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Abstract: Along with the emerging development of demand side management applications, it is
still a challenge to exploit flexibility realistically to resolve or prevent specific geographical network
issues due to limited situational awareness of the (unbalanced low-voltage) network as well as
complex time dependent constraints. To overcome these problems, this paper presents a time-horizon
three-phase grid-supportive demand side management methodology for low voltage networks by
using a universal interface that is established between the demand side management application and
the monitoring and network analysis tools of the network operator. Using time-horizon predictions
of the system states that the probability of operational limit violations is identified. Since this
analysis is computationally intensive, a data driven approach is adopted by using machine learning.
Time-horizon flexibility is procured, which effectively prevents operation limit violation from
occurring independent of the objective that the demand side management application has. A practical
example featuring fair power sharing demonstrates the effectiveness of the presented method for
resolving over-voltages and under-voltages. This is followed by conclusions and recommendations
for future work.

Keywords: demand side management; operation limit violations; probabilistic power flow; network
sensitivity; neural networks

1. Introduction

The fast growing share of distributed renewable energy sources (DRES) like solar photovoltaic
(PV) and highly energy-intensive appliances and distributed energy resources (DER) such as heat
pumps and electric vehicles (EVs) results in increasing uncertainties in the power flows in distribution
networks, which challenges the distribution system operator (DSO) to keep the network operated
within safe and secure operation limits [1–4]. Due to the high uncertainties, a continuation of the current
paradigm of infrastructure over dimensioning is expected to result in high future investment costs.
To cope with this, DSOs can deploy control algorithms to resolve operational limit violations, e.g., using
on-load tap-changers (OLTC) [5] or reactive power control of inverters [6,7]. However, the application
of such direct control actions can be highly expensive or otherwise ineffective. The consequence is that
specific operation limit violations stay unresolved if the local controllers cannot effectively resolve
the operation limit violation, i.e., there is a remaining operation limit violation (OLV). Alternatively,
the DSO can invoke flexibility in the demand and supply of DER owners instead by using demand side
management (DSM) applications [8]. Due to high R/X ratio’s typical in distribution networks, active
power from DSM will have a more significant influence on the system states than a reactive power
control [9]. This flexibility can result from DER capable of advancing or deferring their starting time
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or changing the active power consumption or production during some time interval [10]. Examples
include various types of controllable appliances like time shiftable appliances (e.g., freezers or washing
machines) and buffering appliances involving some form of storage such as batteries of EV and heat
pumps [11].

DSM applications are expected to be operated by a market actor, i.e., aggregators or energy
suppliers with limited to no insight in the network operation state. As such, they tend to be unaware
about specific grid related issues and physical and geographic aspects of the network during operation.
Although some are designed to resolve operation limit violations [12,13], their optimization objective
is often not focussed on resolving specific operation limit violations occurring at a certain geographical
location. This is especially true for low-voltage (LV) networks where uncertainty is even higher due to
the non-aggregated load profiles [14].

These shortcomings can be solved by using a universal interface between DSOs and DSM
applications, facilitating the exchange of information on specific (predicted) network issues, and ending
user flexibility. In this case, state prediction of the network system states will be of high value to
account for the probabilistic system states that will occur in the near future. For coping with the
high stochasticity of DER and end user behaviour, a probabilistic approach is required to determine
potential network risks [15–17]. On the down side, probabilistic approaches often require some form
of probabilistic power flow (PPF) calculations to evaluate the probability of having operation limit
violations at certain locations in the network. Despite abundant attempts (e.g., [18–22]) to lower the
computational complexity for PPF calculations for a large three-phase network, they still require a
significant amount of time to complete. Performing PPF calculations for each 15-min time interval
within a 24-h day-ahead period for all the networks it operates forms an enormous computational
burden. Quite often, however, we are not interested in the full probability density functions produced
by the PPF, but solely in the probability that a certain operation limit will be violated. Rephrasing along
with control and management decisions are made based only on specific information of the operational
limit violations (e.g., the probability of it exceeding a certain predefined threshold). As such, only a
limited amount of information is required, which creates possibilities to speed up the computation time.

To this extent, in this work, we use machine learning to come up with predictions on whether
the probability for operation limit violations exceeds a certain threshold and how DSM can bring the
probability back to acceptable levels. Various machine learning techniques such as neural networks
(NN) have attracted greater attention for applications in DSM. Often, their application can be found in
load forecasting [23,24]. Furthermore, various types of home energy management systems implement
machine learning for decision making. For example, in Reference [25], a NN is applied for the
scheduling of PV panels and a storage system. This work presents the application of NN to specifically
deal with geographically dependent operational limit violations in distribution networks, which results
in a probabilistic approach for time-horizon DSM using a universal applicable interface between DSO
and DSM applications. Specifically, the probabilistic NN based analysis will indicate whether OLV are
expected to occur at certain geographical locations in the network and with what probability. If this
probability exceeds a certain threshold, the DSO will request the DSM application for flexibility to
reduce the probability of the violation of operation limits at acceptable levels. Based on the probability
of the system states of the three-phase nodes over a day-ahead (DA) or intra-day (ID) time interval,
the three-phase sensitivity of the operational limit violation faced by the DSO with respect to the active
power injection by customers is derived. The DSO will use this information to specify the expected
operation limit violation and how its probability can be reduced towards the DSM application by
using the universal interface. The main contributions of the paper are:

