Keywords: intelligent sliding mode; voltage source inverter (VSI); DC microgrid; adaptive
neuro-fuzzy inference system (ANFIS); chattering

1. Introduction

Distributed energy resources (DERs)-based microgrids can yield electricity to the grid and once
the power grid goes out unexpectedly. Such microgrids assure the reliability of electricity supply with
the presence of sensitive loads [1–3]. The DERs require power electronic interfaces for the connection
of the microgrid. Generally, we can group the microgrids into two types, i.e., DC microgrids and AC
microgrids. Owing to better compatibility, higher efficiency and robust stability, the DC microgrids
have gained more and more research interest. In a DC microgrid, voltage source inverters can be
adopted as an interface between the DC grid and typical AC loading. The inverter works in two
different modes. One is island mode, where the inverter can be regarded as a voltage source. It can
afford the devices with sine voltage, and pulse width modulated control can be used in this mode.
The other operation mode allows the delivery of the current to the grid, and another control scheme
can be adopted like hysteresis current control. Using reference voltage tracking techniques, the voltage
source inverter (VSI) can control the voltage quality of the distribution networks [4,5]. Diverse
methodologies can be found in publications, namely the H-infinity approach, the deadbeat technique
and the fractional order repetitive controller [6–8]. However, there is a compromise between the
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transient response and the steady-state response. Sliding mode control (SMC) offers insensitivity
against parametric uncertainties and external disturbances [9–11]. The SMC has been attempted
to design VSI [12–21]. The grid-tied inverter controlled by the fixed switching frequency SMC is
developed. A good steady-state response can be obtained, but chatter and poor transience exist [12,13].
The ingenious combination of a proportional-resonant and a SMC is suggested to improve the system
response of the single-phase inverter. Even if the transient behavior of system performance is effectively
improved, the presented algorithm leads to steady-state errors [14,15]. A control method based on
the multi-slope sliding surface is also employed for single-phase inverter design. The transient and
steady state behavior is compromising while feeding nonlinear loads [16,17]. Using a stable switching
manifold to enhance the robustness of a grid-connected inverter has been reported. The state trajectory
cannot touch the predetermined sliding manifold in a fast finite time, thus displaying output-voltage
distortion [18,19]. Additionally, an improved sliding mode controller for a photovoltaic inverter
is presented by [20,21]. Although such an improved methodology has shown fast transience and
satisfactory steady-state response, the problem of the chattering still appears around the sliding
manifold. It is important to heed that the long convergence time and the chattering phenomenon exist
in the above-mentioned conventional SMCs.

During the past few years, terminal attractors (TAs) have attracted growing interest for application
in different areas [22,23]. TAs can provide finite time tracking while still preserving the robustness
of the conventional SMC [24,25]. Unfortunately, TAs still produce the difficulties in singularity and
chattering. The singularity may cause the system states to converge to zero in infinite time. For the
sake of suppressing the singularity, the nonsingular fast terminal attractor (NFTA) is introduced
in this paper. The NFTA makes tracking error on the sliding surface converge to zero within a
finite time, thus obtaining closed-loop stability. For practical applications, unmodeled dynamic
uncertainty and parametric plant perturbation, and external disturbances are not so easy to estimate
beforehand. If the uncertain boundary conditions are somewhat big or small, a large amount of
chattering or steady-state error happens, losing the existence and invariance of the sliding mode.
Former works have recommended high-gain feedback to reject perturbations resulting from boundary
uncertainties. Employing large constant gain is easy to implement, but there is unpopular chattering
or steady-state error occurring in the plant system [26,27]. Many studies have found that the
chattering or steady-state error can be attenuated by the use of the observer method or hybrid
control strategy [28–35]. A low-cost microcontroller under hybrid control has been presented.
The proposed controller effectively reduces the chattering, but there is a steady-state error in response
to sudden load disturbance [28,29]. The improved observer due to higher accuracy and stronger
robustness is also introduced into sliding mode design for a servo system. Though good steady-state
behavior can be seen, the output waveform shows a slow dynamic response during the transient
stage [30,31]. To withstand parameter variations and load interferences, a sliding control with an
adaptive law combined with an expert semantic description is used to control a grid-connected
inverter. The resulting waveforms display a fast transient characteristic, however a large amount
of chattering still exists in this presented method [32,33]. By the application of a typical microgrid,
the developed system with the association of fuzzy and SMC can obtain improved performance
in steady-state and transient responses. Unfortunately, such a methodology is complex and needs
heavy calculation [34,35]. To address the problem of the chattering or steady-state error, an adaptive
neuro-fuzzy inference system (ANFIS) incorporating both neural networks and fuzzy logic principles
is employed in this paper. [36,37]. A neural network is a kind of supervised learning algorithm, which
uses a historical dataset to forecast future values. In fuzzy logic, the control signal is produced from
the firing of the rule base. Using this hybrid-learning algorithm, the difference between demanded and
real outputs is minimized, therefore weakening the chattering when the estimation value exceeds the
uncertain system boundary, or reducing steady-state error when the estimation value falls short of the
uncertain system boundary [38–40]. With the association of ANFIS and NFTA, the proposed approach
can yield a VSI feedback control with many advantages, such as finite-time fast convergence without
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inflicting any singularity, fast dynamic response, low THD (total harmonic distortion), chattering
reduction and less steady-state error in the presence of transient loading and steady-state loading.
Comparison and discussion of the results in simulation and experiment are provided to corroborate
the applicability and feasibility of the proposed approach.

