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Abstract: The active obstacle avoidance system is one of the important components of the electric
vehicle active safety system. In order to realize the active obstacle avoidance system driving the
vehicle smoothly and without collision in complex road situation, a new dynamical trajectory
planning method based on ACT-R (Adaptive Control of Thought-Rational) cognitive model is
introduced. Firstly, the ACT-R cognitive architecture is introduced and the trajectory planning
method’s framework structure based on ACT-R cognitive model is built. Secondly, the modeling
method of ACT-R cognitive model is introduced, the main module of ACT-R cognitive model
includes the initialized behavior module, trajectory planning module, estimated behavioral module,
and weight adjustment behavior module. Finally, the verification of the trajectory planning method is
conducted by the simulation and experiment results. The simulation and experiment results showed
that the method of AR (ACT-R) is effective and feasible. The AR method is better than the methods
that are based on the OC (Optimal Control) and FN (fuzzy neural network fusion); this paper’s
method has more human behavior characteristics and can meet the demand of different constraints.

Keywords: the active obstacle avoidance system; ACT-R (Adaptive Control of Thought-Rational)
cognitive model; trajectory planning method; modeling

1. Introduction

In recent years, under the double pressure of energy and environment, electric vehicles became
the focus of the automobile industry. With the rapid development of electric vehicles, the fatal traffic
accidents of electric vehicle occur frequently, which makes the traffic safety issues become the focus
of attention, where the rear-end accidents accounted for the most of the traffic accidents. So the
avoidance of rear-end accidents becomes the present urgent problems [1,2]. Electric vehicle active
collision avoidance system is one of the most effective methods to solve the rear-end accidents and it is
a driving assistant system that is based on vehicle active safety technology. It is effective to improve
driving safety by installing some sensors in the car [3,4]. We can know the environment and status
with the sensors to assist driver driving, for example, avoiding obstacles and preventing accidents
from happening actively. The main function of active collision-avoidance system is pre-alarming or
independent braking, but the independent steering is rarely used in the collision-avoidance system [5].
The statistics suggested that about 40% of the collisions occurred in the vehicle’s tail [6], so the active
steering is effective to avoid rear-end collisions and the combination of active steering and brake will
improve the vehicle’s active safety in many cases. In the higher relative speed driving condition of the
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vehicle, the active steering is the best method of obstacle avoidance. In emergency case, the drivers
must make decisions of steering in a very short time and the steering angular must be very accurate,
but all of these actions of the driver under complex road condition are pretty difficult to achieve [7].

In the electric vehicle’s active collision-avoidance system, the controller can help the driver to
follow the right way and improve the driving stability. The controller’s design is a difficult problem
in the research [8,9]. Lou etc. [10] got the parameters of controller by the trajectory planning method
based on dynamics, the controller is used to control the motor torque, so the industrial robot motion
control is realized. Goodarzi etc. [11] introduces three layers vehicle dynamics controller to control
the DC hub motor of the wheel-motor electric vehicle. Among them, the higher-level controller can
provide the angular velocity and the traveling speed of the vehicle, the mediate-level controller can
provide the traction and yaw moment, the lower-level controller can provide the torque of the wheels.
The controller will be decoupled of trajectory planning and motion control in the paper, the trajectory
planning is used to provide real-time effective trajectory and the trajectory’s characteristic values [12],
including the vehicle’s speed, acceleration, driving time, electricity consumption, and other state and
control parameters [13,14]. The trajectory’s characteristic values will be sent to the low-level controller
of active avoidance system. After receives detailed information of the trajectory, the controller will
control the vehicle to drive along the planned trajectory to avoid obstacles.

The existing trajectory planning method is mainly used different functions to simulate the
trajectory, such as B-spline function, polynomial function, sine function and arc etc. The electric vehicle
is applied a variety of constraints, the feasible trajectories that meet the constraints is generated [15,16].
In the conventional method, the trajectory’s parameters cannot achieve the function which can dynamic
adjust online, so the generated trajectory cannot adapt to continuously changing road condition
dynamically. The different digital constraints are applied to the evaluation function in the optimal
control (OC) methods to get the optimal driving trajectory. But, the OC methods only deal with the
digital constraints, the soft constraints of natural language cannot be processed [17]. Some optimization
methods of fuzzy logics and neural networks can handle natural language, but this algorithm is too
complex and it is not very well to deal with the constraints of human behavioral characteristics, thus
the specific application is limited [18,19]. The existing methods are not precise enough to express the
driver’s behavior characteristics.

