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Abstract: This paper presents an advanced rule-based mode control strategy (ARBC) for a plug-in
hybrid electric vehicle (PHEV) considering the driving cycle characteristics and present battery state of
charge (SOC). Using dynamic programming (DP) results, the behavior of the optimal operating mode
was investigated for city (UDDS×2, JC08 ×2) and highway (HWFET ×2, NEDC ×2) driving cycles.
It was found that the operating mode selection varies according to the driving cycle characteristics
and battery SOC. To consider these characteristics, a predictive mode control map was developed
using the machine learning algorithm, and ARBC was proposed, which can be implemented in
real-time environments. The performance of ARBC was evaluated by comparing it with rule-based
mode control (RBC), which is a CD-CS mode control strategy. It was found that the equivalent fuel
economy of ARBC was improved by 1.9–3.3% by selecting the proper operating mode from the
viewpoint of system efficiency for the whole driving cycle, regardless of the battery SOC.

Keywords: plug-in hybrid electric vehicle (PHEV); operating mode; driving cycle characteristics;
battery state of charge (SOC); machine learning; rule-based control

1. Introduction

A plug-in hybrid electric vehicle (PHEV) drives mostly in the EV mode when the battery state
of charge (SOC) is sufficient. However, when the battery SOC drops to the lower limit, the vehicle
runs in the hybrid electric vehicle (HEV) mode to sustain the battery SOC using various operating
modes such as power split, parallel mode and etc. To achieve improved system efficiency as well as
SOC balancing, it is essential to control the operating mode for a given vehicle speed, wheel power,
and battery SOC [1–3].

In addition, in the HEV mode, load leveling is generally performed to operate the engine on
the optimal operating line, and the power is distributed to the engine and motor depending on
the magnitude of the load leveling [4,5]. Since the PHEV efficiency varies depending on the power
distribution between the engine and motor, it is important to obtain the optimal power management
strategy for the PHEV for the given driving conditions.

For the optimal control strategy of a PHEV, rule-based control for the CD and CS modes has
been widely used based on heuristic data [6,7]. Rule-based control has the advantage of easy on-line
application, but cannot guarantee optimality for real driving cycles [8]. To solve this problem, control
strategies were proposed to ensure local optimality, including rule-based control using the mode
control algorithm [3], fuzzy logic [9,10], and the equivalent consumption minimization strategy based
on equivalent fuel consumption of the battery energy [11,12]. However, since these control strategies
do not consider the effect of the present battery SOC, they cannot guarantee global optimality for the
CD and CS mode. To ensure global optimality, rule-based control was proposed by implementing an
optimization tool, such as dynamic programming (DP) [6,13,14] or Pontryagin’s minimum principle
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(PMP) [15–17]. In a previous study [2], a rule-based mode control (RBC) strategy was obtained for the
CS mode using DP with power electronics (PE) and drivetrain losses. The RBC strategy was derived
based on the operating points considering the number of mode occurrences for the HWFET and UDDS
cycles. The mode shift boundary was determined by the vehicle speed and wheel power without
consideration of the present battery SOC. An optimal rule-based control strategy was developed for
non plug-in HEV based on machine learning[18,19]. In the literature [18], hybrid architectures were
investigated that minimize the cost, fuel consumption and clustering optimization rule extraction
method was proposed to identify the optimal control strategy. However, few works have been reported
on rule-based optimal control strategy of PHEV considering the present SOC for the CD mode and CS
mode which can be implemented in real time.

In this study, an advanced rule-based mode control strategy (ARBC) was proposed for a PHEV
considering the driving cycle characteristics and present battery SOC for CD and CS mode. To develop
a mode control map, a backward simulator was developed by considering the losses of the power
electronic system and drivetrain elements. Using the predictive mode control map that is obtained from
machine learning, an ARBC was suggested, and its performance was evaluated for a real driving cycle.

