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Abstract: Due to the rapidly-changing technologies in the power industry, many new references
addressing the frameworks and business models of the next-generation retail electricity market
are entering the research community. In particular, considering new customers with considerable
demand response awareness and so-called prosumers with localized power generation based on
distributed energy resources (DERs), the next-generation retail electricity market infrastructure will
be a level playing field for local energy transactions, strategic pricing scheme design, new business
model design and building an innovative energy ecosystem. Consequently, there is an urgent need to
keep track of international experiences and activities taking place in the field of the market mechanism
design problem at the distribution level. This paper provides a comprehensive survey of recent
technology developments and aims to inspire awareness of the further deregulation of the electricity
market, especially in areas close to customers. We mainly bring attention to the more than 90 articles
published during the past five years. The collected literature has been divided into different sections
to discuss different aspects of the next-generation retail electricity market under the deregulated
power industry.
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1. Introduction

Although electricity market deregulation has been underway since the United Kingdom opened
a power pool in April 1990 [1], competitive forces in the U.S. electricity market have been largely
silent since the early-2000s California electricity crisis. Then, since the 2010s, many power sector
reforms and new market mechanism designs have been under intense discussion again due to the
emerging smart grid technologies plus some innovative information technology (IT) business models
and an Internet-inspired commercial paradigm [2]. However, most research on the electricity market
still focuses on the wholesale market, particularly the bidding process and financial transmission
rights [3,4]. The development of the retail electricity market seldom borrows much experience from
such bulk power transactions, though. Instead, it prefers to follow principles, like multi-options,
peer-to-peer, sharing economy friendliness, negotiability, and so on, that are utilized successfully in
the customer-centric IT industry. This characteristic is also the reason for popular proposals such as
the energy Internet [5] and digital grid [6] in many references.

Around the world, many countries are also pushing the reform of the electricity power sector
very positively. Chile pioneered in the 1980s the deregulation of the electric power industry [7].
The European Union had taken steps to liberalize its electricity industries in the 1980s and, late in the
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2000s, allowed all customers to choose their electricity suppliers [8]. The restructuring and regulatory
reforms in the PR China’s power sector happened in the 2000s along with other Asian countries [9].
The electricity retailing in Japan was fully deregulated with fierce competition in April 2016 [10].
In today’s U.S. retail electricity market, 14 states have already adequate retail competition with Texas,
Illinois and Ohio having 100%, 60% and 50% of their residential customers receiving service from
electricity suppliers [11]. However, many customers still have very limited “energy choice” or direct
participation in the existing retail electricity market.

The key to open innovation in the power sector has been believed to be the development
of consumer-centric business models and well-designed demand side management (DSM)
programs [12,13]. Following these ideas, the recent work in [14] looks even further forward to
more subtle modeling of customer behavior, with considerations of their willingness to participate
and even emotional or irrational features. With these prevailing ideas in the research community,
the next-generation retail electricity market infrastructure will be a level playing field, where all
energy end-users and customers have equal opportunity to play the role of active participants rather
than pure passive price-takers [15,16]. Fortunately, the recent development of the functionalities
of the energy service companies (EsCos) and the distribution system operator (DSO) has opened
many new possibility for monitoring, coordinating and controlling short-term or real-time delivery
of electricity at the distribution level [17]. Especially with the further development of the concept
of the DSO, deregulation of the electricity market has been spreading out from wholesale market
design into retail market design, as shown in Figures 1 and 2. In the new paradigm for energy
transactions, different customers or customer groups (e.g., energy communities) are free to choose
their service provider, either a distribution company or utility company, including even pure energy
retailers, periodically.
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Figure 1. The deregulation of the wholesale electricity market.
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Figure 2. The further deregulation of the retail electricity market.

Moreover, in smart grids, more and more customers will be able to have local generation capability,
i.e., distributed energy resources (DERs), along with various flexible controllable loads, such as
thermostatically-controlled loads (TCLs), distributed energy storage devices (DESDs) and washing
machines [18,19]. Electric vehicles (EVs) and plug-in electric vehicles (PEVs) are also appealing as the
most controllable loads because they can be curtailed for significant periods of time (e.g., several hours)
without impact on end-use function [20,21]. These kinds of customers are encouraged to actively
participate in the retail market to provide demand response or localized power balance between energy
surplus and energy deficit.

Some existing survey papers focus mainly on the decision-making process of retailers in the
wholesale market and somehow ignore the significant effect that various types of future energy
end-users will have on the whole electricity market landscape [16]. The entire energy business
ecosystem will be re-formed if the most recent research trends and principles, such as transactive
energy [22,23], transactive control [24] (Transactive energy and transactive control are explained further
in Section 2.4), an energy sharing economy [25], and so on, are adopted.