The cognitive science is the intellectual revolution’s frontier subject in the 21st Century, it is
mainly study human’s cognitive process, intelligence system and internal operating mechanism of
the brain. ACT-R is a new cognitive architecture of cognitive science, the model established in the
ACT-R reflects human’s cognitive behavioral characteristics [20]. The cognitive system are mainly
includes ACT-R [21,22] and EPIC (Executive Process Interactive Control) [23] etc., all of this cognitive
system can not only build the model of people’s cognitive behavior, but also build the model of
human’s cognitive process that want to achieve the desired objectives [24,25]. This paper chooses
ACT-R, because ACT-R has the sub-symbolic system, which can be used in the trajectory planning
method [26]. The ACT-R cognitive system is the core in the literature [27] and the driving behavior is
built model used ACT-R, this proved that the cognitive behavior modeling method based on ACT-R is
very suitable and flexible. In this paper, ACT-R cognitive models and numerical calculation method
based on state space is linked together and the ACT-R cognitive model is the core. The method of
dynamic adjustment evaluation function’s different weights value is used to generate suitable running
trajectory according to different road environments. Human’s cognitive behavioral characteristics are
used in the trajectory planning method and the generated trajectory can meet different constraints
and human’s cognitive characteristics. Finally, the simulation and experiment of different methods are
conducted to test this paper method’s superiority.

2. The ACT-R Cognitive Architecture

ACT-R is a cognitive architecture. It is a theory of the structure of the brain at a level of abstraction
that explains how it achieves human cognition. It consists of a set of independent modules that acquire



Energies 2018, 11, 75 3 of 21

information from the environment, process information, and execute motor actions in the furtherance
of particular goals. Figure 1 illustrates the main components of the architecture.

Figure 1. The modular structure of ACT-R (Adaptive Control of Thought-Rational).

There are three modules that comprise the cognitive components of ACT-R. The three modules
are basic module, buffer, and pattern matching modules. The basic modules have two types: Memory
module and vision-motor module. The memory module mainly includes: declarative memory module,
procedural memory module and goal stack. The vision-motor module includes vision and motor
modules, the visual and motor modules provide ACT-R with the ability to simulate visual attention
shifts to objects on a computer display and manual interactions with a computer keyboard and mouse.

The declarative memory module also called declarative knowledge, the declarative knowledge
is the knowledge that we can understand and can describe to the others. In ACT-R, the declarative
knowledge is expressed as “chunk” structure, and can form declarative memory; it shows that human
might have knowledge in problem solving, such as “George Washington was the first President of
the United States”. The procedural memory module also called procedural knowledge, it reflects the
fact that how to deal with declarative ability to solve the problem. Procedural knowledge generation
process are essentially a conditioned reflex triggered rules when condition is met. Procedural
knowledge is compiled through “production rules”. The declarative memory module can store
factual knowledge about the domain, and the procedural memory module can store the system’s
knowledge about how tasks are performed. The former consists of a network of knowledge chunks,
while the latter is a set of production rules of the form “if <condition> then <action>”: the condition
specifying chunks that must be present for the rule to apply and the action specifying the actions to be
taken should this occur.

Each of ACT-R’s modules has an associated buffer that can hold only one chunk of information
from its module at a time and the contents of all the buffers constitute the state of an ACT-R model at
any one time. Cognition proceeds via a pattern matching process that attempts to find production rules
with conditions that match the current contents of the buffers. When a match is found, the production
“fires” and the actions are performed. Then the matching process continues on the updated contents of
the buffers so that tasks are performed through a succession of production rule firings.