2. PHEV Model for Backward Simulator

2.1. Vehicle Configuration and Specification

In this study, a power split/parallel-type PHEV was selected as the target vehicle. The target
vehicle implements four operating modes: (1) EV#1, (2) EV#2, (3) power split, and (4) parallel. Figure 1
shows the configuration and operating modes for the target PHEV with the engagement states of
the friction elements. In the EV#1 and power split modes, brake 1 (BK1) and brake 2 (BK2) are
disengaged. By engaging BK2, the vehicle drives in the EV#2 mode using motor-generator 1 (MG1)
and motor-generator 2 (MG2) together. When BK1 is engaged and the speed of MG1 remains zero, the
parallel mode is realized, where the engine speed directly depends on the vehicle speed. The vehicle
specifications are shown in Table 1.
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Figure 1. Configuration and operating mode of the power split/parallel-type plug-in hybrid electric
vehicle (PHEV) with the engagement states of the friction elements [20].
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Table 1. Vehicle specification of the power split/parallel-type PHEV.

Vehicle Specification

Engine Max power/torque 115 kW/185 Nm
MG1 Max power/torque 70 kW/50 Nm
MG2 Max power/torque 90 kW/270 Nm

Battery Max power/capacity 50 kW/25 Ah

Vehicle
Mass 1800 kg

Tire radius 0.32 m
Gear ratio PG/G1−G2/G3−G4/G5−G6 2.6/2.478/1.0/3.54

2.2. Speed and Torque Analysis

The speed and torque analysis was performed for the power split mode. In the EV#1 mode,
the planetary gear rotates freely because the vehicle is driven only by MG2. The planetary gear acts
as a reduction gear in the EV#2 and parallel modes. The speed relationships for the EV#1, EV#2,
and parallel modes are shown in Figure 2. In the power split mode, the speed and torque equations
can be derived via lever analysis as follows [21]:

ωMG1 = (NPG + 1)ωe − (NPG)ωr (1)

ωMG2 = NMG2ωr = NMG2NFRGωo (2)

Tr =

(
NPG

NPG + 1

)
Te (3)

TMG1 = −
(

1
NPG + 1

)
Te (4)

To = Tr + NMG2TMG2, (5)

whereω is the rotational speed, T is the torque, and N is the gear ratio. The subscript MG represents
the motor and generator (MG), PG the planetary gear, e the engine, r the ring, and o the output shaft.
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2.3. Backward Simulator with Component Losses

A backward simulator was developed to extract the optimal mode control strategy using DP.
The process of the backward simulation was described in the literature [2,20]. For the target PHEV,
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the control and state variables were selected as the battery power and battery SOC. The instantaneous
optimal operating points of the engine, MG1, and MG2 were determined at each time step for the
given driving information. In the global horizontal plane, i.e., the time-SOC plane, the minimum
fuel consumption was calculated by adding the minimum consumption rate for each time step.
The backward simulation was performed using the following recursive equation and battery
SOC constraint:

J∗(Pb(t), t) =
∫ t f

t0

g{Pb(t), t}dt (6)

SOCinitial − SOCfinal = constant, (7)

where t0 is the initial time, t f is the final time, J∗ is the minimum fuel consumption, Pb is the battery
power and g is the fuel consumption rate.

In the backward simulation, the drivetrain component loss and PE system loss were considered.
The PE system loss was obtained from the efficiency map of the motor and generator (MG) and high
voltage DC/DC converter (HDC). The HDC loss was determined according to the voltage for a boost
converter. The drivetrain component losses were modeled using the mathematical governing equations
and experimental results [2,20]. The loss models of the PE system and drivetrain component are shown
in Table 2.

Table 2. Mathematical governing equation and experimental map for the power electronics (PE) system
and drivetrain component loss model.
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3. Advanced Rule-Based Mode Control Strategy

3.1. Dynamic Programming to Obtain the Optimal Operating Mode According to the Battery SOC and Driving
Cycle Characteristics

In a previous study [2], a RBC strategy was proposed, which can be applied in real-time
environments. RBC was obtained based on the mode control map constructed from the DP by
considering the PE and drivetrain components losses. RBC is a type of CD-CS mode control strategy.
In RBC, vehicle drives in the EV mode until the battery SOC reaches the SOC lower limit. When the
battery SOC reaches the lower limit, the vehicle drives in the charge sustaining (CS) mode using the
RBC map.