• Time-horizon analysis of operation limit violations using a probabilistic NN based approach:
if operational limit violations are expected with a certain probability, grid-supportive DSM is
triggered by using a universal interface to reduce the probability back to acceptable levels;

• Specification of a three-phase unbalanced network operation limit violations occurring with
a certain probability over time and their sensitivity with respect to active power, according
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to the network model in Reference [26]. This allows DSM applications to resolve network
issues by optimizing time dependent flexibility, which is independent of the objective of the
DSM application;

• A demonstration will be given of a time-horizon DSM optimization resolving under and over
voltages featuring fair power sharing among the different prosumers.

The remainder of the paper is organized as follows. In Section 2, the universal interface between
the DSO and DSM applications is described, which allows for a generalized procurement of flexibility.
Section 3 follows up with how the required amount of flexibility is triggered based on predicted
system states and the network sensitivity, which is optimized according to the objective of the DSM
application. Section 4 presents an alternative method based on a NN. Section 5 will present the overall
DSM optimization while Section 6 gives a proof of concept using numerical simulations, which shows
the applicability of the proposed approach on the thee-phase IEEE low voltage EU network. Lastly,
Section 7 will elaborate further recommendations and conclusions.

2. Universal Procurement of Flexibility

This section briefly introduces the universal interface adopted in this work for establishing DSM
using a probabilistic, time-horizon, grid-supportive methodology. A more in-depth discussion of
this framework can be found in Reference [27]. One of the main features of this interface is that it
should work efficiently with all possible DSM applications in the field. In this case, the starting point
of the interface is that the exchanged information should be non-iterative and integrable in the widest
selection of optimization algorithms. Therefore, for each time interval, the DSO can specify what
flexibility it requires depending on the geographical locations of the flexibility within the network.
After receiving this information, the DSM application can allocate the required flexibility depending
on its own optimization strategy and send the results back to the DSO. The specified information by
the DSO on the required flexibility consists of lower limits for certain linear combinations of changes
in active power injection at the geographical locations of the customer connection points and their
corresponding linear gains. From this, linear constraints can be constructed, which can be considered
by virtually any DSM application. These gains are formed by the sensitivity matrix of the network,
which specifies the linearized sensitivity of the system states with respect to changes in active power,
as detailed in Section 3.2. As such, independent of what objective a DSM application pursues, it will
be able to resolve the OLV by including constraints on the before mentioned sensitivity of active
power injection towards the OLV the DSO faces. This way, the DSM application is enabled to consider
the operation limits at each geographical location in the distribution network in its optimization.
Depending on the DSM application in place, additional information can be included such as for
bidding or pricing information. In the proposed framework of Reference [27], the procurement of
flexibility takes place in two stages: (1) time-horizon flexibility based on both probabilistic power flow
and machine learning during the DA/ID preventive planning phase, which is the main topic of this
paper and (2) real-time flexibility based on state estimation during the corrective execution phase,
as described in Reference [27].

Preventive time-horizon flexibility will be procured in on a DA/ID basis. Preventive DSM based
on predictive load forecasting [28–30] will be of high importance to account for the system states and
possible operational limit violations that might occur in the near future. One of the motivations for
this is that prosumer flexibility in energy production or consumption is expected to involve complex
time-dependent interdependencies. This means that flexibility provided within some time interval
might need to be compensated by flexibility in another time interval. Furthermore, to prevent excessive
life time degradation, DSOs will prefer to not switch certain controllers very frequently. This can,
for example, hold true for OLTC tap position adjustments. As such, an optimization over a certain time
horizon of the network system states and the available flexibility is of high importance to resolve OLVs
that are expected over time. For this, probability density functions (PDF) for each of the system states
can be obtained for the time interval of the DA/ID optimisation period from where the probabilistic
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system states can be obtained by using probabilistic power flow calculations. DSOs can make important
decisions with this information for adjustments of set points of the previously mentioned local control
capabilities. Whenever there are any OLV after adjustments of the local controller setpoints, the DSO
can trigger time-horizon flexibility from DSM applications by specifying the specific OLV at hand
along with the sensitivity regarding active power injection at each geographical network location.

Within the corrective execution phase, real-time DSM is based on actual state estimation (SE) of
the network. It is expected that SE capabilities must be expanded from transmission to distribution
networks to gain insight in the network system states and allow for the control applications, which is
mentioned earlier [31]. Within the real-time execution phase, real-time insight in the actual system
states will be crucial to trigger these control applications as well as real-time flexibility from DSM
applications, which is described in Reference [27].