2. Retail Electricity Market with Pure Consumers

In most scenarios, customers play a passive role as price-takers in retail electricity, purely serving
as consumers of energy at different locations. Those who have the capability to generate power locally
with the help of microgrids and are able to supply electricity to other customers are called prosumers
at the distribution level. We will leave the discussion of the retail electricity market that includes
prosumers for the next section.

2.1. DSO with Distribution Level Pricing

As a result of the distribution grid’s increasing number of roles and functionalities, the deployment
of a DSO is becoming a necessity to ensure efficient and reliable delivery of electricity to emerging
proactive customers. Customers now have more willingness to control their energy use and
transactions with the utility grid, as their energy preferences have evolved. In parallel, there is
a potential need for an intermediate entity between the regional transmission operators (RTOs) or
independent system operators (ISOs) and energy end-users due to the limited visibility and control
over the meter resources (e.g., advanced metering infrastructure) at the customer side [26]. A DSO in
the future energy system and energy market design may be considered the evolution of a distribution
management system, with, however, more functionality at different layers (Figure 3).
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Figure 3. The new role design of the DSO. ACOPF, alternating current optimal power flow.

In addition to the traditional mission to operate, maintain and develop an efficient electricity
distribution system, the DSO possesses more functionality rather than only mimicking the ISO’s pure
responsibility of electricity pricing and independent market-clearance at the transmission level as a
non-profit entity. In the wholesale market, many ISOs nationwide implement the locational marginal
pricing (LMP) strategy either in the form of ex ante LMP, for example New York ISO (NYISO), or ex
post LMP, for example ISO-New England (ISO-NE), PJM and Midcontinent-ISO (MISO) [27]. Based on
the fact that LMP has been widely adopted to compute electricity prices in the wholesale electricity
market [28], some scholars have begun to downscale the LMP schema for distribution networks by
proposing its counterpart, distribution locational marginal pricing (DLMP) [29], which can directly
work for individual energy end-users without referring to a load serving entity (LSE) or other demand
bidding aggregators. It has been applied to several scenarios, such as the congestion management
problem and the electric vehicle charging problem [30].

However, as shown in Figure 3, the DSO may not only play the role of an ISO at the
distribution level since there is a huge difference between a distribution network and a transmission
network, such as three-phase imbalance, radial system topology, high ratio of power loss, numerous
low-voltage buses, and so on. To some extent, DLMP is hardly effectively obtained through running
alternating current optimal power flow (ACOPF) for a distribution system. A very recent three-phase
ACOPF-based approach has been developed to define and calculate DLMP accurately [31].

2.2. Decision Making of Retailers

Retailers in the electricity market are supposed to purchase electricity in the wholesale market
and sell electricity to their subscribed end-user customers through assigning appropriate tariffs, either
in a temporal variance way or at a flat rate. Currently, the electricity retail company is usually operated
as an entity that is independent of any generation or distribution company [16]. The decision-making
process involved in buying and selling strategies usually contains some volatile market risks that
are similar to the ones in any other market, such as the stock market and oil market. Especially
with the further deregulation of the electricity market, along with the development of DSM and
the proliferation of DERs, retailers participating in both the wholesale market and the retail market
should carefully design their buying-selling trade-off and electricity portfolio optimization [32]. In the
future, many innovative pricing schemes will be necessary, taking into account emerging factors such
as the increasing penetration of renewable energy, wide deployment of storage devices, adoption
of advanced information and communication technologies (ICT) and rising customer awareness of
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switching among electricity suppliers. These new challenges also require retailers to incorporate
some typical operations into their decision-making processes, which include retail energy forecasting,
portfolio evaluation and risk management.

Due to the page limit and many mature approaches that already exist for residential load
forecasting [33,34] and portfolio evaluation [35,36], risk management will be the focus of discussion
here, along with many recent advances in the research community. In a typical example such as [37],
the author utilizes stochastic programming techniques to determine the day-ahead market bidding
strategies for retailers with flexible demands to maximize their short-term profit, specifically including
a case study based on Sweden’s electricity market and consideration of the demand uncertainty of retail
customers. In most studies of retail electricity market operation, with risk from either real-time price or
demand uncertainty, conditional value-at-risk (CVaR) is widely used to consider risk management [38].
CVaR is a risk assessment technique often used to reduce the probability that a portfolio will incur
large losses, which is performed by taking a weighted average between the value at risk and losses
exceeding the value at risk [39].