In this study, an advanced RBC strategy was proposed, which can be applied in both the CD and
CS modes. To develop the advanced RBC strategy (ARBC), investigation of the behavior of the optimal
operating mode when the battery SOC is higher than the lower limit (CD mode) as well as in CS mode
is required.

To develop the mode control map considering the battery SOC variation and driving cycle
characteristics, DP was performed for the UDDS ×2, HWFET ×2, NEDC ×2, and JC08 ×2 cycles when
the initial battery SOC changes from 30–60%. The battery SOC trajectories and operating time of each
mode from the DP are shown in Figure 3. It is seen from the DP results in Figure 3 that the operating
time of each mode varied according to the initial battery SOC. For instance, for the UDDS ×2 cycle,
the operating time of the EV#1 mode increased as the initial SOC increased. As a result, the SOC
decreased rapidly to the final SOC, 30%. For the JC08 ×2 cycle, since the final SOC did not drop to the
lower limit of 30% for the initial SOC of 60%, DP was performed for SOC = 30–50%. From Figure 3,
it is found that the mode control map needs to be derived by considering the initial battery SOC.

Figure 4 shows the optimal operating mode for the UDDS, HWFET, NEDC, and JC08 cycles
obtained by the DP when the initial battery SOC varies. It is seen that the optimal operating mode
selected by DP is changed by the driving cycle characteristics as well as the initial battery SOC. When
the initial SOC is 50%, the EV mode is mostly used for the vehicle speed υ < 46 kph because the battery
energy is sufficient. In contrast, the power split mode is seldom selected. When the initial SOC is
30%, the power split mode is used for SOC balancing (regions A, C, D). When the vehicle speed is
faster than 46 kph, the parallel mode is used since it can be implemented only after the engine is
connected to the wheel when the engine speed is higher than the idling speed, ωidling = 1000 rpm.
When the initial SOC is equal to 50% for the HWFET cycle, the power split mode is selected in the high
vehicle speed and low power region (B), but it can be seen that its operating area varies according to
the driving cycle characteristics. For the JC08 cycle, the power split mode was not used in the high
speed and low power region. Since the demanded wheel power is relatively small in the JC08 cycle,
the EV#1 mode was selected instead of the parallel and power split modes. From the DP results, it is
seen that the optimal operating mode map varies depending on the present battery SOC and driving
cycle characteristics. Since the battery SOC and driving characteristics are always changing in the real
driving environment, it is necessary to develop an optimal mode control map considering the battery
SOC change and road characteristics.
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3.2. Advanced Rule-Based Mode Control Strategy Using a Predictive Mode Control Map

To develop an optimal mode control map with consideration of the present battery SOC and
driving cycle characteristics, predictive models were built using machine learning, and a predictive
mode control map was constructed based on the selected predictive model.

To build the predictive model, the vehicle speed, wheel power, and battery SOC were defined
as the input variables, and the optimal operating mode was defined as an output variable, i.e.,
the response variable. Using the input and output variables, machine learning was performed to
build the predictive model. Since the selected operating mode is a discrete data type, the following
three classification algorithms were used: nearest neighbor classification (NNC), decision trees (DTs),
and support vector machines (SVMs).

NNC is a machine learning algorithm that finds the nearest neighbors from known data for
prediction [27,28]. NNC has the characteristic of simple and good predictive performance. DTs is also
a classification method to predict the output response using the sequential binary decisions. It is easy
to predict the response output, which does not require normalization or preprocessing data [29,30].
SVMs creates a boundary between each response output using the support vector to build a predictive
model. SVMs works well for both low-dimensional and high-dimensional data, but requires a large
computational load [31].

Using the data set from the dynamic programming results, predictive models were built to predict
the optimal operating mode. Since the learning and validation of a predictive model cannot guarantee
the reliability of the model, learning and validation of the data set were divided into the training set
and the test set. The proportion of the training and test data sets used was 70% and 30%, respectively,
which is generally considered to be highly reliable [32].

