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Abstract: As one of the most important tools used in operation and planning of power systems, the
optimal power flow (OPF) problem considering the economy and security is large-scale, complex and
hard to solve. In this paper, an improved krill herd algorithm (IKHA) has been proposed. In IKHA,
the onlooker search mechanism is introduced to reduce the probability of falling into local optimum;
and the parameter values of the proposed algorithm including inertia weight and step-length scale
factor are varied according to the iteration of evolutionary process, which improves the exploration
and exploitation capabilities. Moreover, a novel constraint handling method is proposed to guide the
individual to the feasible space and ensure that the optimal solution satisfies the security constraints.
Then, IKHA is combined with the novel constraint handling method to solve the multi-constrained
OPF problem, and its performance is tested on the IEEE 30 bus, IEEE 57 bus and IEEE 118 bus systems
for 10 different simulation cases containing linear and non-linear objective functions. The simulation
results demonstrate that the proposed method can solve the OPF problem successfully and obtain
better solutions compared with other methods reported in the recent literatures, which prove the
feasibility and effectiveness of the improvements in this work.

Keywords: optimal power flow; power systems; improved krill herd algorithm; novel constraint
handling method

1. Introduction

Electricity is the main driving force of national economies and life, so it is particularly important
to improve the properties of power systems, such as the safety, the reliability and the economy. Today’s
electric power system is a changeable and sophisticated system due to its large scale and complicated
components, including the power generation, the substations, the transmission, the power distribution
and the consumption of electricity [1]. The whole society, even the whole world, should attach
importance to the operation and planning of energy systems for realizing safe, reliable power system
economic operation.

The optimal power flow (OPF) problem considering the economy and security is one of the
most important tools used in operation and planning for energy systems [2]. The aim of OPF is to
provide the optimal settings of control variables for optimizing a specific objective function, such as
the generation cost function, transmission real power losses and voltage deviation, while satisfying
some equality and inequality constraints. The equality constraints are power flow equations, and the
inequality constraints include many limits on power system variables and operating constrains.
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Initially, some traditional mathematical methods have been used to solve OPF problem, such
as interior-point method [3], linear programming method [4], nonlinear programming method [5]
and simplified gradient method [6]. Usually, these methods have fast calculation speed and good
convergence characteristics with some restrictions on variables and objective functions. The restrictions
refer to convexity, smoothness, continuity and differentiability. In fact, OPF is a large-scale,
multi-constrained, non-linear and non-convex problem which contains the discrete and continuous
variables. Therefore, to a certain extent, the traditional methods cannot solve the OPF problem
successfully. With the development of computers, the intelligent optimization methods based on
the combination of computer technology and biological simulation are proposed to overcome many
drawbacks of the traditional methods; and these heuristic algorithms include artificial bee colony
algorithm (ABC) [7], particle swarm optimization (PSO) [8], differential search algorithm (DSA) [9],
differential evolution algorithm (DE) [10], gravitational search algorithm (GSA) [11], etc. Numerous
studies indicate that each algorithm has different performance, pros and cons in different cases, so
there are more and more modified methods based on intelligent algorithms to solve the OPF problem
effectively. For example, the authors in [12] proposed an improved colliding bodies optimization
algorithm (ICBO) which considered three mechanisms in parallel-based colliding bodies optimization
(CBO), and the proposed ICBO has been proved to yield better optimization efficacy over CBO. In [9],
an efficient inspired search method based on differential search algorithm (DSA) could provide better
results compared with DSA for handling OPF problem. A particle swarm optimization with an aging
leader and challengers (ALC-PSO) was successfully applied for the solution of OPF problem in [13].
Applications of modified methods seem like a good way to solve the OPF problem. However, it
is still not an easy task to guarantee the optimal results obtained by these methods meet security
constraints in larger systems. Thus, for solving OPF problem, it is greatly significant to improve the
current methods and handle constraints on variables well simultaneously. Actually, in order to more
efficiently contribute to the power system engineering, the academia contribution should consider the
requirements of the overall OPF solution methodology as much as possible [14].

In 2012, Gandomi and Alavi proposed a new bio-inspired intelligent optimization method
according to the simulation of Antarctic krill swarms’ living environment and habits, named as
krill herd algorithm (KHA) [15]. This method has a strong ability of diversity and few parameters
for adjustment, which is suitable for engineering optimization. However, the search precision and
convergence speed of KHA can’t be guaranteed due to excessive dependence on random steps, which
is easy to fall into local optimal. So far, many modified krill herd algorithms have been proposed
to overcome the shortcomings. In [16], Logistic map was considered in chaotic krill herd algorithm
(CKHA) to improve the performance of the basic KHA, and the proposed method yielded better
optimization efficacy over some other recent popular techniques. The authors in [17] made certain
modifications to increase the performance of the standard KHA, and the simulation results of the
proposed method (MKHA) considerably outperformed the results obtained in the cited literature.
The opposition based learning (OBL) concept was integrated with krill herd algorithm (KHA) for
improving the convergence speed and simulation results in [18]. In [19], the proposed approach utilizes
opposition-based learning (OBL), position clamping (PC) and Cauchy mutation (CM) to enhance the
performance of basic KH. In nature, the survival of the individual is often influenced by the outside
world, such as weather, food and natural enemies. Therefore, the individual should be renewed again
with a certain probability. For example, in the cuckoo search algorithm, cuckoo birds re-establish new
nests according to the probability that the eggs of cuckoo birds are found by other birds [20]. So far,
there is no improved algorithm based on KHA that considers the impact of the external environment.
In this paper, onlooker search mechanism, which is based on the behavior of onlooker bees of artificial
bee colony (ABC) algorithm [21], is proposed to simulate the external factors. A certain number of
bees will interfere with the evolution of krill individuals according to a probability value. Furthermore,
the improvement of parameters is also considered in the proposed method.
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As to the problem of constraints, in many literatures, evolutionary algorithms choose the penalty
function method to handle the inequality constraints of dependent variables [12,22–24]. However,
the method requires many penalty factors, and the setting and adjustment of these parameters may
increase the complexity of the algorithm. Besides, in larger systems, the penalty function does not
necessarily lead the algorithm to obtain a solution that satisfies the security constraints. Therefore,
a novel constraint handling method is proposed to overcome the drawbacks. For state variables
constraints, the constraint evaluation value Constraint(Xi) considered as the conditions of selecting
optimal individual has fewer parameters to set and adjusted in larger system, and the non-greedy
selection is aimed to guide the individual to the feasible space. The constraint method also presents a
new mechanism for self-constrained control variables, which makes the variable closer to the optimal
direction. Briefly, the contributions of this paper can be summarized as follows:

• An improved krill herd algorithm is proposed, namely IKHA, which introduces the onlooker
search mechanism to reduce the probability of falling into local optimum. Moreover, the parameter
values of the proposed algorithm including inertia weight ω and step-length scale factor Ct are
varied according to the iteration of evolutionary process.

• A novel constraint handling method, which contains two parts of control variable constraint and
state variable constraint, is proposed to guide the individual to the feasible space and ensure the
optimal solutions satisfy the security constraints, especially in larger systems.

• The OPF problem is successfully implemented on standard IEEE 30 bus, IEEE 57 bus and IEEE
118 bus systems to solve 10 different cases by using the proposed method.

Finally, the KHA and IKHA are tested on standard IEEE 30 bus, IEEE 57 bus and IEEE 118 bus
systems; and different objective functions, such as quadratic fuel cost, voltage magnitude deviation,
fuel cost emission and quadratic fuel cost considering voltage magnitude deviation, are considered to
verify the efficiency of IKHA for solving OPF problem. The simulation results demonstrate that IKHA
can solve the OPF problem successfully and obtain better solutions compared with KHA and other
methods reported in the recent literatures.

The rest of the paper is organized as follows: Section 2 describes the mathematical formulation of
the OPF problem. Section 3 proposes an improved krill herd algorithm. Section 4 introduces a novel
constraint method. Section 5 presents simulation cases and results. Finally, the conclusion is drawn in
Section 6.