3. Probabilistic Grid-Supportive Flexibility

As stated, the DSO can invoke flexibility in active power injection from DSM applications to
address OLVs. Based on the real-time and predictive monitoring capabilities, the interface between
the DSO and the DSM application will facilitate a generalized information exchange on the OLV
the DSO is facing with the sensitivity for changes in active power at specific geographical locations.
As discussed, a newly proposed benchmarking method is proposed based on PPF calculations as
well as a novel method using a NN. A flow diagram of the full functioning of the proposed methods
covered in Sections 3–5 is shown in Figure 1. This figure illustrates both the benchmark approach and
the NN approach.
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3.1. Probabilistic Prediction of Operational Limit Violations

In this paper, we assume an unbalanced radial network [26] consisting of N nodes including the
slack node where there are M households tapping of the feeders offering flexibility in their active
power consumption or production. The slack node is located at the root of the radial feeder and is
assumed to be constant. To determine the required amount of flexibility in active power consumption
or production at each node in the network within the preventive planning phase, the DSO performs a
probabilistic analysis of the network system states for each time interval t of the DA/ID optimization.
This can be either based on the before mentioned PPF or the NN approach presented in this paper.
For benchmarking purposes, in this section, first the PPF approach will be discussed, which is followed
by the NN based approach in Section 4.

As an input, the PPF calculation takes the power injection PDF of each household, which is
based on predictions. The PPF calculation results in a PDF for the all the system states of the network.
For example, the probability density of the voltage magnitude Vt

n,p occurring at node n, phase p,

and time interval t is given by P
(

Vt
n,p

)
. Now suppose that the network has a lower limit and upper

limit V l and Vu for the voltage magnitude, then the probability of an undervoltage occurring at node n
and phase p during time interval t can be calculated, according to the cumulative distribution function
(CDF) FVt

n,p
. This is shown below.

Pr
[
Vt

n,p ≤ V l
]
= FVt

n,p

(
V l
)
=
∫ Vl

0
P
(

Vt
n,p

)
dVt

n,p (1)

Similarly, for the probability of over voltages, we can state that:

Pr
[
Vt

n,p ≥ Vu
]
= 1− FVt

n,p
(Vu) =

∫ ∞

Vu
P
(

Vt
n,p

)
dVt

n,p (2)

Similar expressions can obviously be made for overloading or violation of voltage imbalances
throughout the phases. However, in this paper, we focus only on under/over-voltages. Now, if the
probability of having an under/overvoltage as expressed in Equations (1) and (2) exceeds a certain
threshold value f . The DSO will opt to procure flexibility from the DSM application in order to shift the
PDF of the voltage magnitudes such that the probability of having an under/overvoltage is brought
down to acceptable levels. To formulate this as an easier condition to deal with, we first introduce the
variables Vt,l

n,p and Vt,u
n,p. In this case, Vt,l

n,p is the voltage magnitude for which the CDF FVt
n,p

equals the
acceptable probability threshold f .

FVt
n,p

(
Vt,l

n,p

)
= f (3)

In other words, there is a probability of exactly f that the voltage at node n and phase p at time
interval t will be lower or equal to Vt,l

n,p. Similarly, Vt,u
n,p, can be expressed as:

FVt
n,p

(
Vt,u

n,p

)
= 1− f (4)

Rephrasing in other words, there is a probability of exactly f that the voltage at node n and phase
p at time interval t will be higher or equal to Vt,u

n,p. In case of a discontinuous CDF, Vt,l
n,p and Vt,u

n,p take the
next available value closest to the nominal voltage. We define the vectors Vt,l

p and Vt,u
p of all voltages

Vt,l
n,p and Vt,u

n,p of all nodes n (apart from the slack node) in phase p and time interval t, according to the
equations below.

Vt,l
p =

[
Vt,l

2,p, Vt,l
3,p, . . . , Vt,l

N−1,p, Vt,l
N,p

]T
(5)

respectively,

Vt,u
p =

[
Vt,u

2,p , Vt,u
3,p , . . . , Vt,u

N−1,p, Vt,u
N,p

]T
(6)



Energies 2018, 11, 2514 6 of 18

Now, the DSO will procure flexibility for under-voltages if any of the voltage magnitudes Vt,l
n,p are

lower than the lower limit V l and flexibility for overvoltages if any of the voltages Vt,u
n,p are higher than

the upper limit Vu. After all, in both cases, the probability of having a voltage limit violation is higher
than the probability threshold f . This can be expressed as the conditions below.

Vt,l
n,p ≤ Vu (7)

and
Vt,u

n,p ≥ Vu (8)

If one of these conditions holds, the DSO needs flexibility to reduce the probability at least to the
acceptable probability threshold f , which is illustrated in Figure 2 and detailed in the next sections.
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3.2. Network Sensitivity Operation Point

To procure the right amount of flexibility from the DSM application, the DSO needs to know how
much flexibility will be required to solve the OLV depending on the geographical location at which the
flexibility is delivered. As stated in the introduction section, this work uses the linearized sensitivity of
the network system states, which has been used effectively in other studies [27,32]. The sensitivity of
the probabilistic OLV informs the DSM application what linear combinations in active power flexibility
can address the OLV. To obtain the linearized sensitivity of OLVs with respect to changes in active
power injection ∆Pt

n,p at node n, phase p, and time t, the Jacobian matrix of the partial derivatives
of the power injections Pt

n,p with respect to the violated system states are derived. As an example,
concerning violation of the voltage magnitude, the partial derivatives can be expressed by using
well-known power flow equations as well as expressing the nodal power injection in terms of the
nodal voltage magnitudes and network parameters (which are considered static and, therefore, left out
of the notation).