2. Mathematical Representation of VSI

Figure 1a shows a single-phase VSI that is made up of power MOSFET (metal-oxide-semiconductor
field-effect transistor), an LC (inductor capacitor) filter and load. The symbol Vs represents the DC
bus voltage, vo denotes the output voltage, io is the output current, and L, C, and R are the inductor,
capacitor and load, respectively. As shown in Figure 1b, vinv stands for a pulse width modulated voltage
of magnitude Vs (or −Vs) with ∆T centered in the sampling interval T. Since the inverter output voltage
is a sinusoidal waveform, the vo has to follow a desired sinusoidal waveform. For example, for a rms
(root mean square) 110 V with a specified frequency of 60 Hz utility power, the vo expected voltage
waveform will be

√
2 · 110 · sin(2π60 · t). In other words the output voltage vo of the VSI can be generally

expressed as
√

2 · Vrms · sin(2π f · t) in which Vrms and f are the root-mean-square and the frequency
values of output voltage, respectively. According to the control theory literature [41], we find that the
design of the VSI is intrinsically a typical tracking control problem. By choosing x1 = vo and x2 =

.
vo,

the dynamic equation of the VSI is derived as:[ .
x1
.
x2

]
=

[
0 1
− 1

LC − 1
RC

][
x1

x2

]
+

[
0
1

LC

]
vinv (1)

where a1 = −1/LC, a2 = −1/RC, b = 1/LC and vinv = (∆T/T) ·Vs. The control signal u is equal to
d ·Vs (time-averaging technique, see [42,43]), where d is the duty ratio of switching ranging from −1
to 1 and Vs denotes the DC bus voltage.
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Figure 1. Construction of voltage source inverter (VSI) (a) Circuit diagram (Vs: DC-bus voltage, vinv :
equivalent output voltage of pulse width modulation, vo : output voltage, io : output current and R :
load); (b) PWM (pulse width modulation) pattern (T : sampling interval and ∆T : width).
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Letting the desired output voltage vd be
√

2 ·Vrms · sin(2π f · t), new state variables are defined as:{
e1 = x1 − vd
e2 = x2 −

.
vd

(2)

By the use of (1) and (2), the error dynamics of a VSI is written as:[ .
e1
.
e2

]
=

[
0 1
−a1 −a2

][
e1

e2

]
+

[
0
b

]
u +

[
0
Θ

]
(3)

where Θ = −a1vd − a2
.
vd −

..
vd is the uncertainties, such as plant parameter variations, external

disturbances and measurement noises. Apparently, we can design u to allow e1 and e2 to converge to
zero, i.e., x1 = vd and x2 =