Except the symbolic level mechanisms, ACT-R also has a sub-symbolic level of computations that
govern memory retrieval and production rule selection. The retrieval process based on activation,
a chunk in declarative memory has a level of activation, which determines its availability for retrieval,
the level of which reflects the frequency of its use. This need models to account for widely observed
frequency effects on retrieval and forgetting. Sub-symbolic computations also govern the probability
of productions being selected in the conflict resolution process. It is assumed that people choose the
most efficient actions to maximize the probability of achieving the goal in the shortest amount of time.
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The more often a production is involved in the successful achievement of a goal, the more likely it will
be selected in the future.

3. The Frame Structure of the Trajectory Planning Method Based on ACT-R

When the driver is driving, the behavior characteristics can be described by some emotional
language, for example carefully, slowly, and careless, etc. When the ACT-R cognitive model is
working with the driver, the cognitive model can accept and deal with the driver’s language symbolic
information and estimate the trajectory’s modified quantity to meet the driver’s need. When the
ACT-R worked alone, the generated trajectory can self-evaluation and the trajectory’s eigenvalues
and related constraints is compared to estimate the trajectory’s eigenvalues. If the eigenvalues meet
requirements, then the generated trajectory is returned to the drivers, if the eigenvalues cannot meet
requirements, ACT-R can make hominine decision to decide the variable quantity of the trajectory’s
characteristic value and weight value.

The frame structure of the trajectory planning method based on ACT-R cognitive model can be
shown in Figure 2.

Figure 2. The trajectory planning method’s framework structure based on ACT-R cognitive model.

The trajectory planning method includes initialization module, trajectory planning module,
weight adjusting module, and estimation module, where except for the trajectory planning module,
the other three modules are based on the ACT-R cognitive model. The detailed instruction of the
method’s framework structure is shown as follows: Firstly, the trajectory planning problem P0 is
initialized by initialized module, secondly, the trajectory is generated by trajectory planning module,
the trajectory’s characteristics Ci is extracted and transferred to estimated module. The estimated
module judges whether all of the trajectory’s characteristics can meet the constraints Re, if the
trajectory’s characteristics meet the constraints, the solution X can be return to the behavior decision
system, if the trajectory’s characteristics cannot meet the constraints, the weight adjustment module is
called to adjust the weight and the adjusted weight sets Wi+1 can be supplied to trajectory planning
module to generated trajectory again, the circulation is proceeded repeatedly, the suitable solution X
can be found and supplied to the controller.

4. The Modeling Method of ACT-R Cognitive Model

The trajectory planning method flow chart based on ACT-R cognitive model is shown in Figure 3.
Firstly, the trajectory planning problem is initialized by the Initialization module, then the trajectory
is generated by the trajectory planning module and the trajectory’s characteristic values are sent to
estimation module to estimate. The estimation module can judge if the trajectory’s characteristic
values meet the constraints, the constraints include hard constraints Hard (i.e., “u > 30 m/s”) and soft
constraints Soft, the soft constraints Soft includes adverb constraints (i.e., quickly) and numerical value
constraints (i.e., 100 km/h ≤ uavg ≤ 160 km/h). If the trajectory and trajectory’s characteristic values
satisfy the constraints, the solution method X = {Jn, Ren, tn, xn, un} is returned to behavior decision
system, where, Jn and Ren summarize the solution cost and the feature constraints, respectively, and
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the set {tn, xn, un} specifies the full-state trajectory to be executed. If the trajectory and trajectory’s
characteristic values cannot satisfy the constraints, the property of the constraints should be analyzed.
If the hard constraints Hard is not satisfied, then the weight adjusted module is called to adjust the
weight and the new weight Wi+1 is generated. The estimation module need to detect the weight
adjusted history {PRi}, if the new weight Wi+1 is not in the weight adjusted history set {PRi}, the weight
adjustment is success; if the new weight Wi+1 is in the weight adjusted history set {PRi}, then the weight
adjustment is failure. The adjusted process is running until the trajectory characteristic values meet the
hard constraints. The trajectory TB that meets the hard constraints but cannot meet the soft constraints
is saved to ensure the trajectory that meets the hard constraints can be output. Then the second cycle
is done, the trajectory TB’s characteristic values that has been saved is been adjusted, and the new
adjusted weight value is estimated by the estimation module, the estimation module will judge if
the trajectory’s characteristic value satisfy all of the constraints, if all of the constraints are met, then
the successful solution X is output; if only the hard constraint Hard can be met, then the solution X
is output; if the hard constraint Hard cannot be met, then the trajectory TS will be compared to the
trajectory TB. If the trajectory TS can satisfy the constraint conditions more than trajectory TB, then the
TB will be replaced by TS in the memory.