2. OPF Problem Formulation

As previously mentioned, the OPF problem can be mathematically formulated as follows:

Minimize F(x, u) (1)

Subject to: {
g(x, u) = 0
h(x, u) ≤ 0

(2)

where x and u are the vector of state variables and the vector of control variables, respectively. F(x, u)
is the objective function to be minimized. g(x, u) is the set of equality constraints and h(x, u) is the
set of inequality constraints. In actual operation of power systems, there are many types of objective
function which is non-linear, non-convex or non-differential.
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2.1. Control Variable

The control variables of this model include active power generation PG at PV buses except the slack
bus, voltage magnitude VG at PV buses, transformer tap settings T and shunt reactive compensation
QC, which can be expressed as:

uT = [PG2 . . . PGNG, VG1 . . . VGNG, T1 . . . TNT, QC1 . . . QCNC] (3)

where NG, NT and NC represent the number of generator buses, the number of regulating transformers
and the number of shunt compensators, respectively. Commonly, the transformer tap settings T and
shunt reactive compensation QC have been considered as discrete variables.

2.2. State Variable

The state variables of this model are active power generation PG1 at the slack bus, voltage
magnitude VL at PQ buses, reactive power output QG at PV buses and transmission line loadings (or
line flow) Sl, which can be represented as:

xT = [PG1, VL1 . . . VLNL, QG1 . . . QGNG, Sl1 . . . SlNTL] (4)

where NL is the number of load buses and NTL is the number of transmission lines; PG1 as the state
variable is the active power generation at the slack bus.

2.3. Equality Constraint

The power balance are considered as basic equality constraints and reflect the physics of power
systems, which are defined as follows:

QGi −QLi −Vi
Ni
∑

j=1
Vj(Gij sin δij − Bij cos δij) = 0 (i = 1, 2 . . . NPQ)

PGi − PLi −Vi
Ni
∑

j=1
Vj(Gij cos δij + Bij sin δij) = 0 (i = 1, 2 . . . NS)

 (5)

where δij = δi − δj, which are voltage angles at bus i and j, respectively. Ni is the number of buses
which are adjacent to bus i, including bus i. NPQ is the number of PQ buses and NS is the number of
system buses excluding slack bus. QGi and PGi represent the reactive power output and the active
power generation at bus i which belongs PV buses, respectively. QLi and PLi represent the reactive load
demand and active load demand at bus i, respectively. Gij and Bij are the conductance and susceptance
between bus i and bus j, respectively. Vi is the voltage magnitude at bus i. It is noted that the equality
constraints are satisfied because they are considered as the termination conditions when calculating
Jacobian matrix in Newton Raphson load flow calculation [11].

2.4. Inequality Constraint

The operating limits of power systems are considered as inequality constraints which guarantee
the system security.

1. Generator constraints:
VGimin ≤ VGi ≤ VGimax (i = 1, . . . , NG) (6)

PGimin ≤ PGi ≤ PGimax (i = 1, . . . , NG) (7)

QGimin ≤ QGi ≤ QGimax (i = 1, . . . , NG) (8)

2. Transformer constraints:
Timin ≤ Ti ≤ Timax (i = 1, . . . , NT) (9)
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3. Shunt reactive compensator constraints:

QCimin ≤ QCi ≤ QCimax (i = 1, . . . , NC) (10)

4. Security constraints:
VLimin ≤ VLi ≤ VLimax (i = 1, . . . , NL) (11)

Sli ≤ Slimax (i = 1, . . . , NTL) (12)

3. Improved Krill Herd Algorithm (IKHA)

3.1. Brief on Krill Herd Algorithm (KHA)

As one of the marine species studied by humans, krill swarms have a habit of clustering. When
krill swarms encounter natural enemies, some of them will be killed or forced to change the position,
resulting in a decrease in population density. In order to restore the original state, krill swarms will be
gathered towards two main goals: increasing population density and finding food. Based on the two
behaviors in the process of krill clustering, some scholars have proposed a new heuristic algorithm to
solve the global optimal problem—krill herd algorithm (KHA).

In KHA, each krill individual represents a feasible solution for the optimization problem.
The above two goals are considered as forward direction of the optimization problem, then the
process of individual re-aggregation of krill is the process of the algorithm to search for the optimal
solution. The location of each krill will change over time and its changes are mainly affected by the
following three factors:

• Movement induced by other krill individuals
• Foraging motion
• Random diffusion

For an n dimensional decision problem, the Lagrangian model is used in KHA:

dXi
dt

= Ni + Fi + Di (13)

where Ni is the induced motion of other krill individuals; Fi is the Foraging activity and Di is the
physical diffusion.

3.1.1. Movement Induced by Other Krill Individuals

In order to achieve the overall migration of the population, each krill individual will interact with
each other, making the population remain highly intensive. The direction αi of movement is influenced
by the effects of neighboring individuals (local effect), the optimal individual (target effect), and
population exclusion (repulsive effect). For a krill, the movement Ni induced by other krill individuals
can be defined as:

Ni = Nmaxαi + wnNold
i (14)

αi = αlocal
i + α

target
i (15)

where Nmax and Ni
old are the maximum induced speed and the last motion induced, respectively.

ωn ∈ [0, 1] is the inertia weight of the motion. αi
local and αi

target represent the local effect and target
effect, respectively. The local effect induced by neighbors can be assumed as an attractive/repulsive
tendency and determined as follows:

αlocal
i =

NN

∑
j=1

K̂i,jX̂i,j (16)
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X̂i,j =
Xj − Xi

‖Xj − Xi‖+ ε
(17)

K̂i,j =
Ki − Kj

Kworst − Kbest (18)

where NN is the number of neighbors, X and K represent the related position and fitness, respectively.
Kworst and Kbest are the worst and the best value of the krill herds so far; ε is a small positive value to
avoid singularities. Furthermore, the sensing distance of krill individuals should be proposed to define
the local effect, which determines the neighbors of a krill individual using the following formula:

di =
1

5NP

NP

∑
j=1
‖Xi − Xj‖ (19)

where NP represents the population size.
The global optimal solution as target direction will affect the motion of each krill which is

defined as:
α

target
i = CbestK̂i,bestX̂i,best (20)

Cbest = 2(rand1 +
g

gmax
) (21)

where rand1 is uniformly distributed random variable between 0 and 1, g and gmax represent the actual
iteration and the maximum iteration numbers.

3.1.2. Foraging Motion

In the foraging motion, the “food” searched by the population is estimated according to the fitness
distribution of the krill individuals, and its position is determined by the definition of “center of mass”
in physics:

Xfood =

NP
∑

i=1

1
Ki

Xi

NP
∑

i=1

1
Ki

(22)

The foraging activity of the krill is affected by two main factors: the current and the previous
location of the food source which can be expressed as follows:

Fi = Vf βi + ω f Fold
i (23)

βi = βfood
i + βibest

i (24)

where Vf is the foraging speed, ωf is the inertia weight between 0 and 1, Fi
old is the previous foraging

motion, βi
food and βi

ibest represent the food attraction and the effect of the best fitness of the ith krill so
far which are defined as:

βfood
i = CfoodK̂i,foodX̂i,food (25)

βibest
i = K̂i,ibestX̂i,ibest (26)

where Cfood is the food coefficient and varied by the iteration as:

Cfood = 2(rand2 +
g

gmax
) (27)

where rand2 is uniformly distributed random variable between 0 and 1.
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3.1.3. Random Diffusion

The physical diffusion of krill individuals can be expressed with the maximum diffusion speed
and a random directional vector as:

Di = Dmax(1− g
gmax

)δ (28)

where Dmax represents the maximum diffusion speed and δ is random vector whose arrays are random
values generated according to uniform distribution between −1 and 1.

3.1.4. Position Update

The above three factors will make each krill individual change its position in the optimal direction.
The position of the individual during the interval t + ∆t is updated as follows:

Xi(t + ∆t) = Xi(t) + ∆t
dXi
dt

(29)

∆t is one of the most important constants and completely depends on the search space which can
be expressed as:

∆t = Ct

NV

∑
j=1

(UBj − LBj) (30)

where Ct is a constant number between [0, 2], NV is the total number of control variables, UBj and LBj
represent the upper and lower bounds of the jth variable, respectively.