2.3. Price Scheme and Demand Response

On the customer side, energy end-users do respond to the long-term electricity contract and price
schemes offered by the utilities; however, they are usually insensitive and uncomfortable with respect
to the highly dynamic or real-time pricing, due to the lack of competence to immediately respond to
the price signal or little awareness of instantaneous opportunity [40,41]. However, electricity prices
that describe marginal costs can vary substantially over time. Fixed rates may ignore continuous
changes in the electricity system conditions. Setting prices that differ for certain periods is an approach
to approximating the real-time price. If rates are set much in advance and fixed over periods of time,
they miss the majority of the potential gain as measured by the variance index [42]. Both time-of-use
(TOU) and critical-peak pricing (CPP) play crucial roles in providing load flexibility and tariff design in
the retail electricity market [43]. Based on the similar idea of rationalizing energy consumption behavior
for the whole system cost, a prediction-of-use (POU) tariff is proposed and believed to better reflect the
predicted cost for a customer [44]. The possible combination of POU with the more widely-known TOU
tariffs is also considered, which allows customers to fully benefit from meaningfully managing their
consumption, as well as from their contribution to the system’s delivering energy-efficient solutions.

Using TOU, CPP or other price schemes as baselines, some additional incentive mechanisms are
also proposed on top of them to reflect the demand response from customers with energy awareness,
which are aware of the electricity price elasticity and reasonable energy saving. Energy tokens, coupons
and eVouchers, similar to their literal meaning in daily commercial activities, are proposed in [17,45,46]
to encourage voluntary energy demand adjustment based on the negotiation principle. These kinds of
negotiation-based demand response programs can be categorized as incentive mechanisms [47] that
provide an additional economic management tool for the power system and market efficiency.

2.4. Transactive Energy and Transactive Control

In order to combine power systems tightly with economic or market-based operation, the term
“transactive energy” has begun to be used to refer to techniques for managing the generation,
consumption or flow of electric power within an electric power system through the use of economic or
market-based constructs, while considering grid reliability constraints [48]. In fact, transactive energy
(TE), one of many promising solutions to electrical grid restructuring issues, has gradually become
a more and more concrete concept among many discussions [49]. Some experts give it the official
definition of “a set of economic and control mechanisms that allows the dynamic balance of supply
and demand across the entire electrical infrastructure using value as a key operational parameter” [48].
Specifically, transactive energy mainly focuses on the value or economic operation of a modernized
electrical grid, primarily from an economic perspective. It emphasizes the innovative business
models and new consumption patterns in electric markets, along with taking some social impact
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into consideration. Some researchers [50] also believe TE is a potential framework to close the gap
between wholesale and retail markets. Most DERs and demand resources can be aggregated as virtual
power plants (VPPs) to provide bulk power adjustment capacity in different markets.

In practice, analogous to the price reaction approach, a concept named transactive control [24]
allows the operation of flexible devices to be optimized economically by a local intelligent controller
(or agent) under the control of the end-user and follows the principles of TE. In a way, a society
of intelligent devices is formed to allow for market bids to be sent by a particular group of devices
(e.g., hot water buffer, dishwasher, air conditioner, etc.) [23]. The local-level bidding process, or laminar
market architecture, is extremely suitable for thermostatically-controlled loads [51]. Furthermore,
both transactive energy and transactive control concepts are becoming more and more widely adopted
by many recent pilot projects [23,49].

3. Retail Electricity Market with Prosumers

In this section, the retail electricity market with prosumer participation in the local power supply
will be discussed. Prosumers are defined as agents that both consume and produce energy [52].
With the growth in the number of small- and medium-sized energy entities using solar photovoltaic
panels, small wind turbines, vehicle-to-grid EV/PEVs, home storage energy systems, smart meters
and other smart devices, prosuming offers the potential for consumers and smart device owners to
re-evaluate the energy practices in their daily lives. As the number of prosumers increases, the retail
electricity market of today is likely to undergo significant changes over the coming decades, not only
offering possibilities for localized inter-network energy trading and balance, but also introducing
many challenges and risks that need to be identified and managed. To develop strategies for the future,
policymakers and planners need knowledge of how prosumers can be integrated effectively and
efficiently into a competitive retail electricity market. Some promising potential market mechanisms,
such as prosumer grid integration, peer-to-peer models, indirect customer-to-customer trading
and prosumer community groups, along with their implementation approaches, are identified and
discussed below.