Figure 3. The flow chart of the trajectory planning method base on ACT-R.

We can determine which trajectory is better through the error vector calculation, the smaller error
range is the optimal trajectory, the error vector Ej

i of the ith iteration, and jth trajectory characteristic is
shown as Formula (1):

Ej
i =

{
Cj

i − Rej , (Cj
i ◦ Rej)

0 , (Cj
i ◦ Rej)

(1)
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where, Cj
i is the ith iteration and jth trajectory characteristic value, Rej is the jth trajectory characteristic

value’s constraint condition, ◦ means the trajectory characteristic meet the related constraint condition,
◦ means the trajectory characteristic does not meet the related constraint condition. According to
the trajectory planning’s ith iteration, the jth trajectory characteristic value is compared with the jth
constraint condition. If the smaller constraint condition cannot meet, the Ej

i ’s value is negative; if the

bigger constraint condition cannot meet, the Ej
i ’s value is positive. If the constraint condition Rej is a

numerical range, then the numerical range’s boundary value will be used to calculate, the Ej
i ’s value

can decide the weight adjusted orientation.

4.1. ACT-R Initialized Behavior Modeling

According to the different driving environment, the trajectory module can generate the trajectory
based on the state-space trajectory planning method. The BVP (Boundary Value Problem) can be
solved by function BVP4C solution. Although the problem of driving’s terminal time is free can be
solved by BVP4C solution, but if the initial evaluated value is not rational, then the results may be not
convergence. So, the trajectory’s initial weight set WINT (i.e., [1, 1, 1, 3]) should be evaluated, ACT-R
cognitive model is the core of the ACT-R initial module, the information of driving region boundary of
the vehicle, goal, and constraints can be encoded and changed into some needed information that can
generate trajectory and initial weight set WINT, if the constraints are not exit, then the weight value
WDefault (i.e., [1, 1, 2, 5]) is supposed as the default weight set.

In the initial process, the disposed method of the upper limit and lower limit of numerical
range soft constraints Soft (i.e., 100 km/h ≤ uavg ≤ 160 km/h) is just as the hard constraints Hard
(i.e., uavg > 30 m/s). The numerical value constraints of the soft constraints or hard constraints can
be described using symbolic language, such as “30 m/s < u < 40 m/s” can be described as “the
maximum speed is higher”, so the disposing method is the same as the adverb soft constraints Soft’
disposing method.

The deterministic method of the initial weight set WINT can be shown in Figure 4. The initial
process is shown as follows: Firstly, transform the numerical value constraints of the soft constraints
Soft (i.e., 100 km/h ≤ uavg ≤ 160 km/h) or hard constraints Hard (i.e., u > 20 m/s) into the adverb Soft
(i.e., quickly); Second, the relationship of trajectory characteristics (i.e., umax, uavg and amax) and adverb
soft constraints Soft are defined, such as the adverb Soft “slowly”, is related to trajectory characteristics
“low” maximum speed umax and “low” average speed uavg. Then, according to the relationship
definition (just as Table 1) of trajectory characteristics and numerical value, the description of “higher”
maximum speed and “higher” average speed can be expressed by some numerical value range, such
as “high” maximum speed’s range is [100, 120]; Finally, according to the weight adjusted regulation
rule Table 2, the trajectory characteristic’s numerical value range is corresponding to the weight value
range, for example, the numerical value range of W3/W1 is (0.25, 0.5], that is corresponding to the
maximum speed’s numerical value range [80, 100]. All of the process can call the ACT-R’s procedure
knowledge module, the specific production rule set Z is the production rule set, the form of the set
is “if <condition> then <action>”, i.e., “if 0 ≤W3/W1 ≤ 0.125 then 100 km/h ≤ uavg ≤ 160 km/h”,
the specific production rule set Z is shown in Table 2. Thus, the constraints Soft and Hard can be
transformed into initial weight set WINT. If the constraints are not exit, then the weight value WDefault
is supposed as the default weight set.
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Figure 4. The initial weight WINT’s determination method flow chart.