3.1.5. Genetic Operators

The crossover and mutation strategies of Genetic algorithm are incorporated into KH to improve
the performance of the algorithm. The crossover is formulated as [15]:

Xi,j =

{
Xr1,j rand3 < CR
Xi,j else

j = 1, . . . , D i = 1, . . . , NP (31)

CR = 0.2K̂i,best (32)

where D is the dimension of the optimal problem, rand3 is uniformly distributed random variable
between 0 and 1, Xr1 (r1 6= i) is randomly chosen from the current population, CR is the crossover
probability which is equal to zero for the global best solution. The mutation is defined as [15]:

Xi,j =

{
Xbest,j + µ

(
Xr2,j − Xr3,j

)
rand4 < Mu

Xi,j else
j = 1, . . . , D i = 1, . . . , NP (33)

Mu = 0.05/K̂i,best (34)

where Xbest is the global best position of the whole swarm, µ ∈ [0, 1] is the mutant factor, rand4 is
uniformly distributed random variable between 0 and 1, Xr2 and Xr3 (r2 6= r3 6= i) are randomly chosen
from the current population, Mu is the mutant probability which is also equal to zero for the global
best solution.

3.1.6. The Process of Krill Herd Algorithm

Generally, the KHA can be described by the following steps:

Step 1: Initialization: The algorithm parameters, the power system data, limits of variables.
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Step 2: The generation of initial population: The individual is randomly generated in the search space
of the optimization problem. Random values are assigned to each D-dimensional individual
according to:

Xj,i|g=0 = Xj,min + rand5 × (Xj,max − Xj,min) j = 1, . . . , D i = 1, . . . , NP (35)

where Xj,min and Xj,max represent the lower and upper bounds of the jth decision variable, NP
is the population size, rand5 is uniformly distributed random variable between 0 and 1.

Step 3: Fitness evaluation: Evaluate each krill individual according to its position and memorise the
global best solution.

Step 4: Motion calculation:

• Movement induced by other krill individuals
• Foraging motion
• Random diffusion

Step 5: Perform the genetic operators including crossover and mutation.
Step 6: Update the population and repeat the Step 3.
Step 7: Stop and display the final solution if the stop criteria is reached, else go back to Step 4.

3.2. Onlooker Search Mechanism

The above three factors will make each krill individual to change the direction of own position
according krill swarms. In the evolutionary process, the difference among individuals will gradually
decrease as the number of iterations increases, which makes KHA is prone to fall into local optimum.
Therefore, the onlooker search mechanism based on the behavior of onlooker bees of artificial bee
colony (ABC) algorithm [21] is introduced to overcome this shortcoming. All onlookers select
individuals to be updated again according to the probability (Pi) value which is based on the roulette
method [25]:

Pi =
f iti

∑NP
j f itj

(36)

where i ∈ {1, 2, . . . , NP}, NP represents the number of the population size. fiti is associated with the
fitness value fi of the ith krill calculated as follows:

f iti =

{
1

1+ fi
, fi ≥ 0

1 + | fi|, fi < 0
(37)

The individual with better fitness will attract more onlooker bees and be updated by the
following formula:

X′′i = Xi + rand1 × (Xbest − Xi) + (1− rand1)× (Xr1,g − Xr2,g) (38)

where Xr1,g and Xr2,g (r1 6= r2 6= i) are randomly chosen from the current population, Xbest is the global
best position of the whole swarm, rand1 is uniformly distributed random variable between 0 and 1.
Then the selection combined with novel constraint method is utilized to choose a better vector between
the trial vector X′′i and the target vector Xi which is explained in detail in Section 4. Moreover, the
number of onlooker bees influences the convergence speed and it is usually to be 1/3 of the number of
the population size.

3.3. Parameter Improvement

Generally, ωn and ωf are defined as ω called inertia weight. When ω takes bigger value, the
algorithm can perform better globally and diversify the solution. Smaller ω is aimed to perform the
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local search. An excellent algorithm should have the two capabilities: exploration and exploitation.
The former is the ability to avoid the possibility of finding the global optimal solution quickly by falling
into local minimum. The latter refers to the ability to explore potential better solutions near the existing
optimal value. Ct is step-length scale factor. The larger the value of Ct is, the stronger the exploration
capability will be, which may lead to slower convergence. On the contrary, the exploitation capability
will be stronger, which may lead to premature convergence. Therefore, the improvement of the
parameters should be implemented, which directly affects the search precision and convergence speed.

In the proposed method, inertia weight ω is gradually decreased as:

ω = 0.1 + 0.8× (1− g
gmax

)
2

(39)

where g and gmax represent the number of the iteration and maximum iteration number, respectively.
The way of non-linear decline is to ensure that the motion can get a greater range of exploration in the
early and accelerate the convergence of particles in the later.

The step-length scale factor Ct is changed according to the number of iterations of the algorithm:

Ct =

{
0.7
0.4

if g < 0.4× gmax

otherwise
(40)

3.4. Implementation of IKHA Algorithm

Some steps involved to solve the OPF problem by IKHA algorithm are presented in the flowchart
shown in Figure 1.
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4. Novel Constraint Handling Method

The non-linear, non-convex constrained optimization problem can be solved by indirect and
direct methods. The indirect method means that constraints are incorporated in an explicit manner
and the direct method means that constrained optimization problem is converted into unconstrained
optimization problem [26]. In this paper, an indirect method combined with a non-greedy selection is
proposed, which is divided into two parts as follows.

4.1. State Variable Constraint

In this method, the inequality constraints of state variables which contain real power generation
at slack bus PG1, reactive power generation at PV buses QG, load bus voltage magnitude VL and
line loading Sl are considered as the conditions of selecting optimal individual and mathematically
formulated as:

Constraint(Xi) = CV
NL
∑

i=1
Cos(VLi) + CQ

NG
∑

i=1
Cos(QGi)

+CPCos(PG1) + CS
NTL
∑

i=1
Cos(Sli)

(41)

where Constraint(Xi) is the constraint evaluation value of Xi. CV, CQ, CP and CS are constraint
coefficients of state variables, respectively. Cos(VLi), Cos(QGi), Cos(PG1) and Cos(Sli) respect the
constraint value of the state variable VL, QG, PG1, Sl at the current operating state Xi, and each
one can be expressed as follows:

Cos(xi) ==


|ximin − xi|

0
|ximax − xi|

xi < ximin
ximin ≤ xi ≤ ximax

xi > ximax

(42)

where xi represents ith state variable of VL, QG, PG1 and Sl. ximin and ximax are lower and upper
bounds of the state variable, respectively. Constraint coefficients are usually 1, but in large systems, if
some state variable is easy to violate constraints, the value of its corresponding constraint coefficient
can be increased.

A non-greedy selection based on constraint evaluation value Constraint(Xi) is introduced to pick
out qualified solutions, mathematically formulated as:

Xi =


X1 Constraint(X1) = 0, Constraint(X2) 6= 0
X2 Constraint(X2) = 0, Constraint(X1) 6= 0
min(Constraint(X1), Constraint(X2)) otherwise

(43)

The selection is applied in the algorithm to guide the individual to the feasible space.

4.2. Control Variable Constraint

On the other hand, the control variable is self-constrained. When the independent variable
violates limits then the position of it will be adjusted as follows:

Xj =

{
r1 × Xj,max + (1− r1)× Xj,best
r2 × Xj,min + (1− r2)× Xj,best

i f Xj > Xjmax
i f Xj < Xj,min

j = 1, . . . , D (44)

where Xj,best is the corresponding variable of the best individual, r1 and r2 are uniformly distributed
random variables between 0 and 1.
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5. Application and Simulation Results

To verify the efficiency of the proposed algorithm, 3 different types of test system and 10 different
cases are considered for simulation, which are summarized in Table 1. For each case, 30 runs are
conducted to get the solution quality. In addition, Table 2 shows some parameter values of IKHA and
KHA. The choices of these values which are obtained from multiple experiments can make the method
have better search efficiency.

Table 1. Summary of the studied cases.

Test System Name Objective Function Constraints

IEEE 30 Case 1 Quadratic fuel cost function Equality/non-equality
Case 1-a Fuel cost function with multiple fuel sources Equality/non-equality
Case 1-b Fuel cost function with valve point effect Equality/non-equality
Case 2 Voltage magnitude deviation Equality/non-equality
Case 3 Fuel cost emission Equality/non-equality
Case 4 Transmission real power losses Equality/non-equality
Case 5 Quadratic cost considering voltage deviation Equality/non-equality
Case 6 Quadratic cost considering power losses Equality/non-equality

IEEE 57 Case 7 Quadratic fuel cost function Equality/non-equality
Case 8 Voltage magnitude deviation Equality/non-equality
Case 9 Quadratic cost considering voltage deviation Equality/non-equality

IEEE 118 Case 10 Quadratic fuel cost function Equality/non-equality

Table 2. Parameter values of improved krill herd algorithm (IKHA) and krill herd algorithm (KHA).