3.1. Prosumer Grid Integration

Most prosumer integration problems can be incorporated by extending the conventional
optimization model to solve the pure energy consumption and energy management problems.
However, some characteristics of two-way power flow need to be carefully considered for various types
of challenges and optimization constraints, such as inverse current fault detection, distribution topology
estimation, power surplus balance, and so on. When leveraged by an energy storage system (ESS),
including vehicle-to-grid (V2G) technology, distribution network operation with a high penetration of
prosumers needs to make sure that prosumers’ benefits are aligned with the regulator/DSO’s concerns,
thus satisfying the requirements of both sides. The authors in [53] propose a market-based control to
solve this issue. The complexity in the environment and in the interactions among players prompts
techniques derived from complex systems theory. The work in [54] analyzes the optimal planning and
operation of aggregated DERs with participation in the electricity market. In most cases, the aggregator
of a large amount of DERs can operate as a virtual power plant (VPP) [55], which is connected as
part of the main grid and participates directly in the wholesale electricity market. Many similar
ideas based on aggregation frameworks have been frequently employed in solving the prosumer
grid integration problem. However, from an energy utilization and market efficiency point of view,
localized integration at low voltage levels with direct delivery to end-users is still highly encouraged.
More and more decentralized decision-making frameworks without the necessity of aggregation are
welcome nowadays.

The integration of various DERs and EVs also provides a new chance for building an innovative
business model and a new energy ecosystem. There is a plethora of research and development
areas related to prosumer grid integration that can be exploited for new business opportunities,
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thus spawning another branch of the so-called “green economy” focused on turning smart energy
usage into a profitable business [56].

3.2. Inter-Network Trading with Peer-To-Peer Models

The encouragement of localized energy trading within a distribution network at low voltage levels
promotes an eBay-like market platform and peer-to-peer models. Additionally, a high penetration of
distributed energy resources raises operational and market challenges such that existing incentives
and tariff support cannot be sustained with penetration growth at the microgrid level. As a result,
some competitive market mechanisms or peer-to-peer models are required at the local distribution
level. In [57], a matching mechanism is proposed to allow individual generators and load units to
meet to conduct a bilateral trade. Each unit interested in maximizing its benefit adopts its own bid
strategy. Trade between a randomly matched generation and load unit is established if their bids are
compatible, which does not require the units to share their private cost or value information.

Sometimes, this type of peer-to-peer energy sharing is described as “Energy AirBnB” for future
electricity retail markets. Furthermore, some peer coalition might be allowed in the electricity retail
market and work as a new business model for a very short term. Some possible strategic coalitions
among independent electricity retailers or prosumers may happen under the designed distributed
framework [58] to maximize profits, which implies that electricity retailers may solely compete with
each other, while some of them may cooperate with others to form a coalition in the economic
operation of future electricity retail markets. In [59], a scalable and modular system is proposed and
demonstrated for energy trading between prosumers. Even a novel decentralized digital currency,
named after NRGcoins, is proposed by the same group of researchers to encourage prosumers to
locally trade their excess energy while payments are carried out using NRGcoins [60].

The driving force of such a peer-to-peer mode becoming welcome in the retail electricity market
is mainly due to two facts. The first one is frequently discussed: that the rapid adoption of DERs
enhances people’s willingness to trade in a decentralized way. The centralized operation will put too
much burden on the central controller when all the individual customers send the trading requests
at the same time. The other fact seems not so explicit: that the rise of Internet-connected devices
(e.g., Internet of Things) has led to a wide energy connection, which is also strengthened by the
disappearance of the conceptual gap between energy as a physical supply service and energy as an
information service. The behavior of trading energy among peers more or less carries some meaning
of social interactions. It is also another important source for the proposed idea: the energy Internet.