.
vd. In the path-tracking control design, it is worth pointing out that once e1

and e2 have fast finite time convergence, the system will achieve good performance, strong robustness
and infinite stability. Based on the motive for fast finite time convergence and fast convergence
property inherited from NFTA, the NFTA VSI will be able to offer not only good dynamic response
(fast convergence), but also higher accuracy control (lower THD and tracking error). However, the load
of the VSI is not fixed, and the system still has chattering or steady-state error problems when exposed
to large step change in loading conditions, extreme parameter variations or highly non-linear loads;
the ANFIS can be suggested as an effective way to resolve the chattering or steady-state error in
practical applications [44–50]. Therefore, an intelligent robust tracking controller with the masterly
combination of the NFTA and ANFIS compensation for high performance VSI will be presented and
the design of the controller is as follows.

3. Proposed Control Approach of VSI

Problem Statement

Firstly, in this section, the problem statement of the nonlinear system using classic finite-time
convergent SMC is presented, and then the proposed controller is designed.

The following second-order nonlinear dynamics are defined as:{ .
x1 = x2
.
x2 = f (x) + g(x)u + Θ(x)

(4)

where x =
[

x1 x2

]T
is the state vector, f (x) and g(x) stand for known nonlinear functions,

u represents the control input, and Θ(x) symbolizes unknown external disturbances, which are
assumed to be bounded as ‖Θ(x)‖ < ξ; here, ξ is positive constant.

A conventional TA can be written as:

σ = x2 + β|x1|γsgn(x1) (5)

where β is a positive real number and 0 < γ < 1 . Although TAs can achieve finite-time stability of the
system, both the performance and convergence speed of the system are deteriorated while an initial
system state stands off the equilibrium. FTA attempts to overcome this problem as follows:

σ = x2 + αx1 + β|x1|γsgn(x1) (6)

where α is a positive real number. When x1 is far from the zero, the characteristic of the system becomes
σ ≈ .

x1 + αx1, thus yielding exponential stability. When x1 is close to zero, the FTA is introduced
and allows the fast convergence rate of system behavior, which gives rise to finite-time convergence.
However, there is still the problem of the singularity appearing in FTA for practical applications.
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Eventually for the error dynamics (3), the NFTA can be constructed to ensure faster convergence
and precise control without the singularity problem as follows [11,24,25]:

σ = e1 + α|e1|ρ1sgn(e1) + β|e2|ρ2sgn(e2) (7)

where α > 0, β > 0, ρ1 > 1 and 1 < ρ2 > 2.
The feedback control law of NFTA is designed as:

u(t) = ue(t) + us(t) (8)

with:

ue(t) = −b−1[a1e1 + a2e2 +
1

βρ2
|e2|2−ρ2sgn(e2) +

αρ1|e1|ρ1−1

βρ2
|e2|2−ρ2sgn(e2)] (9)

us(t) = −b−1[(ξ + τ)sgn(σ)] (10)

where τ > 0, ue is equivalent control for a nominal system without singular phenomenon, and us

stands for sliding control that arrests external load disturbance. Thereby, the states reach σ = 0 and
finite-time convergence is provided.

Proof. Choose the following Lyapunov candidate function

V = 0.5σ2 (11)

Calculating the derivative of V along the trajectories of (3) gives:

.
V = σ

.
σ

= σ
( .

e1 + αρ1|e1|ρ1−1 .
e1 + βρ2|e2|ρ2−1 .

e2

)
= σβρ2|e2|ρ2−1[w− (ξ + τ)sgn(σ)]

(12)

Owing to the existence of σ 6= 0, e2 6= 0 and ‖Θ‖ < ξ,
.