Algorithm NP gmax Nmax Vf Dmax Ct

IKHA 30 500 0.01 0.02 0.005 0.4/0.7
KHA 30 500 0.01 0.02 0.005 0.4

The simulations were performed in Matlab 2014 on a 3.30 GHz personal computer with 8.00 GB
for random access memory (RAM) and the optimization results obtained by IKHA are compared with
the results of KHA and other methods presented in the recent literatures. All of constraint coefficients
of the novel constraint method are set to be 1 in IEEE 30 bus system, but CV and CQ are set to be 500
in IEEE 57 bus and IEEE 118 bus systems. Besides, KHA employs the penalty function to handle the
constraints on state variables, and all of the penalty factors are set to be 500.

5.1. IEEE 30 Bus System

The system has 6 generators, 41 branches, 9 shunt reactive compensations and 4 transformers,
which also has 2.834 p.u. for the active power demand and 1.262 p.u. for the reactive power demand
on base of 100 MVA. In addition, the detailed line date, the bus date and the cost coefficients are
given in [27,28]. The transformer tap settings are divided into 20 discrete steps. The minimum and
maximum limits are 0.9 p.u. and 1.1 p.u., and the step size is 0.01 p.u. The shunt reactive compensation
is divided into 50 discrete steps with a step of 0.001 p.u.; and the lower and upper limits are 0.0 p.u.
and 0.05 p.u., respectively. Furthermore, the voltage magnitudes of generator buses are assumed to
vary in the range [0.95, 1.1] p.u., and the lower and upper limits of load buses are considered to be
0.95 p.u. and 1.05 p.u., respectively.

5.1.1. Case 1: Minimization of Quadratic Fuel Cost Function

The objective of the total fuel cost is widely used and it can be formulated by a quadratic curve
as follows:

fCost =
NG

∑
i=1

fi($/h) (45)
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fi = ai + biPGi + ciP2
Gi (46)

where ai, bi and ci are the cost coefficients of the ith generator.
In actual operation of power systems, the fuel cost of generators is affected by some factors.

Therefore, two other general formulas for calculating the fuel cost are also considered in this paper:
Case 1-a and Case 1-b.

Case 1-a considers the situation where the generators use multiple fuel sources like natural gas, oil
and coal. The mathematical formulation of these generators is described as a set of piecewise quadratic
cost functions for different fuel types, which can be defined as:

fi =


ai1 + bi1PGi + ci1P2

Gi PGimin ≤ PGi < PGi1
ai2 + bi2PGi + ci2P2

Gi PGi1 ≤ PGi < PGi2
. . .

aik + bikPGi + cikP2
Gi PGik−1 ≤ PGi < PGimax

(47)

where aik, bik and cik are the cost coefficients of the ith generator for fuel type k. In this case, the
generators at buses 1 and 2 have two different types of fuel cost sources, and their cost coefficients
are presented in [12]. The cost functions of other generators have the same presentations as Case
1. Clearly, the problem becomes non-continuous which may result in local optimum and the total
objective function can be described as:

fCost−a =

(
2

∑
i=1

aik + bikPGi + cikP2
Gi

)
+

(
NG

∑
i=3

ai + biPGi + ciP2
Gi

)
($/h) (48)

Case 1-b considers the valve point effect which is described as an absolute sinusoidal function [29].
In this case, the valve point effect is added to the basic quadratic cost functions of generators at buses 1
and 2, and the non-differential objective function is calculated as follows:

fCost−b =

(
2
∑

i=1
ai + biPGi + ciP2

Gi +
∣∣di sin

(
ei
(

PGimin − PGi
))∣∣)

+

(
NG
∑

i=3
ai + biPGi + ciP2

Gi

)
($/h)

(49)

where ai, bi, ci, di and ei are cost coefficients of the ith generator, and the cost coefficients of buses 1 and
2 are given in [23]. The cost coefficients of other generators remain the same values as Case 1.

For Case 1, the optimal control variables and objective function value of IKHA are shown in
Table 3, and the comparison of the results obtained by IKHA and other methods reported in recent
literatures is shown in Table 4. The computation time is a vital issue in power system operation
which depends on the algorithm’s search efficiency, maximum iteration number and population size.
In recent literatures, the maximum iteration number and population size which are related to time
complexity are usually not the same. The average computation time of the single iteration is considered
to reflect the algorithm efficiency in this paper. Thus, the simulation time and maximum iteration
number of methods are recorded which can be seen in Table 4. It is worth noting that the result with ‘a’
represents an infeasible solution. NA means that the datum is not reported in the referred literature.
From the tables, it is clear that the minimization of quadratic fuel cost obtained by IKHA is better
than KHA, modified shuffle frog leaping algorithm (MSLFA) [30], ABC [31], moth swarm algorithm
(MSA) [22], modified Gaussian bare-bones imperialist competitive algorithm (MGBICA) [32], Jaya [33]
and adaptive real coded biogeography-based optimization (ARCBBO) [34]. The single iteration
computation times of ABC [31] and Jaya [33] are longer than IKHA, which shows the search efficiency
of IKHA. The result of IKHA is greatly reduced to 800.4143 $/h comparing with 801.4675 $/h obtained
by KHA, and the difference of the simulation time is small which proves the effectiveness of the
proposed method. Although the results obtained by GSA [35] and biogeography based optimization
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(BBO) [36] are less than IKHA, the optimal solutions are regarded as unqualified solutions for violating
system security constraints mentioned before. Meanwhile, Figure 2 shows the optimal convergence
curves over the iterations and Figure 3 shows the results in 30 independent simulations of IKHA and
KH for case 1. As shown in Figure 2, the initial value of IKHA is smaller than KHA due to the novel
constraint method; and IKHA has smooth curve with a better convergence than KHA. Moreover, the
distribution range of results of IKHA is smaller than KHA according to Figure 3, which demonstrates
that IKHA has a stronger robustness.

For Case 1-a and Case 1-b, the optimal control variables and objective function values of IKHA are
shown in Table 3, and the comparison of the results is shown in Table 5. It can be seen that the results
of IKHA are 646.5126 $/h and 929.9010 $/h for Case 1-a and Case 1-b, which are both less than KHA
and MSA [22]. Furthermore, the optimal convergence curves of IKHA for Case 1-a and Case 1-b are
shown in Figure 4 which demonstrates the convergence characteristic. According to the experimental
data of the three situations, the proposed method can successfully solve the non-differential and
non-continuous OPF problem which contains the discrete and continuous variables.
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Table 3. Optimal solutions obtained by IKHA on IEEE 30 system.

Control Variables Case 1 Case 1-a Case 1-b Case 2 Case 3 Case 4 Case 5 Case 6

P1 (MW) 177.0460 139.9931 199.2307 53.7862 64.0580 51.4880 176.4745 102.5066
P2 (MW) 48.7423 54.9987 51.9824 79.8421 67.5612 79.9973 48.8341 55.6717
P5 (MW) 21.3782 24.1051 15.0001 49.8070 50.0000 50.0000 21.6357 38.0835
P8 (MW) 21.3084 34.9883 10.0001 34.7705 35.0000 35.0000 22.0723 34.9998
P11 (MW) 11.9203 18.4108 10.0002 30.0000 30.0000 29.9998 12.2127 29.9980
P13 (MW) 12.0020 17.6480 12.0002 39.0733 40.0000 40.0000 12.0005 26.6695
V1 (p.u.) 1.0827 1.0734 0.9784 1.0054 1.0636 1.0609 1.0409 1.0675
V2 (p.u.) 1.0635 1.0593 0.9607 1.0070 1.0575 1.0569 1.0244 1.0571
V5 (p.u.) 1.0325 1.0341 0.9799 1.0189 1.0381 1.0377 1.0127 1.0338
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Table 3. Cont.