Jt
V =



∂Pt
2,a

∂Vt
2,a

∂Pt
2,a

∂Vt
2,b
· · · ∂Pt

2,a
∂Vt

N,c
∂Pt

2,b
∂Vt

2,a

∂Pt
2,b

∂Vt
2,b
· · · ∂Pt

2,b
∂Vt

N,c
...

...
. . .

...
∂Pt

N,c
∂Vt

2,a

∂Pt
N,c

∂Vt
2,b
· · · ∂Pt

N,c
∂Vt

N,c


(9)

It should be noted that if M < N, the nodes at which no active power flexibility is available can
be left out of the Jacobian.

From this point, the operation point of the partial derivatives is based on the outcome of the PPF
calculation. The PPF calculation is in practice often and is completed by using Monte Carlo simulations,
which results in discrete samples of the PDFs of the system states. In this paper, a pragmatic approach
is taken to obtain an effective operation point from the discrete samples of the PDFs of the system
states. Suppose that the Monte Carlo simulations for each time interval t result in a set Kt

p of discrete
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samples of the PDFs of the system states. For each sample k ∈ Kt
p at time interval t, we can compose

the vector of all system states for each node n in phase p.

Vt,k
p =

[
Vt,k

2,p, Vt,k
3,p, . . . , Vt,k

N−1,p, Vt,k
N,p

]T
(10)

We define the subset Kt,l
p ⊂ Kt

p to be the set of samples k, which yields that the minimum value of

Vt,k
p has a probability lower or equal to f , i.e., the minimum value of Vt,k

p is smaller or equal than the
minimum value of Vt,l

p .
minVt,k

p ≤ minVt,l
p (11)

Similarly, the subset Kt,u
p ⊂ Kt

p is the set of samples k, which yields that the maximum value of

Vt,k
p is larger or equal than the maximum value of Vt,u

p :

maxVt,k
p ≥ maxVt,u

p (12)

Lastly, we define δ
t,l
p and δ

t,u
p as the average voltage angle vector, which is averaged elementwise

over all complex voltages corresponding to all k being an element of the set Kt,l , respectively, Kt,u.

Now, the operating point of the network for the Jacobian is chosen to be Vt,l
p ∠δ

t,l
p or Vt,u

p ∠δ
t,u
p ,

i.e., the voltage vectors for which the magnitude corresponds with the probability f and the angle is
averaged over the phasors of the sets Kt,l end Kt,u. Note that the sensitivity will be different for under

and over voltages, which are denoted as St
V,l and St

V,u. Averaging of the angles δ
t,l
p and δ

t,u
p is required

since there is not a single angle that corresponds with the system states for the probability f . For the
voltage magnitudes, there exists a unique relation, which is expressed in Equations (3) and (4). For the
angles, such a unique relation does not exist. Therefore, we average over all the values in the sets Kt,u

p

and Kt,l
p . Note that this is only used for determining a suitable operation point for the Jacobian and in

no way aims to change the power factor of any appliance.
In relation to this, an important note should be made concerning the Jacobian. The partial

derivatives forming the entries of the Jacobian differ depending on the relation between the reactive
and the active power at each node and phase. This relation is determined by the appliance associated
to the power injections. As an example, the power factor can remain constant for any change in
the active power injection (therefore, changing the reactive power injection) or the reactive power
can remain constant independent of the active power injection. This results in different partial
derivatives where highly non-linear or discontinuous relations between active and reactive power will
occur. This might complicate the process of deriving a suitable Jacobian. In the simulation results of
this work, we assume the reactive power to remain constant. Lastly, the sensitivity with respect to the
OLV is obtained by inverting the Jacobian, according to the equation below.

S = J−1 (13)

3.3. Constraints for Demand Side Management

To reduce the probability of a specific operation limit violation to acceptable levels, the DSO
will specify the required minimum required change in any network system state. As flexibility for
resolving operation limit violations most likely will result in shifting power consumption to another
point in time, we also need to specify the available ‘capacity’ in time intervals where no operation limit
violations are expected. If the OLV concerns nodal voltage magnitude violations, the DSO will specify
the vectors ∆Vt

l and ∆Vt
u, which indicates the voltage with which the system states are exceeded and

what capacity is available. We rearrange the elements of ∆Vt
l and ∆Vt

u, in general denoted as ∆Vt,
such that the vectors contain the elements for all nodes n (excluding the slack node) and all phases
p ∈ {a, b, c}.
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∆Vt =
[
∆Vt

2,a, ∆Vt
2,b, ∆Vt

2,c, . . . , ∆Vt
N,a, ∆Vt

N,b, ∆Vt
N,c

]T
(14)

The individual elements of these vectors are given by the equation below.

∆Vt
l, n,p = Vmin −Vt

n,p (15)

and
∆Vt

u, n,p = Vmax −Vt
n,p (16)

In this case, Vmin and Vmax are the minimum and maximum voltage limits while Vt
n,p is the voltage

before DSM at node n and phase p.
As a final step, the change in active power at time t for a certain node n, phase p, and time t is

represented by ∆Pt
n,p where the elements for all nodes and phases together compose the vector ∆Pt.