3.3. Indirect Customer-To-Customer Trading

Although peer-to-peer models are very attractive for a highly decentralized energy supply,
some customers or prosumers can find it difficult and time-consuming to search for suitable partners.
They may feel more comfortable and find more convenience trading through an intermediate trader,
like an agent or broker in real estate business. This role of intermediate trader particularly in a local
retail electricity market allows them to keep additional energy transaction options besides only selling
back or buying from utility companies. There are already several pilot projects and demonstration
projects underway, verifying the possibility of monetized local energy exchange. For instance,
since 2010, Pecan Street Inc. (Austin, TX, USA) has been collecting high-resolution data on
how and when homes and small businesses in the United States use and, when PV is present,
generate energy [61]. Then, this temporal and spatial information of energy usage/generation can
be used to test potential energy trading programs along with predicting the market capacity. On the
other hand, in order to reduce the energy transaction cost and search friction in such an indirect
customer-to-customer trading paradigm, a local energy market is proposed in [62] to accommodate
localized energy trading and exchange for communities, buildings and campuses, which may own
surplus local energy produced by on-site DERs.
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In this framework, as shown in Figure 4, an important new role, named the energy broker (EB) and
working as a middleman or trader in this localized retail electricity market, is introduced to get buyers
and sellers together, serving as a solution to search friction [63]. Both the buyers and sellers who would
like to participate in this local energy market will provide bid/offer information of price-quantity pairs
(price (PC) and amount (AM) in Figure 4) in each open time interval. The trader itself will also choose
to maximize transaction efficiency or revenue with consideration for search cost in each open market
time interval accordingly. The index of historical credit for energy transactions, sellers’ commitment
probabilities (SCPs), is also proposed for power allocation of different trading peers. In this way, the
proposed market structure can be modeled based on search theory and an optimal stopping problem
(OSP) [62]. Some other similar works about this topic can also be found in [64,65].

S1	

S2	

S3	 B3	

B2	

B1	

T1	

T2	

Sellers	 Buyers	
Traders		

(Energy	Brokers)	
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Figure 4. The localized retail market with energy broker and search theory. SCP, sellers’
commitment probability.

3.4. Prosumer Community Groups

The prosumer community group is another typical prosumer paradigm that aims to provide
common platforms for coordinating neighboring or local prosumers for exchanging energy and
information within the local community or interfacing with outside energy entities as a whole.
The authors in [25] argue that energy sharing among neighboring PV prosumers in the microgrid could
be more economical than the independent operation of prosumers. They propose an energy-sharing
model with price-based demand response (DR) for microgrids of peer-to-peer (P2P) PV prosumers
to validate the benefit of forming prosumer communities. In [66], a new vision for local distribution
systems is proposed, in which prosumers are encouraged to better balance their electricity usage in
a local community through psychological balancing premiums. Even the social behaviors and some
quantitative psychological characteristics of self-interested prosumers are considered in modeling
the energy exchange and transactions. Price-responsive generation and demand of an individual
prosumer are affected by his/her inherent characteristics and the individual’s attitudes toward benefit
and comfort, which evolve during social interactions. The authors in [67] also introduce a novel concept
to manage prosumers in the form of goal-oriented virtual communities. They meanwhile discussed
different aspects of the formation, growth and overall management of a prosumer-community.
The main significant implication of this approach is that the prosumer-communities are able to
facilitate the joining together of prosumers with similar interests. In this way, the quantity of energy
to be auctioned to the smart grid can be increased accordingly, and furthermore, the prosumers’
bargaining power is increased in the energy market. In a smart community, the benefits of DERs can
also be considered in an energy management scheme, where a large number of residential units can
participate and a shared facility controller (SFC) can be introduced [68]. The SFC is defined as a public
controller that exclusively controls electricity for those publicly sharing used equipment, devices and
machines (e.g., water pumps, lifts, parking lot gates, lights, etc.) by the residents of the community.
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Therefore, the SFC needs to afford all its energy cost either buying from the main grid or buying from
the residential units with DERs due to its lack of electricity generation capability.

4. Methodology

The methodology used in the study of the retail electricity varies greatly according to particular
application scenarios, including making market rules, predicting customer behavior, reducing system
operation cost, and so on. On the other hand, all the methods applied in different projects also depend
on how to describe the dynamics of the market mechanism in a quantitative way, namely system
modeling. In this section, some common methodologies are discussed. However, those methodologies
are usually not applied very independently and have the trend of being combined in a hybrid
framework to make the system modeling more accurate and efficient.

4.1. Optimization, Distributed Optimization and Blockchain

Optimization methods are still dominant in most decision-making problems pertaining to system
and market operation. Stochastic optimization, robust optimization, multi-objective optimization
and mathematical programming have been widely adopted for research on the wholesale market for
market-clearance, and most of this research takes into consideration various types of uncertainties
resulting from variable demand or renewable energy supply [29,35,58]. Retailers in the retail electricity
market often refer to these optimization methods to guarantee their revenue through deterministic
analysis. However, since there are numerous decision variables at the distribution level associated
with frequent monitoring activities and a large number of customers, especially given more and more
small-sized local generation units, global optimization has become rarely implemented due to its
increasing computational complexity. Consequently, the state-of-the-art strategy has begun to shift to
distributed optimization with necessary decomposition, such as the alternating direction method of
multipliers (ADMM), consensus-based algorithms, proximal message passing (PMP), and so on [19,69].