Table 3 shows the prediction accuracy for each predictive model that was built using the training
set. The resubstitution accuracy was obtained by validating the predictive model using the training
set. The test accuracy was obtained by validating the predictive model using the test set. When NNC
predicts the new response output to the new input variable, the predictive model accuracy depends
on the number of nearest neighbor data, k [27]. In general, since k has a high model accuracy with a
value from 1 to 6, NNC was built according to k. The resubstitution and test accuracy for each NNC
model was evaluated. When k is 1, it was found that the resubstitution accuracy is 100%, which means
that the predictive model is over-fitted from the training set. When the predictive model is over-fitted,
it may result in a problem where the noise data of the training set in the over-fitted model is also
learned and causes a generalization error [33]. Therefore, k = 3 was selected for NNC, which can
avoid the over-fitting problem with a relatively high test accuracy. In DTs, the performance of the
predictive model is determined depending on the pruning step. Since the pruning step p = 0 leads to
over-fitted learning, p = 15 was selected, which has the highest test accuracy among the six pruning
levels. In SVMs, Gaussian SVMs showed the highest resubstitution and test accuracy, 92.2% and 90.2%,
respectively, compared to the linear SVMs. However, it is seen that the accuracy of Gaussian SVMs is
lower than that of DTs and NNC.

Using the selected predictive models, NNC with k = 3, DTs with p = 15, and Gaussian SVMs,
predictive mode control maps were obtained. In Figure 5, the predictive mode control map for the
selected NNC, DT, and SVM models are compared with the optimal operating mode by the DP for
the present battery SOC, 30% and 50%. As shown in Figure 5c,d, the predictive mode control map by
NNC shows an unclear boundary between the operating modes (region P) because the NNC model
is over-fitted due to noise. The unclear boundary may cause a frequent mode shift. The predictive
mode control map by DTs (Figure 5e,f) provides a clear boundary, which means that it has a robustness
against the noise data of the training set. In contrast, in the predictive mode control map by SVMs,
we can see that the EV#1 mode is used for almost all of the driving range, which does not make sense
in the real driving environment.
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Table 3. Resubstitution and test accuracy for the predictive model including nearest neighbor
classification (NNC), decision trees (DTs), and support vector machines (SVMs). (Resubstitution accuracy
= (1 − resubstitution error) × 100, test accuracy = (1 − test error) × 100).

Predictive Model (Classifier)

Training set 70%
Test set 30%

Resubstitution
accuracy

/Test accuracy
[%]

Nearest neighbor classification
(NNC)

Decision trees
(DTs)

Support vector
machine (SVMs)

k = 1 100%
/93.3% p = 0 97.3%/93.5% Linear 61.5%

/61.6%

k = 2 96.4%
/93.2% p = 5 97.2%/93.5% Gaussian 92.2%

/90.2%

k = 3 96.5%
/92.4% p = 10 97.0%/93.6%

k = 4 94.8%
/92.7% p = 15 96.5%/93.7%

k = 5 94.5%
/92.5% p = 20 95.9%/93.5%

k = 6 94.1%
/92.6% p = 25 95.1%/93.2%
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From the comparison of the predictive mode control maps in Figure 5, the mode control
map by DTs was selected by considering the performance for robustness, resubstitution accuracy,
and test accuracy.

Using the predictive mode control map by DTs, an advanced RBC strategy (ARBC) was proposed,
which is shown in Figure 6. ARBC is rule-based control since it uses a predictive mode control map that
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is constructed from the off-line environment. For the given wheel power, vehicle speed, and present
battery SOC, the demanded operating mode is determined from the predictive mode control map.
Since the predictive mode control map was constructed with respect to the various SOC and driving
cycle characteristics by machine learning, the optimal operating mode can be predicted from ARBC
when the vehicle encounters driving conditions outside the training set.Energies 2017, 10, 89  10 of 15 
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4. Performance of the Advanced Rule-Based Mode Control Strategy

4.1. Forward Simulator

To evaluate the performance of ARBC, a forward simulator was developed, which is shown in
Figure 7. The forward simulator consists of the advanced rule-based control strategy and vehicle
model. In the vehicle model, dynamic models of the engine, MG1, MG2, planetary gear, brake, HDC,
battery, and vehicle longitudinal motion were constructed using MATLAB/Simulink and SimDriveline,
including the PE system and drivetrain component losses.