Control Variables Case 1 Case 1-a Case 1-b Case 2 Case 3 Case 4 Case 5 Case 6

V8 (p.u.) 1.0374 1.0401 0.9631 1.0114 1.0444 1.0441 1.0010 1.0421
V11 (p.u.) 1.0897 1.0972 1.0992 0.9880 1.0877 1.0805 1.0428 1.0773
V13 (p.u.) 1.0470 1.0411 0.9831 1.0049 1.0487 1.0564 0.9920 1.0511
T11 (p.u.) 1.0400 1.0300 0.9000 1.0000 1.0800 1.0800 1.0600 1.0500
T12 (p.u.) 0.9300 0.9800 0.9000 0.9000 0.9000 0.9000 0.9000 0.9100
T15 (p.u.) 0.9700 0.9700 1.1000 0.9700 0.9800 0.9900 0.9500 0.9900
T36 (p.u.) 0.9700 0.9700 0.9200 0.9500 0.9700 0.9800 0.9600 0.9800

QC10 (p.u.) 0.0020 0.0440 0.0480 0.0500 0.0000 0.0060 0.0500 0.0010
QC12 (p.u.) 0.0130 0.0440 0.0430 0.0000 0.0070 0.0000 0.0130 0.0430
QC15 (p.u.) 0.0410 0.0460 0.0050 0.0500 0.0440 0.0430 0.0500 0.0460
QC17 (p.u.) 0.0500 0.0350 0.0450 0.0000 0.0500 0.0500 0.0000 0.0500
QC20 (p.u.) 0.0390 0.0400 0.0120 0.0500 0.0390 0.0400 0.0500 0.0390
QC21 (p.u.) 0.0500 0.0460 0.0000 0.0500 0.0500 0.0500 0.0500 0.0500
QC23 (p.u.) 0.0280 0.0410 0.0470 0.0500 0.0280 0.0290 0.0500 0.0280
QC24 (p.u.) 0.0500 0.0480 0.0100 0.0500 0.0500 0.0500 0.0500 0.0500
QC29 (p.u.) 0.0220 0.0190 0.0040 0.0070 0.0190 0.0240 0.0170 0.0260
Fuel cost 800.4143 646.5126 929.901 965.5317 944.3314 967.6201 803.5879 859.0579

Voltage deviations 0.9215 0.9256 0.6826 0.0892 0.9226 0.8814 0.0984 0.9083
Emission 0.3660 0.2835 0.4410 0.2077 0.204818 0.2073 0.3642 0.2287

Power loss 8.9972 6.7439 14.8136 3.8792 3.2192 3.0850 9.8297 4.5291

Table 4. Comparison of the simulation results for Case 1 on IEEE 30 system.

Algorithms Min ($/h) Simulation Time (s)/gmax

IKHA 800.4143 75.11/500
KHA 801.4675 74.06/500

MSLFA [30] 802.2870 NA/100
ABC [31] 800.6600 130.16/200
MSA [22] 800.5099 NA/100

MGBICA [32] 801.1409 NA/NA
ARCBBO [34] 800.5159 NA/200

Jaya [33] 800.479 72.4/100
GSA [35] 798.6751 a 10.7582/200
BBO [36] 799.1116 a NA/200

a Infeasible solution.

Table 5. Comparison of the simulation results for Case 1-a and Case 1-b on IEEE 30 system.

Algorithms Case 1-a Min ($/h) Case 1-b Min ($/h) Average Time (s)/gmax

IKHA 646.5126 929.9010 80.75/500
KHA 647.0264 932.1784 78.22/500

MSA [22] 646.8364 930.7441 NA/100
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5.1.2. Case 2: Minimization of Voltage Magnitude Deviation

The function which is an important safety quality index aims to minimize the deviation of the PQ
buses voltages from 1.0, and it can be formulated as follows:

fDeviation =
NL

∑
i=1
|Vi − 1| (50)

where NL is the number of load buses and Vi represents the voltage magnitude of ith load bus.
For case 2, Table 3 shows the optimal solutions of IKHA and Table 6 shows the comparison of the
results obtained by IKHA and other methods. It can be seen that the minimization of voltage magnitude
deviation of IKHA is 0.0892 p.u., which is less by 0.0137, 0.0347, 0.0082 and 0.0059 p.u. comparing
with KHA, MGBICA [32], lévy teaching–learning-based optimization (LTLBO) [23] and BBO [36],
respectively. Moreover, the voltage magnitude deviation in this case is decreasing from 0.9215 p.u.
obtained by case 1 to 0.0892 p.u., which is equivalent to 90% reduction. In order to make the result of
case 2 clearer, the comparison of voltage profiles between case1 and case 2 is shown in Figure 5, and
the optimal convergence curves of IKHA and KH is shown in Figure 6. It is noted that the initial value
of KHA is not shown in Figure 6 for making the convergence curve better clear. The reason for this is
that the difference between the initial values of IKHA and KHA is larger due to the difference of the
novel constraint method and the penalty function method. Obviously, the proposed method can guide
the individual to find the better location in the viable domain.

Table 6. Comparison of the simulation results for Case 2 on IEEE 30 system.

Algorithms Min Simulation Time (s)/gmax

IKHA 0.0892 70.40/500
KHA 0.1029 68.02/500

MGBICA [32] 0.1239 NA/NA
LTLBO [23] 0.0974 20.17/100

BBO [36] 0.0951 NA/200
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5.1.3. Case 3: Minimization of Fuel Cost Emission

Aimed to minimize the harmful gas amount, such as SOx and NOx, the objective for the generators
can be defined as bellow [37]:

fE =
NG

∑
i=1

αi + βiPGi+γiP2
Gi + ξi exp(λiPGi) ton/h (51)

where αi, βi, γi, ξi and λi are the emission coefficients of the ith generator. NG represents the number
of generator buses. The setting of optimal control variables of IKHA are presented in Table 3, which
shows that the minimum of fuel cost emission obtained by IKHA is 0.204818 ton/h. The simulation
result is compared with other methods in Table 7, and better than KHA, differential search algorithm
(DSA) [9] ABC [31], MSA [22], MGBICA [32] and MSLFA [30]. Compared with the above cases, this
objective function is non-linear. The result of IKHA, which is less 0.001002 than KHA, proves that the
proposed method can get not only the better optimal solution but also better convergence curve when
solving non-linear problem as shown in Figure 7. Besides, Figure 8 shows the results in 30 independent
simulations of IKHA and KH for case 3, which indicates the robustness of IKHA.
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Table 7. Comparison of the simulation results for Case 3 on IEEE 30 system.

Algorithms Min (ton/h) Simulation Time (s)/gmax

IKHA 0.204818 76.68/500
KHA 0.205082 74.89/500

DSA [9] 0.2058255 NA/500
ABC [31] 0.204826 NA/200
MSA [22] 0.20482 NA/100

MGBICA [32] 0.2048 NA/NA
MSLFA [30] 0.2056 NA/100

5.1.4. Case 4: Minimization of Transmission Real Power Losses

The function determined by the bus voltage magnitude and angle is the total active power losses
of all transmission lines, and can be formulated as follows:

fLoss =
NTL

∑
k=1

Gk[Vi
2 + Vj

2 − 2ViVj cos(δi − δj)] (52)

where Gk is the conductance between bus i and bus j, and NTL is the number of transmission lines.
It can be seen in Table 3 that the minimization of transmission real power losses obtained by IKHA is
3.0850 MW, and the result is less than KHA, ABC [31] Combined approach [28], DSA [9] MSA [22],
MGBICA [32], Proposed efficient evolutionary algorithm (EEA) [38], Jaya [33] and ALC-PSO [13]
reported in Table 8. But the single iteration computation times of Proposed EEA [38] and ALC-PSO [13]
are shorter than IKHA. As shown in Figures 9 and 10, to a certain extent, the onlooker search mechanism
reduces the probability of falling into the local optimal and makes the IKHA obtain a better solution
compared with the basic KHA.

Table 8. Comparison of the simulation results for Case 4 on IEEE 30 system.

Algorithms Min (MW) Simulation Time (s)/gmax

IKHA 3.0805 72.32/500
KHA 3.1409 70.64/500

ABC [31] 3.1078 NA/200
Combined approach [28] 3.2601 3.3109/NA

DSA [9] 3.0945 NA/500
MSA [22] 3.1005 NA/100

MGBICA [32] 4.937 NA/NA
Proposed EEA [38] 3.2823 5.7167/94

ALC-PSO [13] 3.1700 10.2345/500
Jaya [33] 3.1035 NA/100



Energies 2018, 11, 76 18 of 27

Energies 2018, 11, 76  17 of 27 

 

Table 7. Comparison of the simulation results for Case 3 on IEEE 30 system. 