Blockchain technology, borrowed from the IT industry, has also attracted much attention
due to the prevailing distributed optimization implementation in practice. It has been suggested
as promising and suitable for such a decentralized decision-making process [70]. The authors
in [71] present an architecture for peer-to-peer energy markets that can guarantee that operational
constraints are respected and payments are fairly rendered, without relying on a centralized utility or
microgrid aggregator. They demonstrate how to address trust, security and transparency issues by
using blockchains and smart contracts, two emerging technologies that can facilitate decentralized
coordination between non-trusting agents. While blockchains are receiving considerable interest as a
platform for distributed computation and data management, this work may be the first one to examine
their use to facilitate distributed optimization and control of DERs. Some other works also introduce
the utilization of blockchains in local energy transactions between DERs, including a custom-designed
blockchain mechanism designed to maintain a distributed database trusted by all DERs and to stipulate
and store a smart contract that enforces proportional fairness [72].

4.2. Game Theoretic Method and Prospect Theory

In prosumer-centric energy trading, since most interconnected microgrids or DERs operate
autonomously and have their own goals of optimizing performance and maximizing benefits through
energy trading, the selfish nature of players participating in local energy transactions is inclined to
be described by game theoretic methods. A Nash bargaining theory-based incentive mechanism is
proposed and designed in [73] to encourage proactive energy trading and fair benefit sharing. It takes
autonomous microgrids independent self-interested entities, without assuming that all the microgrids
are coordinated by a common grid operator or controlled following a hierarchical structure. In [74],
game-theoretic day-ahead energy scheduling in a residential distribution system is proposed, in which
the distributed electricity prosumers may only compete with each other while some of them may
cooperate with others to form a coalition. A similar noncooperative Stackelberg game between the
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residential units and the shared facility controller is proposed in [68] in order to explore how both
entities can benefit, in terms of achieved utility and minimizing total cost, respectively, from trading
energy with each other and with the grid.

It is noteworthy that the proposed game in [75] accounts for each prosumer’s subjective decision
when faced with the uncertainty of profits, induced by the random future price. In particular,
the framing effect from the framework of prospect theory is used to account for each prosumer’s
valuation of its gains and losses with respect to an individual utility reference point. Prospect theory
(PT) is mainly an interpretative theory that considers weighting effect to transform the objective
probabilities into subjective probabilities, which was proposed to explain the fact that people usually
over-weigh the low probability bad outcomes and under-weigh their favorite outcomes with high
probabilities [75]. PT is helpful for modifying conventional game-theoretic methods because it relaxes
the assumption of rationality in most game frameworks by taking into account subjective irrational
decision behavior [14,76]. It is not at the same level as game theory, but possible to be combined into
building utility functions in game models. Even so, most game-theoretic methods still possess too
much simplification, making it hard to find the equilibrium solution, especially for large-scale systems
with high computational complexity.

4.3. Agent-Based Simulation

Agent-based simulation (ABS) has been another popular tool, since at least the early 1990s,
to model the dynamics of the electricity market, including both the wholesale market and the
retail market [77]. ABS is particularly suitable for large-scale systems involving various types of
interacting system participants. These participants are usually assigned distinct roles, functionalities,
behaviors and decisions, which depend on different objective design and interactions with other
system participants [78]. In an agent-based system, an agent can be as simple as a single variable
(e.g., energy price-amount pair) within a computer program or as complex as an intelligent object,
such as a human being (e.g., speculator), involving possibly an infinite number of states, decisions
and actions/reactions. However, most ABS are mainly designed for the electricity wholesale market,
neglecting transmission/distribution grid constraints [79,80]. The difficulty of validating an ABS
model’s outcomes against empirical data is also one of the weaknesses of the ABS methodology.

In recent years, many agent-based systems have become popular again for electricity market
simulation, due to the further development of reinforcement learning and the other computational
resources available. The Power Trading Agent Competition (Power TAC) is an influential event
and simulator that allows rich competitive simulation of future retail power markets and helps
with understanding the dynamics of customer and retailer decision-making and the robustness of
market designs. Power TAC models a liberalized retail electricity market, where competing business
entities or brokers offer energy services to customers through tariff contracts [81]. On the other hand,
some researchers also mimic the wholesale market mechanism to study the behavior of a day-ahead
retail electrical energy market with price-based demand response from air conditioning loads through
a hierarchical multi-agent framework [82]. Meanwhile, ABS is also frequently used as a validation
tool for testing certain market rules for policy makers. For instance, an agent-based simulation of the
liberalization of a retail electricity market has been developed to introduce competition into a sector
historically characterized by the regional monopoly of retail electricity [83]. It is worth mentioning
that most existing ABS usually assign some learning capability to intelligent agents and often leverage
the Q-learning algorithm from the machine learning field [82].