Table 1. The trajectory characteristic’s descriptive knowledge of ACT-R weight adjustment model.

Symbols uavg (km/h) umax (km/h) amax (m/s2) LIM (m) dmin (m) U (kg) tf (s)

very low [0, 15] [0, 20] [0, 0.05] [0, 1] [0, 1] [0, 0.01] [0, 1]
low (15, 30] (20, 40] (0.05, 0.1] (1, 2] (1, 1.5] (0.01, 0.1] (1, 5]

lower [30, 50] [40, 60] (0.1, 0.5] (2, 3] (1.5, 2] (0.1, 0.5] (5, 10]
medium [50, 65] [60, 80] (0.5, 1] (3, 4] (2, 2.5] (0.5, 1] (10, 20]
higher [65, 85] [80, 100] (1, 2] (4, 5] (2.5, 3] (1, 2] (20, 50]
high [85, 100] [100, 120] (2, 3] (5, 6] (3, 4] (2, 5] (50, 100]

very high [100, 160] [120, 180] [3, 10] (6, 100] (4, 50] (5, 20] (100, 1000]

Table 2. The procedural knowledge of ACT-R weight adjustment model.

IF THEN

Symbols W3/W1 uavg (km/h) umax (km/h) amax (m/s2) LIM (m) dmin (m) U (kg) tf (s)

very low [0, 0.125] [100, 160] [120, 180] [3, 10] [0, 1] [0, 1] (5, 20] [0, 1]
low (0.125, 0.25] [85, 100] [100, 120] (2, 3] (1, 2] (1, 1.5] (2, 5] (1, 5]

lower (0.25, 0.5] [65, 85] [80, 100] (1, 2] (2, 3] (1.5, 2] (1, 2] (5, 10]
medium (0.5, 1] [50, 65] [60, 80] (0.5, 1] (3, 4] (2, 2.5] (0.5, 1] (10, 20]
higher (1, 2] [30, 50] [40, 60] (0.1, 0.5] (4, 5] (2.5, 3] (0.1, 0.5] (20, 50]
high (2, 4] (15, 30] (20, 40] (0.05, 0.1] (5, 6] (3, 4] (0.01, 0.1] (50, 100]

very high (4, 8] [0, 15] [0, 20] [0, 0.05] (6, 100] (4, 50] [0, 0.01] (100, 1000]

4.2. Trajectory Planning Module

The trajectory planning module takes as input the initial weight vector WINT, and it as
cost-functional terms. The trajectory planning module can return a full state trajectory, including
position, velocity, and control inputs at each time step. Because the trajectory planning method that
we used is based on human cognitive behavior characteristic and human driver is very suitable for
control of linear systems, but has not very good control of nonlinear system, so the vehicle’s model
in this paper is supposed as a simple linear dynamic model, the simplified two-dimensional linear
dynamical model is expressed as Equation (2),[ .

x(t)
..
x(t)

]
=

[
0 1
0 −cs/m

][
x(t)
.
x(t)

]
+

[
0

u(t)/m

]
(2)
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where, m is the object mass, cs is the friction coefficient, u(t) is the control input variable, x(t)
is state vector,

.
x(t) is the vehicle’s velocity vector, and

..
x(t) is the vehicle’s acceleration vector.