Algorithms Min (ton/h) Simulation Time (s)/gmax

IKHA 0.204818 76.68/500 
KHA 0.205082 74.89/500 

DSA [9] 0.2058255 NA/500 
ABC [31] 0.204826 NA/200 
MSA [22] 0.20482 NA/100 

MGBICA [32] 0.2048 NA/NA 
MSLFA [30] 0.2056 NA/100 

5.1.4. Case 4: Minimization of Transmission Real Power Losses 

The function determined by the bus voltage magnitude and angle is the total active power 
losses of all transmission lines, and can be formulated as follows: 

 


   
NTL

2 2
Loss

1
[ 2 cos( )]k i j i j i j

k
f G V V V V  (52) 

where Gk is the conductance between bus i and bus j, and NTL is the number of transmission lines. 
It can be seen in Table 3 that the minimization of transmission real power losses obtained by IKHA is 
3.0850 MW, and the result is less than KHA, ABC [31] Combined approach [28], DSA [9] MSA [22], 
MGBICA [32], Proposed efficient evolutionary algorithm (EEA) [38], Jaya [33] and ALC-PSO [13] 
reported in Table 8. But the single iteration computation times of Proposed EEA [38] and ALC-PSO 
[13] are shorter than IKHA. As shown in Figures 9 and 10, to a certain extent, the onlooker search 
mechanism reduces the probability of falling into the local optimal and makes the IKHA obtain a 
better solution compared with the basic KHA. 

Table 8. Comparison of the simulation results for Case 4 on IEEE 30 system. 

Algorithms Min (MW) Simulation Time (s)/gmax 
IKHA 3.0805 72.32/500 
KHA 3.1409 70.64/500 

ABC[31] 3.1078 NA/200 
Combined approach [28] 3.2601 3.3109/NA 

DSA [9] 3.0945 NA/500 
MSA [22] 3.1005 NA/100 

MGBICA [32] 4.937 NA/NA 
Proposed EEA [38] 3.2823 5.7167/94 

ALC-PSO [13] 3.1700 10.2345/500 
Jaya [33] 3.1035 NA/100 

 
Figure 9. The optimal convergence curves for Case 4 of IEEE 30 bus system. Figure 9. The optimal convergence curves for Case 4 of IEEE 30 bus system.

Energies 2018, 11, 76  18 of 27 

 

 
Figure 10. The results’ distribution for Case 4 of IEEE 30 bus system. 

5.1.5. Case 5: Minimization of Quadratic Cost and Voltage Magnitude Deviation 

Generally, the weighted sum method is used to make multi-objective into a single objective 
problem. This case is aimed to simultaneously minimize the quadratic cost and voltage magnitude 
deviation, which can be expressed as: 

 CD Cost D Deviationf f f  (53) 

where λD selected by the user is a weighting factor and it is selected as 100 in this study [23]. Table 3 
shows that the quadratic fuel cost and voltage magnitude deviation for case 5 of IKHA are  
803.5879 $/h and 0.0984 p.u, respectively. It is also shows 0.3965% increase in the quadratic fuel cost 
and 89.32% reduction in the voltage magnitude deviation compared with case 1. Additionally,  
the results are compared with other methods, and the comparison is shown in Table 9. According to 
the value of the weighted sum, IKHA is better than KHA, particle swarm optimization and 
gravitational search algorithm (PSOGSA) [29], The proposed KHA [39], adaptive biogeography 
based predator–prey optimization (ABPPO) [40], MSA [22], LTLBO [23], Gbest guided artificial bee 
colony algorithm (GABC) [24] and ICBO [12] Looking at the two goals separately, the results of 
IKHA are lower than those of KHA and the proposed KHA For the results of the other methods in 
Table 8, such as the PSOGSA [29], only one of the two goals is better than IKHA. As the individual 
evaluation criteria are different, the optimal solution is different. The optimal convergence curves of 
quadratic fuel cost and voltage magnitude deviation of IKHA are shown in The Figure 11. 

Table 9. Comparison of the simulation results for Case 5 on IEEE 30 system. 

Algorithms Fuel Cost ($/h) Voltage Deviations Total Time (s)/gmax

IKHA 803.5879 0.0984 813.4279 78.36/500 
KHA 803.8889 0.0987 813.7589 75.68/500 

PSOGSA [29] 804.43123 0.09638 814.06923 NA/200 
The proposed KHA [39] 804.6337 0.0996 814.5937 NA/100 

ABPPO [40] 804.7339 0.09232 813.9659 NA/300 
MSA [22] 803.3125 0.10842 814.1545 NA/100 

LTLBO [23] 803.7431 0.0974 813.4831 20.17/100 
GABC [24] 803.5785 0.1007 813.6485 2.98/100 
ICBO [12] 803.3978 0.1014 813.5378 NA/500 

Figure 10. The results’ distribution for Case 4 of IEEE 30 bus system.

5.1.5. Case 5: Minimization of Quadratic Cost and Voltage Magnitude Deviation

Generally, the weighted sum method is used to make multi-objective into a single objective
problem. This case is aimed to simultaneously minimize the quadratic cost and voltage magnitude
deviation, which can be expressed as:

fCD = fCost + λD fDeviation (53)

where λD selected by the user is a weighting factor and it is selected as 100 in this study [23]. Table 3
shows that the quadratic fuel cost and voltage magnitude deviation for case 5 of IKHA are 803.5879 $/h
and 0.0984 p.u, respectively. It is also shows 0.3965% increase in the quadratic fuel cost and 89.32%
reduction in the voltage magnitude deviation compared with case 1. Additionally, the results are
compared with other methods, and the comparison is shown in Table 9. According to the value of
the weighted sum, IKHA is better than KHA, particle swarm optimization and gravitational search
algorithm (PSOGSA) [29], The proposed KHA [39], adaptive biogeography based predator–prey
optimization (ABPPO) [40], MSA [22], LTLBO [23], Gbest guided artificial bee colony algorithm
(GABC) [24] and ICBO [12] Looking at the two goals separately, the results of IKHA are lower than
those of KHA and the proposed KHA For the results of the other methods in Table 8, such as the
PSOGSA [29], only one of the two goals is better than IKHA. As the individual evaluation criteria are
different, the optimal solution is different. The optimal convergence curves of quadratic fuel cost and
voltage magnitude deviation of IKHA are shown in The Figure 11.
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Table 9. Comparison of the simulation results for Case 5 on IEEE 30 system.

Algorithms Fuel Cost ($/h) Voltage Deviations Total Time (s)/gmax

IKHA 803.5879 0.0984 813.4279 78.36/500
KHA 803.8889 0.0987 813.7589 75.68/500

PSOGSA [29] 804.43123 0.09638 814.06923 NA/200
The proposed KHA [39] 804.6337 0.0996 814.5937 NA/100

ABPPO [40] 804.7339 0.09232 813.9659 NA/300
MSA [22] 803.3125 0.10842 814.1545 NA/100

LTLBO [23] 803.7431 0.0974 813.4831 20.17/100
GABC [24] 803.5785 0.1007 813.6485 2.98/100
ICBO [12] 803.3978 0.1014 813.5378 NA/500
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5.1.6. Case 6: Minimization of Quadratic Cost and Transmission Real Power Losses

Similarly, this case minimizes the quadratic cost and transmission real power losses at the same
time through the weighted sum method, which is calculated as:

fCL = fCost + λL fLoss (54)

where λL selected by the user is a weighting factor and it is selected as 40 in this study [22]. From Table 3,
the quadratic fuel cost and transmission real power losses for case 6 obtained by IKHA are 859.0579 $/h
and 4.5291 MW, respectively. It is also shows 7.3266% increase in the quadratic fuel cost and 49.661%
reduction in the transmission real power losses compared with case 1. The simulation results are
compared with other methods in Table 10, and the value of the weighted sum is better than KHA,
MSA [22], modified differential evolution (MDE) [22], PSOGSA [29] and ABPPO [40]. The analysis of
current case is similar to Case 5 because that the different criteria make different choices. The Figure 12
shows the optimal convergence curves of quadratic fuel cost and transmission real power losses over
the iterations, which is very different from Figure 11 due to the differences between nonlinear and
linear objective functions. This case proves that IKHA can handle the OPF problem successfully.

Table 10. Comparison of the simulation results for Case 6 on IEEE 30 system.

Algorithms Fuel Cost ($/h) Power Loss (MW) Total Simulation Time (s)/gmax

IKHA 859.0579 4.5291 1040.2219 77.29/500
KHA 859.4961 4.5246 1040.4801 75.04/500

MSA [22] 859.1915 4.5404 1040.8075 NA/100
MDE [22] 868.7138 4.3891 1044.2778 NA/100

PSOGSA [29] 822.40631 5.46816 1041.13271 NA/200
ABPPO [40] 822.7693 5.452 1040.8493 NA/300



Energies 2018, 11, 76 20 of 27

Energies 2018, 11, 76  19 of 27 

 

 
Figure 11. The optimal convergence curves of fuel cost and voltage magnitude deviation for Case 5. 