∆Pt =
[
∆Pt

2,a, ∆Pt
2,b, ∆Pt

2,c, . . . , ∆Pt
n,a, ∆Pt

n,b, ∆Pt
n,c

]T
(17)

Currently, the sensitivity with respect to the OLV is obtained by inverting the Jacobian according
to S = J−1. herein this case, the linearized change in the network system states is calculated by
multiplying the change in active power ∆Pt

n,p injection with the sensitivity matrix. For an OLV of the
nodal voltage magnitude, the resulting change in the system states ∆Vt

n,p yields the following equation.

∆Vt = St
V∆Pt (18)

4. Neural Network-Based Grid-Supportive Demand Side Management

As discussed, performing the PPF is computationally costly despite the many studies in literature
improving its efficiency. By carrying out DA PPF calculations for all time intervals in the DA period
and all the networks it is managing, this might require significant computational power. Therefore,
this work introduces an NN based approach to accurately approximate the findings derived in the
previous section and, therefore, drastically speeding up the required computation times. After all,
the interest in this case is not on the probabilistic system states but rather the need for flexibility. For this
purpose, a multi-layer NN (NN) is introduced that only needs to be trained once for a particular
distribution network. After training, evaluating the NN is considerably faster than performing the PPF,
which results in a significantly reduced computational effort. The next subsections will respectively
discuss the NN architecture and the training of the NN.

4.1. Neural Network Architecture

The NN is designed to prevent the costly PPF within the risk analysis of the DSO. To this extent,
it needs to approximate the information on the operational limit violation at hand and its sensitivity
with respect to changes in active power, which is detailed in Section 3. For this purpose, in this work,
a regressive NN is applied to provide the DSM application with the required information by replacing
the costly PPF. The overall architecture of the network is displayed in Figure 3.

For the PPF method described in Section 3, the inputs are the PDFs of each of the households while
the outputs are formed by the required change in systems states ∆Vt and the sensitivity matrix St

V .
However, the full PDFs of the households are not very suitable to be used as an input for a NN
since it normally expects a numeric input value rather than a continuous function specification. On a
similar note, the output sensitivity matrix St

V has a number of entries equal to the square of the number
of nodes, which makes it too large to be effectively approximated by a regression based NN. As a final
point of concern, the required change in system states ∆Vt is a non-linear function with a discontinuous
derivative and, therefore, is also not very suitable for regression analysis.
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To overcome these design challenges for the inputs of the NN, the PDF of the loading of each
household can be fitted on a suitable well-known default PDF like a Gaussian, beta, or Weibull
distribution. Specific features or shape parameters can be extracted like the mode, mean, median,
and variance or the α and β or k and λ parameters for the beta and Weibull distributions. These
shape parameters can be used as inputs for the NN. For the sensitivity matrix, although large matrix
inversion is involved, determining the sensitivity based on a set of operation points of the network is
a simple task and relatively computationally efficient. In addition, determining the required change
in the system states ∆Vt from the operation points is highly straightforward. Therefore, the NN is
trained to not output the required change in the system states and corresponding sensitivity but rather
approximate the operation point used for calculating the network sensitivity.

Mathematically expressed, these are Vt,l
p ∠δ

t,l
p or Vt,u

p ∠δ
t,u
p as introduced in Section 3, i.e.,

the voltage vectors for which the magnitude corresponds with the probability f and the angle is
averaged over the phasors of the sets Kt,l end Kt,u. The network sensitivity St

V can be calculated based
on Equations (9) and (13). Similarly, ∆Vt is easily derived using Equations (15) and (16).

The simulation results presented in Section 6 of this work use data for the household loading PDFs
that is suitable to be fitted on a Gaussian distribution. The mean µt

m and variance σt
m of the PDFs for

each household m at time t are defined as the input variables of the NN. This means that the number of

inputs for the NN will be equal to 2M. Similarly, the output variables together Vt,l
p ∠δ

t,l
p and Vt,u

p ∠δ
t,u
p

will be of size 12(N − 1), (three phase nodes and four variables per node excluding the slack node).
However, since the numerical values of the voltage magnitudes and angles are considerably different,
it is better to split the NN in two separate networks of size 6(N − 1) since, this way, performance
indicators such as the mean squared error (MSE) are used more meaningful. Lastly, in the average
distribution network, we do not expect differences in voltage angles up to π radians. Therefore, it is
advisable to shift the voltage angles with π radians to eliminate the transition between 0 and 2π.
As an alternative, one could consider working in Cartesian coordinates rather than polar coordinates.
As a final step, experimental simulations will be required to determine a suitable number of hidden
layers and neurons. For the experimental results presented in Section 6, it turns out that two or up
to three hidden layers strike a reasonable balance between training time and accuracy by estimating
the non-linear relation between the input and output variables accurately, which can be seen from the
presented results in Section 6. The number of hidden neurons is highly dependent on the expected
correlation of the input data and, therefore, should be determined experimentally for each network.