Let
.
x(t) = x1(t), then the Equation (2) can be converted to Equation (3),

.
x1(t) =

cs

m
.x1(t) +

u(t)
m

(3)

The trajectory generation module uses the OC method to plan the trajectory. The aim is finding
out the available control input variables u(t)* and making the system (3) follow the feasible trajectory
x1(t)* that can minimize evaluation function (4),

J(u) =
∫ t f

t0

g(x1(t), x1(t), t)dt (4)

where, t is the driving time, x1(t) is state vector, and
.
x1(t) is its derivative, u(t) is the control input, t0

and tf is the vehicle’s initial time and end time, respectively. According to all of the t∈[t0, tf], the state
condition of fixed starting point and end point, the boundary conditions are as Formula (5),

x0(t0) = x0, x1(tf) = xf (5)

where, x0 and xf is the vehicle’s location when the vehicle driving in the time t0 and tf, respectively.
There are three evaluation indexes in the OC method that should be optimized; the evaluation

indexes are energy, time, and the shortest distance that far away from the obstacle. The evaluation
function of Formula (4) can be expressed as Formula (6), the weight vector Wi = [W1, W2, W3, LIM], the
description of each evaluation index are as follows,

J =
∫ t f

t0

(
w1 + w2∑i∈{0} (bi(ri)) + w3u2(t)

)
dt (6)

where, W1 is the weight of driving time, because evaluation function J is the integral form in the time
quantum [t0, tf], so we need a constant coefficient W1 to optimize the time; W3 is the weight of energy,
the expression of energy is simplified, u2(t) express the energy, the u(t) is controlled quantity; W2 is
the weight of the shortest distance far away from the obstacle, the term w2 ∑

i∈{O}
(bi(ri)) is added to

keep he vehicle drive away from the obstacles, bi(ri) is a compensation function, when the vehicle
driving near the obstacle center i, the compensation function value increases, on the contrary, when the
vehicle driving far away from the obstacle, the compensation function value decreases, ri is the distance
between the vehicle and the obstacle’s center i, the value of compensation function bi(ri) is maximum
value MAX over the center of the obstacle, attains fixed value K at the obstacle boundary a distance Ri
from the obstacle center and decreases to zero at a distance LIM away from the obstacle’s edge, these
constraints and the smoothness conditions of the function smooth are described by Equation (7). The
third-order polynomial function bi(ri) that meets these constraints was selected and the value of bi(ri),
is meaningful only if ri < LIM, the third-order polynomial function bi(ri) is shown, just as Equation (8),

bi(0) = MAX , bi(Ri) = K
b′i(Ri)le f t = b′i(Ri)right b′′i (Ri)le f t = b′′i (Ri)right

bi(LIM) = 0 , b′i(LIM) = 0 , b′′i (LIM) = 0
(7)

bi(ri) =


K(c1ri

3 + c2ri
2 + c3ri + c4) , ri ≤ Ri

K(c5ri
3 + c6ri

2 + c7ri + c8) , Ri < ri ≤ Ri + LIM
0 , ri > LIM

(8)

where, the value of MAX and K can be got by means of the experiment, the value of bi(ri) is equal to
K when the vehicle is touching the obstacle. The coefficients ci (i = 1, . . . , 8) can be found by solving
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the two third-order equations and their first and second derivatives to satisfy all of the smoothness
constraints of Equation (7).

Thus, the Formula (6) can be changed into the problem of solving the integral constant when
the boundary conditions are given. The BVP4C in MATLAB can be a numerical solver to solve the
problem and the complete trajectory can be generated. The dynamical model and evaluation function
can be linked, thus the trajectory considering the dynamical constraints is feasible.

After generating the trajectory, the trajectory characteristic value Ci can be extracted and it is sent
to the estimation module for estimating. The trajectory characteristic value is the whole trajectory’s
digital property, the same as the trajectory characteristic value’s quantification. The feature extraction
is a computational procedure, the generated trajectory is the input variable, the useful trajectory
characteristic value can be extracted as the estimation of the trajectory, such as the driving time,
energy, maximum speed, and maximum acceleration are the typical trajectory features. Some trajectory
features is the mean and percent of the whole trajectory characteristic values. Such as, smooth time is a
time period that the vehicle’s speed, acceleration, and rotational speed’s fluctuation cannot exceeding
the whole scope’s 1%, this is the trajectory characteristic value’s numerical approximate value and the
velocity’s constant degree is estimated.