5.1.6. Case 6: Minimization of Quadratic Cost and Transmission Real Power Losses 

Similarly, this case minimizes the quadratic cost and transmission real power losses at the same 
time through the weighted sum method, which is calculated as: 

 CL Cost L Lossf f f  (54) 

where λL selected by the user is a weighting factor and it is selected as 40 in this study [22]. From 
Table 3, the quadratic fuel cost and transmission real power losses for case 6 obtained by IKHA are 
859.0579 $/h and 4.5291 MW, respectively. It is also shows 7.3266% increase in the quadratic fuel cost 
and 49.661% reduction in the transmission real power losses compared with case 1. The simulation 
results are compared with other methods in Table 10, and the value of the weighted sum is better 
than KHA, MSA [22], modified differential evolution (MDE) [22], PSOGSA [29] and ABPPO [40]. 
The analysis of current case is similar to Case 5 because that the different criteria make different 
choices. The Figure 12 shows the optimal convergence curves of quadratic fuel cost and transmission 
real power losses over the iterations, which is very different from Figure 11 due to the differences 
between nonlinear and linear objective functions. This case proves that IKHA can handle the OPF 
problem successfully. 

Table 10. Comparison of the simulation results for Case 6 on IEEE 30 system. 

Algorithms Fuel Cost ($/h) Power Loss (MW) Total Simulation Time (s)/gmax

IKHA 859.0579 4.5291 1040.2219 77.29/500 
KHA 859.4961 4.5246 1040.4801 75.04/500 

MSA [22] 859.1915 4.5404 1040.8075 NA/100 
MDE [22] 868.7138 4.3891 1044.2778 NA/100 

PSOGSA [29] 822.40631 5.46816 1041.13271 NA/200 
ABPPO [40] 822.7693 5.452 1040.8493 NA/300 

 
Figure 12. The optimal convergence curves of fuel cost and transmission real power losses for Case 6. Figure 12. The optimal convergence curves of fuel cost and transmission real power losses for Case 6.

5.2. IEEE 57 Bus System

The system has seven generators, three shunt reactive compensations and 15 transformers, which
also has 12.508 p.u. for the active power demand and 3.364 p.u. for the reactive power demand
on base of 100 MVA. All detailed line date, the bus date and the cost coefficients are given in [41].
The transformer tap settings are divided into 2000 discrete steps. The minimum and maximum limits
are 0.9 p.u. and 1.1 p.u., and the step size is 0.0001 p.u. The shunt reactive compensation is divided
into 3000 discrete steps with a step of 0.0001 p.u.; and the lower and upper limits are 0.0 p.u. and
0.3 p.u., respectively. Furthermore, the voltage magnitudes of generator buses are assumed to vary in
the range [0.9, 1.1] p.u. and the lower and upper limits of load buses are considered to be 0.94 p.u. and
1.06 p.u., respectively.

5.2.1. Case 7: Minimization of Quadratic Fuel Cost Function

The objective function in this case is the minimization of quadratic cost which is given by
Equations (45) and (46). The setting of optimal control variables for case 7 of IKHA are presented in
Table 11, which shows that the minimum of quadratic fuel cost obtained by IKHA is 41,663.391 $/h.
The simulation result is compared with other methods in Table 12, and less than the results of KHA,
MSA [22], LTLBO [23], ICBO [12], DSA [9], ARCBBO [34] and GABC [42]. Figure 13 shows the optimal
convergence curves over the iterations and Figure 14 shows the results in 30 independent simulations
of IKHA and KH for case 7. From Figure 13, it is clear that the convergence characteristic is not as
good as case 1 in the same maximum iteration number, and the reason is that the system becomes
bigger which means that the problem is more complicated. Besides, the initial value of KHA is also not
shown in Figure 13 and the reason is described in case 2. Moreover, the distribution range of results of
IKHA is smaller than KHA according to Figure 14, which demonstrates that IKHA also has a stronger
robustness in larger systems.

Table 11. Optimal solutions obtained on IEEE 57 system.

Control Variables
Case7 Case8 Case9

IKHA IKHA IKHA DSA [9] MSA [22]

P1 (MW) 143.0334 355.4995 142.8777 142.6780 143.8661
P2 (MW) 85.3299 2.3831 88.5835 89.6450 85.34818
P3 (MW) 44.8387 124.4492 45.1741 45.6795 45.85493
P6 (MW) 75.1387 86.9520 70.3558 73.1394 71.30797
P8 (MW) 461.8476 212.7213 460.6468 461.7316 462.4092
P9 (MW) 95.0960 99.1914 96.7565 92.1106 94.08068
P12 (MW) 360.3747 387.2737 361.9443 361.4796 363.8543
V1 (p.u.) 1.0528 1.0082 1.0269 1.0212 1.022121
V2 (p.u.) 1.0494 1.0001 1.0246 1.0740 1.019646



Energies 2018, 11, 76 21 of 27

Table 11. Cont.

Control Variables
Case7 Case8 Case9

IKHA IKHA IKHA DSA [9] MSA [22]

V3 (p.u.) 1.0455 1.0125 1.0185 1.0646 1.013444
V6 (p.u.) 1.0581 1.0032 1.0313 0.9913 1.025691
V8 (p.u.) 1.0748 1.0086 1.0505 1.0519 1.044968
V9 (p.u.) 1.0587 1.0192 1.0312 1.0808 1.014033
V12 (p.u.) 1.0397 1.0232 1.0115 1.0103 1.010858

T4-18 (p.u.) 1.0449 0.9935 0.9690 0.9688 0.9101725
T4-18 (p.u.) 0.9495 0.9472 0.9901 0.9952 1.075124
T21-20 (p.u.) 1.0223 0.9765 0.9933 1.0248 0.9854176
T24-25 (p.u.) 0.9577 1.0504 0.9640 1.0010 0.9872317
T24-25 (p.u.) 1.0798 1.0465 1.0665 1.0025 1.053424
T24-26 (p.u.) 1.0190 0.9985 1.0179 0.9452 1.016568
T7-29 (p.u.) 0.9970 0.9985 1.0059 0.9000 1.00709
T34-32 (p.u.) 0.9672 0.9237 0.9405 0.9443 0.9348021
T11-41 (p.u.) 0.9028 0.9000 0.9005 0.9542 0.900021
T15-45 (p.u.) 0.9712 0.9317 0.9624 0.9772 0.9479471
T14-46 (p.u.) 0.9616 0.9740 0.9611 0.9252 0.9608689
T10-51 (p.u.) 0.9795 1.0097 0.9799 0.9665 0.9781408
T13-49 (p.u.) 0.9355 0.9013 0.9343 1.0116 0.9182851
T11-43 (p.u.) 0.9833 0.9648 0.9610 0.9343 0.9509346
T40-56 (p.u.) 0.9945 1.0188 1.0210 1.0130 0.9941227
T39-57 (p.u.) 0.9605 0.9010 0.9274 0.9861 0.9361633
T9-55 (p.u.) 1.0093 1.0186 1.0098 1.0214 0.998129
QC18 (p.u.) 0.1037 0.0025 0.0667 0.1095 0.1188253
QC25 (p.u.) 0.1437 0.1890 0.1648 0.1370 0.1678665
QC53 (p.u.) 0.1243 0.2889 0.1482 0.1326 0.1828455

Fuel cost ($/h) 41,663.3910 48,834.0293 41,697.5456 41,699.4 41,714.9851
V-deviatios 1.5494 0.5520 0.7233 0.7620 0.67818

Total 41,818.3310 48,889.22930 41,769.8815 41,775.6 41,782.8031

Table 12. Comparison of the simulation results for Case 7 on IEEE 57 system.