4.2. Neural Network Training

To train the NN with the architecture as described above, a large amount of historical data is
required, which comprises the PDF of household loadings for many different situations. Based on this,

the mean µt
m and variance σt

m can be derived together with the corresponding Vt,l
p ∠δ

t,l
p or Vt,u

p ∠δ
t,u
p ,
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as described in Section 3, which forms the training set for the NN. Clearly, it is important that the
training set contains a sufficiently diverse number of situations that might occur in the network to
make the system robust for unexpected events. Since the proposed NN architecture will have a
significant size for larger distribution networks, it is advisable to perform the training of the NN
on a graphics card to exploit the possibilities of parallelism. When doing so, from experimental
results, backpropagation training using gradient derivatives and the steepest descent turns out to
strike a good balance between performance and training time for the NN architecture proposed in
this study. However, the convergence is very sensitive to the learning rate and, therefore, in this study,
the gradient descent with an adaptive learning rate backpropagation is used, which is implemented in
MATLAB (MathWorks Inc., 2018b (prerelease), Natick, MA, USA) [33].

5. Overall Demand Side Management Optimization

After the reception of the specification on the OLV and corresponding sensitivity from the DSO
(either using the PPF or NN approach), the DSM application deploys an overall optimization of
the available flexibility in active power injection depending on its optimization objectives and is
constrained by the specified OLVs. As stated in the introduction section, the objectives can take many
forms like local supply and demand matching [11], fair power sharing [34], or a market mechanism
where global welfare is optimized [35]. We define the set F of size M of all pairs of nodes and
phases {m, q} at which flexibility is offered by prosumers. Independently of the optimization objective
the DSM pursues, the general optimization function in Equation (19) can be defined alongside the
corresponding constraints for voltage OLVs Equation (20).

min
∆Pt

m,q

g
(
∆Pt) ∀{m, q} ∈ F (19)

subjected to:
∆Vt

l ≤ St
V,l∆Pt

∆Vt
u ≥ St

V,u∆Pt

other constraints of flexible appliances

(20)

Examples of other constraints of flexible appliances can be found in Reference [36]. Simultaneous
over voltages and under voltages at different nodes of the network are (though unlikely because
of the huge voltage difference) possible to address if it does not render the optimization infeasible.
These constraints will need to be satisfied for each time interval t within the optimization horizon
in case a time-horizon optimization is concerned based on probabilistic predictions. Besides the
constraints on the system states, further time-dependent appliance specific constraints for ∆Pt

m,q can be
included. For example, this has been done in Reference [11]. The general optimization function above
can be changed to specific optimization objectives depending on the goal and purposes of the DSM
application. We will illustrate this by using two examples where each example can be solved using
quadratic programming.

Possible objective 1: For the optimization objective of local supply and demand matching over
the time-horizon from t = vF to t = vT within each of the households connected to the distribution
network while spreading out the remaining supply and demand over time (profile flattening), one can
minimize the sum of squares of the base load power vector Pt calculated with the flexibility vector ∆Pt

of each of the prosumers. This is shown in the formula below.

min
∆Pt

vT

∑
t=vF

(
Pt + ∆Pt)(Pt + ∆Pt)T (21)
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If one alternatively wishes to balance the supply and demand of the distribution network as a
whole, one can minimize the square of the sums of the base load power injection Pt calculated with
the flexibility ∆Pt (i.e., not the sum of squares but the square of sums).

Possible objective 2: In a similar fashion, with the objective of fair power sharing, the flexibility
provided by different prosumers is aimed to be mostly equal among those who can reasonably
contribute to the OLV at hand, which prevents some prosumers from being asked to provide flexibility
more often than others depending on their physical point of connection. Since this effect can obviously
not completely rule out the physical aspects of the network, some users will be able to make a
larger contribution than others (depending on the phase and location of their connection). Therefore,
the least sum of squares of ∆Pt

n,p is taken as a balanced approximation to realize fair power sharing by
automatically selecting those prosumers that can reasonably contribute to resolving the OLV at hand.

min
∆Pt

vT

∑
t=vF

(
∆Pt)(∆Pt)T (22)

6. Simulation Results

This section aims to demonstrate the effectiveness of the probabilistic time-horizon DSM
methodology featuring fair power sharing, which is seen in Equation (22) as the optimization objective.
The DSM is applied to a three-phase implementation of the IEEE European LV test network as displayed
in Figure 4. This network has a radial architecture consisting of 117 nodes and 55 prosumer households
with single phase connections.
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6.1. Overall Simulations

Within the simulation setup, the slack node voltage is assumed to remain constant at 230 V and
the DSO is assumed to have set voltage limits of 0, 9, and 1 p.u. (i.e., +/−23 V) for the whole feeder.