Energies 2017, 10, 89  10 of 15 

 

 
Figure 6. Advanced rule-based mode control (RBC) strategy. 

4. Performance of the Advanced Rule-Based Mode Control Strategy 

4.1. Forward Simulator 

To evaluate the performance of ARBC, a forward simulator was developed, which is shown in 
Figure 7. The forward simulator consists of the advanced rule-based control strategy and vehicle 
model. In the vehicle model, dynamic models of the engine, MG1, MG2, planetary gear, brake, HDC, 
battery, and vehicle longitudinal motion were constructed using MATLAB/Simulink and 
SimDriveline, including the PE system and drivetrain component losses. 

 
Figure 7. Forward simulator. 

4.2. Performance of ARBC by Comparing with RBC 

In Figure 8, the performance of ARBC is compared with that of RBC [2] using the forward 
simulator in Figure 7. The simulations were performed for two HWFET cycles (a), HWFET ×2, to 

Figure 7. Forward simulator.



Energies 2018, 11, 89 11 of 15

4.2. Performance of ARBC by Comparing with RBC

In Figure 8, the performance of ARBC is compared with that of RBC [2] using the forward
simulator in Figure 7. The simulations were performed for two HWFET cycles (a), HWFET ×2,
to evaluate the performance of the proposed mode control strategy. Figure 8b shows the operating
mode. Since the initial battery SOC is 50%, which is much higher than the lower limit of 30%, RBC
selects the EV#1 and EV#2 modes for region P until the battery SOC drops to the lower limit. Since
the engine is off, the PHEV was driven using the battery energy. As a result, the battery SOC rapidly
decreased while the engine speed (e) and fuel consumption (d) remained at zero. In contrast, ARBC
selects the parallel mode and EV#1 mode (b) in region P from the predictive mode control map.
Whenever the parallel mode was used, the engine speed (e) and torque (f) were generated. The reason
the parallel mode was selected in region P is that it is more efficient to use the engine rather than the
battery to supply the demanded vehicle power required for highway driving. Owing to the frequent
usage of the parallel mode, i.e., the engine, the battery SOC (c) decreased more slowly, which resulted
in reduced PE losses (k) compared with those of RBC. The fuel consumption (d) of ARBC increased
due to the parallel mode operation. After region P, RBC performed charging and discharging of the
battery repeatedly for SOC balancing (c). Whenever the engine was operated to charge the battery,
the SOC increased (c) and the fuel consumption (d) increased. As a result, the fuel consumption by
RBC increased rapidly and the accumulated fuel consumption of RBC becomes larger than ARBC after
point Q. The MG2 speed (g) is proportional to the vehicle speed for both controls because MG2 is
mechanically connected to the wheel. The MG2 torque (h) was generated to meet the required wheel
torque via the load leveling control. The MG2 torque (h) shows a negative value when regenerative
braking is performed. Since MG1 is used to drive the vehicle in the EV#2 mode, MG1 shows a negative
speed (i), referring to Equation (1), and negative torque (j) to generate the positive power to propel
the vehicle. In ARBC, the MG1 torque and speed remain at zero in the parallel mode since it does not
work. When the EV#1 mode is selected, the MG1 speed also shows a negative value. It is seen that
MG1 generates a negative torque at approximately t = 1200 − 1290 s when the power split mode is
used. In the power split mode, the MG1 torque was generated from the relationship in Equation (4).
The amount of drivetrain loss (l) for ARBC and RBC are similar during the whole driving cycle.