Algorithms Min ($/h) Simulation Time (s)/gmax

IKHA 41,663.3910 136.34/500
KHA 41,687.8183 130.85/500

MSA [22] 41,673.7231 NA/NA
LTLBO [23] 41,679.5451 NA/150
ICBO [12] 41,697.3324 NA/1500
DSA [9] 41,686.82 NA/500

ARCBBO [34] 41,686 NA/500
GABC [42] 41,684.2011 NA/100
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5.2.2. Case 8: Minimization of Voltage Magnitude Deviation

The goal of this case is to minimize the voltage magnitude deviation which is given by
Equation (50). The setting of optimal control variables of IKHA for case 8 are presented in Table 11.
Apparently, the solution in this case is decreasing from 1.5494 p.u. obtained by case 7 to 0.552 p.u.,
which is equivalent to 64.3733% reduction. In order to make the result of case 8 clearer, the comparison
of voltage profiles between case7 and case 8 is shown in Figure 15.
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5.2.3. Case 9: Minimization of Quadratic Cost and Voltage Magnitude Deviation

In this case, the objective function is to minimize the quadratic cost and voltage magnitude
deviation simultaneously, which is given by Equation (53). It can be seen in Table 11 that the quadratic
fuel cost, voltage magnitude deviation and the value of the weighted sum are 41,697.5456 $/h,
0.7233 p.u. and 41,769.8815, respectively. And the results both are less than DSA [9].The optimal
solution of MSA [22] shows 0.0418% increase in the quadratic fuel cost and 6.2381% reduction in the
voltage magnitude deviation compared with IKHA. Additionally, the optimal convergence curves of
quadratic fuel cost and voltage magnitude deviation over the iterations of IKHA for case 9 are shown
in Figure 16.
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5.3. IEEE 118 Bus System

The IEEE 118 bus system has 54 generators, 186 lines, nine transformers and 14 shunts reactive
compensations which contain 2 reactors and 12 capacitors. The active and reactive power demands
of the large system are 42.42 p.u and 14.39 p.u. on base of 100 MVA, respectively. Furthermore, the
detailed data and cost coefficients of the system are taken form [41]. The transformer tap settings are
divided into 200 discrete steps. The minimum and maximum limits are 0.9 p.u. and 1.1 p.u., and the
step size is 0.001 p.u. The shunt reactive compensation is divided into different discrete steps and has
different minimum and maximum limits which can be seen in [41]. The larger the system is, the harder
the convergence of OPF problem will be. So, in this system, the maximum iteration number gmax is set
as 1000.

Case 10: Minimization of Quadratic Fuel Cost Function

The objective function in this case is the minimization of quadratic fuel cost which is given by
Equations (45) and (46). The setting of optimal control variables of IKHA is presented in Table 13, and
the comparison of the results obtained by IKHA and other methods is shown in Table 14. From the
tables, it is clear that the minimization of quadratic fuel cost obtained by IKHA is better than KHA,
backtracking search algorithm (BSA) [43] and ICBO [12]. In addition, the difference of single iteration
computation time between IKHA and KHA is small, which proves the efficiency of the proposed
method. The best result given in MSA [22] is an infeasible solution because the voltage magnitudes at
some buses (25, 26, 49, 59, 61, 65, 66, 69, 70, 77, 80 and 100) violate their upper limits. From the point
of economic, the result of IKHA is really good, which is less 4624.7028 $/h than KHA. Meanwhile,
Figure 17 illustrates the convergence characteristic and Figure 18 shows the results in 30 independent
simulations of IKHA and KH for case 10. In Figure 17, the initial value of KHA is not shown and the
reason is described in case 2. It is noted that the black ‘×’ in Figure 18 represents the optimal result
which doesn’t satisfy the security constraints, namely infeasible solution.
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Table 13. Optimal solutions obtained by IKHA for Case 10 on IEEE 118 system.

Variables Value Var. Value Var. Value Var. Value Var. Value

PG4 75.5892 PG65 1.1061 PG116 2.6329 V61 1.0136 V112 1.0220
PG6 2.3944 PG66 346.5375 V1 0.9873 V62 1.0103 V113 0.9817
PG8 13.2117 PG69 311.5309 V4 1.0092 V65 1.0497 V116 1.0243
PG10 1.8752 PG70 2.5131 V6 0.9970 V66 1.0292 T8-5 0.0960
PG12 350.2058 PG72 0.3332 V8 0.9740 V69 0.9943 T26-25 0.1070
PG1 82.1866 PG73 2.9797 V10 0.9918 V70 1.0007 T30-17 0.1000
PG18 5.6590 PG74 79.1184 V12 0.9949 V72 1.0113 T38-37 0.1010
PG19 55.9071 PG76 26.5457 V15 0.9646 V73 1.0440 T63-59 0.1010
PG24 6.0264 PG77 47.3801 V18 0.9688 V74 0.9738 T64-61 0.1020
PG25 2.9631 PG80 410.2660 V19 0.9628 V76 0.9415 T65-66 0.1020
PG26 182.0172 PG85 53.3588 V24 1.0099 V77 0.9617 T68-69 0.1080
PG27 253.7070 PG87 7.1808 V25 1.0084 V80 0.9765 T81-80 0.1040
PG31 24.5511 PG89 440.0013 V26 1.0130 V85 0.9786 QC5 0.4000
PG32 8.1844 PG90 0.5161 V27 1.0219 V87 0.9654 QC34 0.0000
PG34 4.8480 PG91 0.1538 V31 0.9965 V89 1.0127 QC37 0.0500
PG36 12.1483 PG92 35.7542 V32 1.0063 V90 0.9842 QC44 0.0000
PG40 0.3641 PG99 0.6210 V34 0.9659 V91 0.9894 QC45 0.1000
PG42 22.5623 PG100 182.5943 V36 0.9593 V92 0.9893 QC46 0.0500
PG46 45.1902 PG103 34.1980 V40 0.9612 V99 0.9465 QC48 0.1500
PG49 18.9517 PG104 24.3619 V42 0.9970 V100 0.9761 QC74 0.1200
PG54 187.8779 PG105 74.1968 V46 1.0045 V103 0.9798 QC79 0.1000
PG55 49.2065 PG107 0.8261 V49 1.0119 V104 0.9770 QC82 0.1500
PG56 48.1089 PG110 55.5449 V54 1.0201 V105 0.9818 QC83 0.1000
PG59 26.1531 PG111 32.5718 V55 1.0154 V107 1.0051 QC105 0.0000
PG61 94.0442 PG112 0.4718 V56 1.0152 V110 1.0039 QC107 0.0000
PG62 135.9548 PG113 0.2558 V59 1.0106 V111 1.0078 QC110 0.0600

Fuel cost ($/h) 131,427.2636
PG1(MW) 442.1525

Table 14. Comparison of the simulation results for Case 10 on IEEE 118 system.

Algorithms Min ($/h) Simulation Time (s)/gmax

IKHA 131,427.2636 1108.06/1000
KHA 136,051.9664 1095.39/1000

BSA [43] 135,333.4743 NA/2500
ICBO [12] 135,121.5704 NA/2500
MSA [22] 129,640.7191 a NA/NA

a Infeasible solution.
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Apparently, KHA with the penalty function method performs 13 invalid optimizations in 30
independent simulations. This illustrates that the optimization algorithm and constraint method are
both worthy to be improved. According to the experimental data, the proposed method can solve the
constraints successfully while getting a better result in larger systems.

6. Conclusions

For solving the optimal power flow (OPF) problem, which is a large-scale, multi-constrained,
non-linear and non-convex problem, an improved krill herd algorithm (IKHA) with novel constraint
handling method has been proposed in this paper. In order to show the practicability of the proposed
method, three systems (IEEE 30 bus system, IEEE 57 bus system and IEEE 118 bus system) and 10
different cases containing linear and non-linear objective functions are considered for the OPF problem.
Then, the results obtained from the IKHA are compared with KHA and other methods reported in the
recent literatures. As the simulation results indicated, the proposed method can solve the OPF problem
successfully whether the objective function is linear or non-linear, and outperform many other methods
in terms of solution quality. Apparently, the proposed method has better robustness and convergence
characteristics than KHA, and the improvement of IKHA is feasible and effective. It means that the
onlooker search mechanism added to the basic KHA is useful to reduce the probability of falling
into local optimum and the parameters varied according to the iteration of evolutionary process can
improve the exploration and exploitation capabilities of KHA. Furthermore, the result of case 10 in
IEEE 118 bus system shows that the novel constraint handling method which consists of two parts,
control variable constraint and state variable constraint, overcomes the drawback of the traditional
penalty function method and ensures the optimal solutions satisfy the security constraints, especially
in larger systems. In a word, the proposed method successfully improves the current method and does
well in dealing with variables constraints simultaneously.
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