The acceptable probability limit f for operational limit violations of the voltage magnitudes is
set to 0.1 for each time interval (i.e., 90% certainty of having no operation limit violation). Additional
constraints on operational limits can be considered such as constraints for the branch current magnitude
or the unbalance factor (VUF) for the voltage between the three phases. However, in this work, we focus
on violations of the voltage magnitudes in either of the three phases. The assumption is that flexibility
is available at each household with an upper bound of 2 kW where future work will be done to make
this flexibility more realistic, which is discussed in Reference [37]. It should be noted that requests
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for that much flexibility will only be met in the case of very high loadings of the network such as in
cases of multiple charging electrical vehicles. In those cases, 2 kW is less than a quarter of the total
household loading and, therefore, considered realistic. For now, the goal is to model flexibility as
realistic as possible but to show the effectiveness of the proposed probabilistic sensitivity method.
The overall simulation consists of the following steps, which corresponds with the flow diagram in
Figure 1.

Step 1: As a first step, the DSO performs the probabilistic load prediction to form the input
distributions for the grid supportive demand side management. In the simulations performed in
this work, the PDFs are normally distributed [38] where the mean and variance is different for each
household and time interval and fitted from historical data obtained from the Pecan Street project [39].
The mean values of the household consumption PDFs range from −5.3 to 6.8 kW depending on the
household and time of the day while the variance goes up to 5× 106 W2 with an average of 8× 105 W2.
Besides the ordinary base load, a significant amount of PV generation is present in the load profiles,
which is a high peak load in the evening due to electrification of cooking and heating installations.

Step 2a: For benchmarking purposes, the DSO also performs a Monte Carlo based PPF network
for the DA 24-h period by using three phase unbalanced power flow calculations [26]. The Monte Carlo
simulations for each time interval take 10,000 samples from the PDF of the power consumption of the
connected households. From the resulting PDFs of the system states (being nodal voltages and branch
currents), the DSO will determine whether the probability of operational limit violations occurring
in the network is acceptable and, if not, determines the sensitivity operation point for calculation of
the Jacobian.

Step 2b: In the machine learning based approach, the DSO will extract the distribution shape
parameters (e.g., mean and standard deviation) and perform the NN based analysis of the IEEE
European LV test network for the active power flexibility described in Section 4 based on the PDFs for
each of the households. From the resulting outputs of the NN, the DSO will determine for each time
interval whether the probability of any operation limit violation occurring in the network is acceptable
or not.

Step 3: If the probability for operation limit violations is too high based on the results of step 2a
and 2b, the DSO will determine the active power sensitivity of the OLVs at hand.

Step 4: The results of the analysis for OLVs and their active power sensitivities are sent to the
DSM application.

Step 5: The DSM application optimizes the flexibility provided by the prosumers in accordance
with its own optimization objective. As stated, the optimization objective featured in this work is
fair power sharing among the different prosumers that can reasonably contribute in resolving the
OLV at hand, which is specified in Equation (22). This way, the optimization will resolve the OLV
expected in the network while dividing the burden for doing so over the different participating
prosumers. For each appliance in the optimization, additional constraints can be set such as described
in Reference [11].

Step 6: As a final step, the effectiveness of the allocated flexibility is assessed. The allocated
flexible power comes on top of the original base load, which was represented by the PDFs of the power
consumption of the households. Since this base load will still have the associated uncertainty after
allocation of the flexibility, the resulting ∆Pt of the optimization is added to the original power values
of the PDFs of the household consumptions. After this, there is a final verification in the simulation
for both the PPF approach as well as the NN approach. It should be noted that the final verification
carried out in this work is merely to verify the performance of the proposed approach and will not
be carried out during a practical application. During the final verification, for both the PPF approach
as well as the NN approach, a Monte Carlo simulation is carried out with the only difference that
the input samples from the PDFs are now shifted over ∆Pt where ∆Pt is either the result of the PPF
approach or the NN approach. The overall results of the simulation are discussed in the next section
by starting off with the benchmarking results.
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6.2. Benchmarking Results Using Probabilistic Power Flow

For each of the Monte Carlo simulations within the benchmarking PPF approach, the minimum
respectively maximum values out of the vectors [Vt,l

a ; Vt,l
b ; Vt,l

c ] and [Vt,u
a ; Vt,u

b ; Vt,u
c ] are determined for

each time interval t and their probabilities and are displayed in Figures 5 and 6, respectively. In other
words, Figure 5 displays the probability of the lowest voltage, according to any node or phase within
the network. In addition, shown is the probability of having a lower or equal voltage of exactly f .
That means that there is a 90% chance that there will be no lower voltage than the displayed value
anywhere in the network. If the displayed value is lower than the voltage limit, there is a higher than
10% chance for under voltages.
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Similarly, Figure 6 displays the probability of the highest voltage of any node or phase including
the probability of having a higher or equal voltage of exactly f (i.e., there is a 90% chance that there
will be no higher voltage and a higher than 10% chance for overvoltages if the displayed value is
higher than the voltage limit). The dashed blue lines represent the voltage magnitudes over time as
they would be when no DSM is applied while the solid blue lines represent the voltage magnitudes
after application of the fair power sharing DSM optimization. It should be noted that the displayed
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values can relate to any node and phase in the network. This can concern a different node and phase at
each time interval and even a different node and phase before and after DSM. It cannot be seen from
the graphs which node is concerned since this is changing over time depending on the loading of the
network and at which node and phase the most extreme voltages (i.e., lowest or highest voltage) occur.