V ≤ −τ|σ| < 0, which infers that the σ in
(12) can be converged to the equilibrium point within a finite time, a finite system-state convergence
time of (3) yields while σ is reached. However, the NFTA may undergo chattering or steady-state
error when the load is a severely uncertain circumstance. In order to get rid of the chattering effect,
the ANFIS displayed as (13)–(21) is integrated into the control law (8) in the VSI design. Figure 2 plots
a common architecture of an ANFIS, which uses the Takagi–Sugeno type fuzzy model with two if-then
rules as the following statements [36]:

Rule 1 : If e1 is A1 and e2 is B1 then h1 = p1e1 + q1e2 + r1 (13)

Rule 2 : If e1 is A2 and e2 is B2 then h2 = p2e1 + q2e2 + r2 (14)

where Ai and Bi symbol the fuzzy sets in the antecedent, and pi, qi and ri signify the design parameters
decided in the training duration.

Layer 1: A node function is employed through every node i as:

O1
i = µAi (e1), i = 1, 2 (15)

O1
i = µBi (e2), i = 3, 4 (16)

where µAi and µBi can use fuzzy membership functions.
Layer 2: Every node calculating the rule’s firing strength by the multiplier is as follows:
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O2
i = wi = µAi (e1)µBi (e2), i = 1, 2 (17)

where wi stands for the output with the firing strength of each rule.
Layer 3: Node i computes the proportion between ith rule’s firing strength and the sum of all

rules’ firing strengths. The normalized firing strengths yield:

O3
i = wi = wi/(w1 + w2), i = 1, 2 (18)

Layer 4: Every node i yields the following function:

O4
i = wihi = wi(pie1 + qie2 + ri), i = 1, 2 (19)

where wi stands for the output of the previous layer, and pi, qi and ri parameters are fuzzy
consequent parameters.

Layer 5: The single node of this layer deals with the overall output, summing up to all entered
signals as follows:

O5
i =

2

∑
i=1

wihi = (w1h1 + w2h2)/(w1 + w2) (20)

The output h shown in Figure 2 can be formulated as:

h = (w1e1)p1 + (w1e2)q1 + (w1)r1 + (w2e1)p2 + (w2e2)q2 + (w2)r2 (21)
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Figure 2. Architecture of the adaptive neuro-fuzzy inference system (ANFIS) (ei: input, Ai, Bi :
linguistic labels, wi : weight and hi : output, for i = 1, 2 ).

In summary, the ANFIS architecture is formed by the fuzzy logic model and the artificial neural
network, so that the mapping of the inputs to the output is performed. In Figure 2, the basic
construction of the ANFIS is illustrated for the first-order Takagi–Sugeno interface system. It is
made up of two inputs e1 and e2, and one output h. The first and second layers are regarded as
the fuzzification and rule layers, respectively. The first layer deals with the mapping process of
the input variable corresponding to each membership functions, and the second layer calculates
the rules antecedents. The third layer is called the normalization layer, and the fourth and fifth
layers respectively provide the tasks of defuzzification and output. The third layer can normalize the
strengths of the rules and then the fourth hidden layer determines the consequents of the rules. Finally,
the output layer counts the complete output as the sum of entire arrived signals. In short, the ANFIS
permits the choice of the rule base which adapts to the system circumstance. The rule base can be
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chosen using a backpropagation neural network algorithm. For the sake of increasing the performance,
the feature of the fuzzy logic provides the approximation of a nonlinear system via IF-THEN rules that
is inherited in this modeling technology. Such a combined method makes ANFIS a universal estimator.
�

4. Simulation and Experimental Results

The simulation and experimental verification of the presented approach are carried out on a VSI
with specifications shown in Table 1. For the sake of the analysis and comparison to the dynamic
and steady-state response, the overall system is tested under varying operating conditions, namely
step-load changing, filter parameter variations and rectifier loads.

Table 1. VSI system parameters.