The trajectory’s main constraint conditions can be divided into numerical constraints and language
description constraints. The numerical constraints include hard constraints and soft constraints.
In general, the numerical constraint is a numerical range that has the upper and lower limits,
in other words, the hard constraint’s characteristic value is greater or less than one fixed value,
the soft constraint’s characteristic value is between two numerical values. The soft constraint is
mainly represented by linguistic description, such as the linguistic description “quickly” or “slowly”.
When such descriptive language is used, then the different description language can be transformed
into some linguistic symbols that ACT-R can recognize, such linguistic symbols can be used by
making correspondence relationship’s definition between linguistic symbols and the trajectory’s
characteristic values, such as “quickly” can correspond with “high” maximum speed and “high”
maximum acceleration.

4.3. ACT-R’s Estimated Behavioral Modeling

Estimation module is a core part of ACT-R cognitive model [28] and it determines which
production rule is selected to use. According to estimated behavioral modeling, some parameters’
values should be expressed by described knowledge. Such as different trajectory feature values
Ci = {C1, C2, C3, . . .} with each Ci described by different trajectory’s characteristics, such as umax, uavg,
amax, etc., i.e., C1 = {umax = 100 km/h, uavg = 50 km/h, amax = 6 m/s2), constraints set Rei = {Re1, Re2,
Re3, . . .} with each Rei described by hard constraints Hard and soft constraints Soft, i.e., Re1 = {Hard =
[umax < 110 km/h], Soft = [quickly]}, weight set Wi is defined as [W1, W2, W3, LIM], Wi+1 is the adjusted
weight set which has the same form with Wi, i.e., Wi = [1, 1, 3.6, 5], historical weight set PRi = {PR1, PR2,
PR3, . . .} with each PRi described by an action Ai and trajectory planning state Si, for trajectory planning
problem, action set Ai is defined as {Initialization, Trajectory-planning, Estimation, eight-adjustment},
and trajectory planning state Si is defined as the full-state trajectory {tn, xn, un} to be executed. All of the
parameters can be described with descriptive language. The decision-making process can be expressed
by procedural knowledge, namely the production rule. The procedural knowledge of estimation
module can be shown in Table 3.

Table 3. The procedural knowledge of ACT-R estimation module.

IF THEN

Ci meet constraints Rei Return the right weigh set Wi
Ci cannot meet constraints Rei Wi is the adjusted weight set Wi+1

Wi+1 /∈ {PRi} Return the right weight set Wi+1
Wi+1 ∈ {PRi} Return the wrong weight set Wi+1
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In estimation module’s pattern matching process, the current goal “declarative knowledge” is
given and one of the “production rules” is chose to match the current goal through the conflict
resolution method. The sub-symbolic (i.e., numerical) information that is associated with the
production rules is used to determine which production rule is selected to use. During the model runs,
the number of successes and failures of each production rule is recorded by the module. In addition,
estimation module records the efforts (e.g., time) that are spent after executing the rule and actually
achieving the goal (or failing). This information is used to estimate empirically the probability of
success Pi and the average cost Li of each production rule, the success Pi of Equation (9) and the
average cost Li of Equation (10), just as follows,

Pi =
Successesi

Successesi + Failuresi
(9)

Li =
E f f ortsi

Successesi + Failuresi
(10)

where Successesi is the number of success, Failuresi is the number of failure, E f f ortsi is the sum of all the
costs, associated with previous tests of the ith rule, E f f ortsi = ∑k

j=0 Cij, where k = Successesi + Failuresi is
the number of previous tests of rule i. When the goal is completed, aiming at a production rule, the
estimation module would update the production rule’s number of success or failure. For example,
if cost is measured in time units, then Equation (10) calculates the average time for exploring
particular decision trajectory. By this way, the probabilities and costs of rules are learned by the
estimation module.

ACT-R uses numerical methods to solve this problem. Each production rule has an expected
return Ni in the ACT-R. When several production rules compete in the conflict set, ACT–R calculates
their expected returns by the following equation:

Ni = PiF − Li + ξ(σ2) (11)

where F is the goal value, ξ(σ2) is a random number taken from a normal distribution with
zero mean and variance σ2. Finally, the rule of Equation (12) is selected according to expected
return’s maximization,

i = arg maxNi (12)