From the figures, we can derive that the network is expected not to be capable of facilitating the
large PV infeed on a sunny day as installed for this configuration nor the energy intensive appliances
that consume power in the evening since there is a higher than 10% probability of having over voltages
during the middle of the day and under voltages during peak hours in the evening. During the
remainder of the day, there is a less than 10% probability of having operation limit violations, which is
where the displayed voltages are below the limit. After application of the DSM optimization, all OLVs
have been (nearly) resolved by reducing the probability of operational limit violations for the voltage
magnitude below 10% at nearly all times. Some deviations and small OLVs do remain, which can
mainly be attributed to the linearization process and the probabilistic uncertainty in the PPF.

Deviations from the linearization process occur especially when the network becomes highly
unbalanced, which is the case during the PV infeed. Nevertheless, the DSM application is slightly
conservative most of the time, which overcompensates more when there is a more severe operational
limit violation. This can be considered as favourable, as with this, the system operates on the safe side.
In the rare event that a small operation limit violation will remain after the time-horizon DSM,
additional corrective real-time DSM can be triggered based on state estimation.

6.3. Results Using the Neural Network

In the previous subsection, from the benchmarking results, the PPF based approach has been
shown to be effective for reducing the probability of OLV to acceptable levels on a DA basis. In this case,
the performance of the NN based approach is discussed where the results are presented in Figure 7 for
under voltages and in Figure 8 for over voltages. This time, only the voltage corresponding with a
probability exactly f is shown. Similar to Figures 5 and 6, as soon as this voltage crosses the indicated
voltage limits, the probability of having a OLV higher than f and flexibility needs to be procured. In the
figures, the dashed blue lines represent the voltages before DSM while the solid blue lines represent
the voltages after DSM using the PPF approach. Lastly, the red lines are for the voltages after DSM
using the NN based approach. The insets give a detailed comparison between both approaches during
the hours at which operation limit violations take place.
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From the figures, it can be seen that the NN-based approach resembles the performance of the
PPF approach in a good way and, in this simulation, it is especially accurate for the over voltages.
During the evening hours where under voltages occur, in the second half of the under voltage period,
a situation occurs in which the deviation from the PPF approach is higher (although more accurately
to the operation limit). In this case, the occurring loading configuration was insufficiently present in
the training data for the NN, which results in the lower accuracy.

6.4. Execution and Training Time

As has been discussed, the PPF approach is computationally intensive despite the many works
in literature improving its efficiency. Carrying out DA PPF calculations for its complete distribution
network, this might require significant computational power. Notwithstanding the large computation
time for the PPF approach, one may argue that, since the time-horizon preventive DSM proposed in
this work runs on a DA/ID basis and not in real-time, computation time is not a top priority. However,
as predictions on the load probability density functions tend to be more accurate closer to the time
of delivery/consumption, deferring the procurement of flexibility by the DSO as much as possible is
important. The DSM application itself should be allowed time to perform its optimization. For the
numerical simulations performed in this work, the PPF and DSM optimization for the 1440 time
intervals takes over two hours on an Intel Core i7-4790 CPU excluding the verification step in step 4.
The computation time is strongly dependent on the number of time intervals for which an OLV
is expected. For the NN-based approach, the computation time reduces strongly to only under
15 min because of the fast evaluation of the NN. Besides the execution time, the NN also requires
training time. By training the NN on a Nvidia GTX 1080 Ti graphics card, within one hour, training the
mean squared error of the voltage magnitudes drops below 0.12 V2 by using the mentioned gradient
descent algorithm. It should be mentioned, however, that the choice for the number of layers and
neurons for a particular network configuration might require repeated retraining of networks. Lastly,
preparing the training data set might require way more time than the training itself. Still, each of these
tasks are in principle a one-time exercise that will save considerably on the computation time during
operation of the presented grid-supportive DSM.

7. Recommendations and Conclusions

This paper contributes with a probabilistic approach for grid supportive demand side
management by presenting a Monte Carlo as well as a Neural Network based approach to reduce
the probability of geographical dependent operation limit violations to acceptable levels. A practical
case study is presented using the IEEE EU LV test feeder for which numerical simulations show
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that the proposed approach forms an effective method for DSOs to invoke time-horizon flexibility to
address (too high probabilities of) expected operational limit violations in the network. In this case,
the NN-based approach offers a significant benefit over the PPF-based approach in terms of
computational complexity. Nevertheless, from these findings, this research can be extended in several
directions. First, the proposed approach will need to be extended with models of actual flexible
appliances to allow for more realistic modelling of the available appliance flexibility. Furthermore,
the currently used constraints to prevent violation of the nodal voltage magnitudes can be extended
to various other power quality related limits such as for the voltage unbalance factor between the
three phases. Lastly, a more in-depth quantization of the severity of operation limit violations that
can be expected in the future is required together with an analysis of whether the expected available
flexibility will be enough to reduce the probability of these operational limit violations sufficiently.
The proposed approach needs to be extended to deal with a shortage of flexibility by rendering the
optimization infeasible. As a future solution, the optimization problem could be reformulated on the
fly such that it will minimize the probability of operational limit violations.
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