Since the simulation results in Figure 8 were obtained by the forward simulation, a difference
exists between the final SOC and the target SOC, 30%. Therefore, to evaluate the fuel economy, the SOC
difference was transformed into the equivalent fuel economy (EFE) as follows [34]:

FE =
D

(SOCinitial−SOC f inal)×Q
Eg

+
∆m f uel
ρ f uel

(8)

where Eg is the gasoline-equivalent energy content of electricity, D is the driving distance, SOC f inal is
the final battery SOC, SOCinitial is the initial battery SOC, Q is the battery capacity, ∆m f uel is the fuel
consumption, and ρ f uel is the fuel density.

Comparing the equivalent fuel economy using Equation (8), EFE of ARBC was obtained as
24.9 km/L, which is an improvement of 3.3% compared with 24.1 km/L of RBC.
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Figure 8. Simulation results of ARBC and RBC for HWFET ×2 cycle. (a) Vehicle speed; (b) Operating
mode; (c) Battery SOC; (d) Fuel consumption; (e) Engine speed; (f) Engine torque; (g) MG2 speed;
(h) MG2 torque; (i) MG1 speed; (j) MG1 torque; (k) PE loss; (l) Drivetrain loss.

4.3. Performance of ARBC for a Real Driving Route

The performance of ARBC was evaluated for a real driving route. In Figure 9a, the SKKU route is
shown, which consists of a city (A-B-C-D-E) and a highway (E-A). The vehicle speed profile collected
from GPS is shown in Figure 9b for the SKKU ×2 cycle.
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Figure 9. Real driving cycle: (a) SKKU route and (b) vehicle speed profile for the SKKU ×2 cycle.

In Figure 10, simulation results by ARBC were compared with RBC for the SKKU ×2 cycle. In the
simulation, the initial and final battery SOC were set as 50% and 30%, respectively. It is seen from
Figure 10 that in region R, the parallel and EV#1 modes were used by ARBC, while the EV#1 and EV#2
modes were selected for RBC. Whenever the parallel mode was used, the engine speed (e) and torque
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(f) were generated. It is seen that the battery SOC (c) by ARBC decreased slowly through the whole
driving cycle, while the SOC by RBC showed the typical behavior of CD-CS control. The equivalent
fuel economy of ARBC was obtained as 26.8 km/L, which is an improvement of 1.9% compared with
the 26.3 km/L of RBC.

Energies 2017, 10, 89  13 of 15 

 

(a) (b)

Figure 9. Real driving cycle: (a) SKKU route and (b) vehicle speed profile for the SKKU ×2 cycle. 

 

Figure 10. Simulation results of ARBC and RBC for the SKKU ×2 cycle. (a) Vehicle speed; (b) 
Operating mode; (c) Battery SOC; (d) Fuel consumption; (e) Engine speed; (f) Engine torque. 

5. Conclusions 

In this study, an advanced RBC strategy was proposed for a PHEV by considering the driving 
cycle characteristics and present battery SOC. First, the speed and torque analysis was performed for 
the target PHEV using the lever analogy, and a backward simulator was developed based on DP. 
Using DP, the operating mode that has the maximum fuel economy potential was investigated for 
city (UDDS ×2, JC08 ×2) and highway (HWFET ×2, NEDC ×2) driving cycles. From the DP results, it 
was found that the operating range of the EV mode becomes wider as the initial battery SOC 
increases. In addition, it is seen that the selection of the operating mode varies according to the 
driving cycle characteristics, even if the initial and final battery SOC are the same. To consider these 
characteristics, a predictive mode control map was developed using machine learning. Among 
various machine learning algorithms, DTs was selected in building the predictive model since it 
showed the highest resubstitution and test accuracy. Using the predictive mode control map obtained 
from DTs, an advanced RBC strategy (ARBC) was proposed, which selects the operating mode 
considering the present battery SOC and driving cycle characteristics. The performance of ARBC was 
evaluated by comparing with a RBC (RBC), which is a CD-CS mode control strategy. From the 
simulation results, it was found that ARBC drives in the HEV mode (power split and parallel) even 
when the battery SOC is higher than the lower limit, which provided more efficient engine operation. 
As a result, the battery SOC by ARBC decreased slowly throughout the whole driving cycle, and this 
prevented unnecessary battery charging by the engine, which forces the engine to operate with low 
efficiency. The equivalent fuel economy (EFE) of ARBC was improved by 3.3% for the highway 
(HWFET ×2) cycle. For a real driving route (SKKU ×2), which consists of the city and highway, the 
EFE of ARBC was improved by 1.9% compared to that of RBC. 