Filter Inductor L = 0.1 mH
Filter Capacitor C = 2 µF
Resistive Load R = 12 Ω

DC link Voltage Vs = 200 V
Output Voltage and Frequency vo = 110 VRMS, f = 60 Hz

Switching Frequency fs = 12 kHz

In the simulated waveforms of Figure 3, obtained using the proposed approach, the disturbances
caused by the connection of a rated resistive load are presented. After a slight transience, the output
voltage quickly recovers to the demanded rms value of 110 V. A good dynamic response and the ability
of abrupt disturbance rejection are yielded. Inversely, Figure 4 represents simulated output voltage
and output current subject to the same load circumstance obtained using conventional SMC. The large
voltage drop and slow recovery time occur while the output voltage has a noticeable oscillation
at the back of the transient termination. Figure 5 indicates that the proposed VSI encounters filter
parameter variations from 20% to 200% of nominal values with a 12 ohm resistor. The proposed
approach is capable of tolerating severe plant parameter variations. Therefore, the simulated output
voltage produces a low distorted sinusoidal waveform (%THD is 0.02%). However as expected,
the conventional SMC VSI (shown in Figure 6) exhibits low steady-state accuracy with periodic
distortion in the simulated output voltage. Namely, it has a high sensitivity to filter parameter
variations, resulting in a great deal of voltage harmonics (%THD is 14.32%). Table 2 gives the drop and
%THD of the proposed VSI and the conventional SMC VSI in the presence of step load changes and filter
parameter variations. A step change in a resistive load (from no load to full load) has been carried out
for the experimental waveforms (as shown in Figure 7) obtained using the proposed approach. Under
the same load testing condition, Figure 8 depicts the experimental output voltage and output current
obtained using the conventional SMC. Comparing of the results from the two figures, the proposed
approach yields good compensation for voltage drop mitigation, namely less voltage drop and faster
transient recovery time. The output voltage waveform corroborates the robustness of the proposed
approach in the presence of load transients. There is no apparent sinusoidal jitter after the occurrence
of the transience. Surely, the conventional sliding mode controlled VSI unmasks the performance
deterioration—for instance, a large voltage drop when firing at an angle of 90◦, slow dynamic response
and noticeable vibration behind the transient resumption. To authenticate the performance of the
proposed approach under the nonlinear load, Figure 9 plots experimental waveforms in response to a
full-wave rectified resistive load (40 Ω) with a DC-side capacitor filter (330 µF). The output voltage of
the VSI is close to sine wave and has a low percent THD of 1.82%, which is superior to the five percent
industrial standard. Same as the nonlinear load case, the experimental waveforms obtained using
the conventional SMC are depicted in Figure 10. The experimental construction is given in Figure 11.
The output voltage with a high %THD of 10.21% distorts the resulting waveform, thus leading to large
deviation and an unsatisfactory steady-state response. The output voltage drop and %THD of the
proposed controlled VSI, as well as the conventional VSI, are listed in Table 3 under step load changes
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and nonlinear loads. Finally, the improvement of the proposed method really exceeds conventional
SMC and is also better than FTA [25].Energies 2018, 11, x 9 of 15 
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Table 2. Simulation comparison of output voltage drop and %THD.

Proposed Approach

Step-load changing Filter parameter variations
Voltage drop %THD

4.6 Vrms 0.02%

Conventional SMC

Step-load changing Filter parameter variations
Voltage drop %THD

22.9 Vrms 14.32%
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Table 3. Experimental comparison of output voltage drop and %THD.

Proposed Approach

Step-load changing Rectifier load
Voltage drop %THD

6.5 Vrms 1.82%

Conventional SMC

Step-load changing Rectifier load
Voltage drop %THD

24.5 Vrms 10.21%

5. Conclusions

This paper has presented a hybrid controller, which is the association of a robust control technology
and machine learning algorithm, to control a voltage source inverter. In this proposed control method,
a finite convergence time NFTA offers strong robustness and fast finite-time stability without any
singularity. However, if the system is exposed to parametric nonlinearities, parameter variations
or unmodelled dynamics, it is not easy to obtain these accurate values completely in practice. As a
result, chattering or steady-state error occurs due to the overestimated or underestimated uncertainty
bound. The ANFIS with accurate bound estimation is used to tackle and accommodate the uncertain
perturbations. The Lyapunov stability criterion displays that the combination of NFTA and ANFIS
guarantees the practical finite-time stability of the tracking errors with greater robustness to system
uncertainties. Simulations and experiments illustrate that the proposed approach yields very good
steady-state and dynamic characteristics under various operating circumstances, such as load step
changes, filter parameter variations, and rectifier-type loads.
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