4.4. Machine Learning Techniques

Machine learning has become the status quo for most intelligent systems, including power systems
and the electricity market. Utilizing machine learning techniques to detect distinct energy consumption
patterns of customers and select high-quality customers for energy programs (e.g., demand response
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programs) is becoming more and more popular in addressing competitive utility companies and the
future energy business ecosystem [84–87].

Together with various types of machine learning techniques, including successful application of
supervised learning in demand response targeting [85] and unsupervised learning in individualized
pricing design [87], reinforcement learning (RL) is also believed to have the potential to deal with
the energy trading problem and guide energy entities to interact with the market environment.
The most important feature distinguishing RL from other types of learning is that it uses training
information that evaluates the actions taken rather than instructions by giving correct actions [88].
This is very suitable for economic activities (e.g., energy transactions) that are based on the
voluntary principle and associated with privacy issues regarding consumption information. On the
other hand, the online nature of RL makes it possible to approximate the best decision-making
strategy or optimal policies in ways that put more effort into learning to make good decisions for
frequently-encountered states (e.g., high energy demand during the daytime), at the expense of less
effort for infrequently-encountered states (e.g., peak load happening at night). The project in [89]
demonstrates a data-driven control approach for demand response in real-life residential buildings, in
which the objective is to optimally schedule the heating cycles of the domestic hot water (DHW) buffer.

However, most RL applications in power systems depend heavily on Q-learning or other tableau
methods, which are based on look-up tables and afford low computational efficiency with increasingly
big datasets. In recent research advancements, combining deep learning (DL) and RL to form a deep Q
network (DQN) is suggested as a good approach for value function approximation and improving
algorithm performance [90]. It can also conquer many of the weaknesses (e.g., feedback delay,
partially-observable environments, numerous enumerations) in the energy system decision-making
process for the retail electricity market.

These methods, including the optimization model, game-theoretic model, agent-based simulation
and machine learning, are usually correlated with each other and often combined together as hybrid
frameworks. For instance, the game-theoretic method that finds the equilibrium point is easily
transformed to an optimization problem that solves for equivalent optimal results [74]. Agent-based
simulation is mostly combined with machine learning techniques to facilitate the interaction dynamics
among different agent entities [82]. The machine learning technology also frequently uses optimization
methods to train its model parameters and hyper-parameters [85]. Last but not least, the summary of
each individual modeling method is shown in Table 1.

Table 1. Solution methods for the new paradigm of the retail electricity market.

Solution
Methods Advantage Disadvantage

Prosumer
Easily

Considered

Computational
Complexity

(Distributed)
optimization

Accurate analytical solution result with
clear interpretation; Easily consider
power flow constraint and network
operation conditions;
Deterministic conclusion;

Hard to describe every trading features
in constraints; Central or regional
controllers are needed; Usually need
high computational resources;

Yes Medium

Game
theoretic
method

Intuitive description about different
market participants; Suitable for
distributed control; Good
economic interpretation;

Convergence is not guaranteed and
hard to find the equilibrium point;
Limited to stylized trading situations
involving few actors;

No High

Agent-based
modeling

Highly adaptive to market and trading
environment; Heterogeneity of different
types of market participants;
Easily incorporate social abilities to
exchange information;

Most neglect transmission/distribution
grid constraints; Results are mostly
non-deterministic with poor
interpretation; Not reliable due to
external conditions and for
policy makers;

Yes Low

Machine
learning

techniques

Very autonomous decision-making
process; Insensitive to market structure
and large data sources;

Data-driven and need realistic
experiments; Usually need high
computational resources;

Yes Medium
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5. Discussion and Policy Issues

Based on the various aforementioned studies of the retail electricity market in recent years,
some trends can be easily observed that: (1) the system or market operation is more fine-grained from
different perspectives, trying to balance credits’ assignment and benefit sharing among many types
of market entities, including suppliers, speculative retailers, utilities, service providers, customers
and other new parties introduced by new business models; (2) more and more consideration is given
for economic operation on top of pure system requirement satisfaction, and a certain degree of risk
is acceptable given the improving uncertainty of the whole system; (3) customers are expected to be
more active in this market-loop instead of passive participants, which are allowed to directly interact
with other market participants and exercise negotiation power.