The ARBC proposed in this study provides the improved fuel economy by selecting the proper 
operating mode from the viewpoint of system efficiency for the whole driving cycle regardless of the 
battery SOC, and can be implemented in a real-time environment using the rule-based mode shift 
map constructed from machine learning. 

Acknowledgments: This material is based upon work supported by the Ministry of Trade, Industry, and Energy 
(MOTIE, Korea) under Industrial Technology Innovation Program. No. 10062742. 

Author Contributions: Hanho Son developed the advanced rule-based mode control strategy of PHEV 
considering present battery SOC and driving cycle characteristics and wrote the paper. Hyunhwa Kim 

0 500 1000 1500 2000 2500 3000

30

40

50

SO
C

, %

Time, sec

0

2000

4000

En
gi

ne
 s

pe
ed

, r
pm

0 500 1000 1500 2000 2500 3000
0

100

En
gi

ne
 to

rq
ue

, N
m

Time, sec

0

200

400

600

800

Fu
el

 c
on

su
m

pt
io

n,
 g

0

50

100

V
eh

ic
le

 s
pe

ed
, k

ph

 

 

RBC
ARBC

EV#1
EV#2

Power split
Parallel

(a)

(b)

(c)

(d)

(e)

Ve
hi

cl
e 

sp
ee

d,
 k

ph
SO

C,
 %

Fu
el

 
co

ns
um

pt
io

n,
 g

En
gi

ne
 

sp
ee

d,
 rp

m

R

Regen
Stop

En
gi

ne
 

to
rq

ue
, N

m (f)

R

Figure 10. Simulation results of ARBC and RBC for the SKKU×2 cycle. (a) Vehicle speed; (b) Operating
mode; (c) Battery SOC; (d) Fuel consumption; (e) Engine speed; (f) Engine torque.

5. Conclusions

In this study, an advanced RBC strategy was proposed for a PHEV by considering the driving
cycle characteristics and present battery SOC. First, the speed and torque analysis was performed
for the target PHEV using the lever analogy, and a backward simulator was developed based on
DP. Using DP, the operating mode that has the maximum fuel economy potential was investigated
for city (UDDS ×2, JC08 ×2) and highway (HWFET ×2, NEDC ×2) driving cycles. From the DP
results, it was found that the operating range of the EV mode becomes wider as the initial battery
SOC increases. In addition, it is seen that the selection of the operating mode varies according to the
driving cycle characteristics, even if the initial and final battery SOC are the same. To consider these
characteristics, a predictive mode control map was developed using machine learning. Among various
machine learning algorithms, DTs was selected in building the predictive model since it showed the
highest resubstitution and test accuracy. Using the predictive mode control map obtained from DTs,
an advanced RBC strategy (ARBC) was proposed, which selects the operating mode considering the
present battery SOC and driving cycle characteristics. The performance of ARBC was evaluated by
comparing with a RBC (RBC), which is a CD-CS mode control strategy. From the simulation results,
it was found that ARBC drives in the HEV mode (power split and parallel) even when the battery SOC
is higher than the lower limit, which provided more efficient engine operation. As a result, the battery
SOC by ARBC decreased slowly throughout the whole driving cycle, and this prevented unnecessary
battery charging by the engine, which forces the engine to operate with low efficiency. The equivalent
fuel economy (EFE) of ARBC was improved by 3.3% for the highway (HWFET ×2) cycle. For a real
driving route (SKKU ×2), which consists of the city and highway, the EFE of ARBC was improved by
1.9% compared to that of RBC.

The ARBC proposed in this study provides the improved fuel economy by selecting the proper
operating mode from the viewpoint of system efficiency for the whole driving cycle regardless of the
battery SOC, and can be implemented in a real-time environment using the rule-based mode shift map
constructed from machine learning.
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