The study of the electricity market is more or less not a pure technique problem, especially
considering the fairness rule (e.g., non-discrimination), data privacy and renewable energy subsidy
policy in the retail electricity market close to the customer side. In North America, the U.S.
electricity ownership structure is actually quite complex. The U.S. electric power industry
consists of approximately 3300 publicly-owned, investor-owned and cooperative utilities; more than
1000 independent power generators; 3 regional synchronized power grids; 8 electric reliability councils;
about 150 control-area operators; and thousands of separate engineering, economic, environmental
and land use regulatory authorities [15]. We provide a retrospect of the history of U.S. electricity
deregulation in Table 2 based on our previous work in [15] and hope to remind that electricity
deregulation should keep track of the development of emerging technologies, especially considering
the manipulative market power brought by these technologies and new business models. Further
deregulation of the retail electricity market definitely requires cooperation and technical support from
the wholesale market, which is still under intense discussion across the industry and the academic
community [91].

Table 2. History of U.S. electricity deregulation.

Year Effect

1935 Congress passes the Public Utility Holding Company Act of 1935 (PUHCA) to require
the breakup and the stringent federal oversight of large utility holding companies.

1978
Congress passed the Public Utility Regulatory Policies Act (PURPA) which initiated the
first step toward deregulation and competition by opening power markets to
non-utility electricity producers.

1992 Congress passed the Energy Policy Act of 1992 (EPACT), which promoted greater
competition in the bulk power market. The Act chipped away at utilities’ monopolies.

1996
FERC implemented the intent of the Act in 1996 with Orders 888 and 889, with the
stated objective to “remove impediments to competition in wholesale trade and to
bring more efficient, lower cost power to the nation’s electricity customers.”

2005
Congress passed the Energy Policy Act of 2005, a major energy law to repeal PUHCA
and decrease limitations on utility companies’ ability to merge or be owned by financial
holding/non-utility companies.

2007 FERC issued Order 890, reforming the open-access regulations for electricity
transmission, in order to strengthen non-discrimination services.

2008 FERC issued Order 719 to improve the competitiveness of the wholesale electricity
markets in various ways, and to enhance the role of RTOs.

2012
FERC issued Order 768 to facilitate price transparency in markets for the sale and
strengthen the Commission’s ability monitor its retail markets for anti-competitive and
manipulative behavior.
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Although our discussion is mainly focused on the U.S. electricity market, it is worth mentioning
that many countries in Europe and on other continents also meet similar challenges with the retail
electricity market, such as electricity buy-back volatility, cross-subsidies, distribution cost allocation,
and so on [92]. Take for instance the residential U.K. electricity market: it was opened for the first
time in 1999, introducing the choice of supplier, and about 40% of households changed supplier in
the first four years. After three years, price caps were removed. The work in [93] reviews this process
and assesses the competitiveness of the market by examining how the charges levied by suppliers
depend on cost and demand factors for three different payment methods and consumption levels,
whose experience may be helpful for U.S. retail electricity market development. However, the market
deregulation process is not always so successful and full of various kinds of challenges that are far
beyond our expectation. Some researchers have summarized two main negative phenomena that could
reduce the impact of introducing competition in the retail electricity market: cognitive bias affecting
consumers’ decisions to switch and a technological paradigm reducing innovation opportunities in
commercialization [94]. These discussions can go on and on due to the many research perspectives
involved in this field. Research on the electricity market is always hungry for more interdisciplinary
study from other fields, such as economics, computer science and operational research.

6. Conclusions

To help researchers have an overall understanding of the recent research work on the retail
electricity market, different sub-topics with/without prosumers and commonly-used methodologies
are surveyed and discussed in this paper. The state-of-the-art, emerging new market functionalities
(e.g., DSO’s new role, incentive mechanisms, transactive energy, prosumer community groups)
and recent innovative techniques (e.g., prospect theory, blockchain, reinforcement learning) have
been discussed, covering the entire landscape of the retail electricity market.

In the survey of more than 90 papers published within the last five years that study the retail
electricity market, the phenomenon can be observed that more and more intelligent system technology,
like machine learning and the Internet of Things, is coming into play in this field. These new automation
methods and autonomous systems or controllers allow customers to easily coordinate with each other
and actively participate in the electricity market, instead of only passively accepting what they are
provided. Another observation is that innovative business model design remains the key driving force
behind the reform of traditional energy exchange and transactions.

We intentionally skip some common topics, such as load forecasting and demand response,
covered by many existing survey papers, and mainly focus on the most recent developments in the
area of innovative conceptual frameworks in the study of the retail electricity market. In the future,
more localized energy market models under incubation will come into practice and revolutionize the
whole energy ecosystem.
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