The flow of estimation module is shown in Figure 5. All of the features Ci extracted by feature
extraction module is compared with constraints set Rei generated by the initialization module, when
all of the features Ci within the range Rei, the new weight value Wi+1 = Wi, and the successful Wi+1 is
returned. When it is not within the scope of Rei, in order to meet the requirements of the constraint
set Rei, the estimation module need to call the weight adjustment module to adjust trajectory weights.
When the trajectory characteristic values Ci are compared with the constraint set Rei, estimation module
compared new weight Wi+1 with the historical weight set PRi, if the new weights Wi+1 is in the set PRi,
the result of weight adjustment is wrong; if there are not new weight values, then the original weight
values Wi is right and if new weight value Wi+1 is not in the set PRi, the new weight value Wi+1 = Wi
and the successful Wi+1 is returned. Because of the memory and learning ability, ACT-R model is able
to remember the previous invalid choice to avoid ineffective iteration loop.
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Figure 5. The estimation module’s flow chart.

When the estimation module calls weight adjustment module, it is necessary to make sure of the
input parameter of the weight adjustment module, including the unsatisfied constraint conditions,
the difference value between the actual trajectory feature values and the limitation value and how to
adjust to meet the limit requirement more easily. Decision-making system may impose incompatible
constraints on the planned trajectory. At this time, estimation module should inform a decision-making
system that it is impossible to meet its requirements. According to the conflict resolution method,
estimation module can intelligently decide which constraint is easier to meet and which trajectory is
close to the decision making system’s requirement. Once the estimation module finds the trajectory
that can meet all of the constraints, the returning module would return the trajectory to decision
making system.

4.4. The ACT-R Weight Adjustment Behavior Modeling

In the trajectory planning method based on the space state, the relationship between right
trajectory feature values and weight adjustments method has been obtained. In this method,
the trajectory’s feature values can be adjusted to meet constraints by adjusting weight value. But,
the generated trajectory may not meet human’s behavior characteristics. The aim of weight adjust
module is adjusting weight to meet human’s behavior characteristics according to the vehicle driving
environment and constraints. For example, if energy consumption weight and the shortest distance
from the barrier weight is larger, then the vehicle can drive slowly, avoid rapid acceleration, and stay
away from obstacle. If the weight of time is larger, the car will speed up, avoid the obstacle with high
speed, and close to the obstacle. We can name the trajectory features with emotional language, such as
careful and bold.

The weight ratio value W3/W1 is not accurate and it is the exponential form base 2: 2−3, 2−2, 2−1,
20, 21, 22, 23. Because human’s cognition behavior is vague, so the accuracy of the weight ratio value
does not affect the algorithm’s results. The languages symbol “very low” and “very high” is used
to classify define weight ratio W3/W1 reasonable. The relative weight ratio W3/W1 and trajectory
characteristic’s descriptive knowledge are shown in Tables 1 and 4.
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Table 4. The weight ratio’s descriptive knowledge of ACT-R weight adjustment model.

Language Symbols W3/W1

very low [0, 0.125]
low (0.125, 0.25]

lower (0.25, 0.5]
medium (0.5, 1]
higher (1, 2]
high (2, 4]

very high (4, 8]

In order to link weight ratio W3/W1 and trajectory characteristics, the detailed relationship can
reference the literature [29], for characteristics relating to time (e.g., velocity, acceleration, energy),
strong relationships between the characteristics value and the time-term weight (W3/W1) is as follow

Ct = q1(W3/W4)
−λ (13)

where, exponent −λ is approximately constant within a certain area, constant coefficient q1 is changing
constantly, and it can be calculated by the trajectory characteristics value and the real value of W3/W1.
Similarly, for trajectory-based features, such as minimum separation from obstacles dmin, there is a
linear relationship between the feature and the influence limit LIM:

dmin = q2LIM (14)

where LIM is simply the distance over which the obstacle penalty function goes to zero, as measured
from the edge of the obstacle, q2 is constant coefficient Rather than attempt to calculate tables for
all of the possible constant coefficients q1 and q2 of these equations for all possible field sizes, they
are computed online, using the current weight and feature values to back out the coefficient value.
The coefficient, together with the desired feature value (e.g., the limit, if it was passed), are then used
to re-compute the weights and the weights’ online adjusting is completed.

The weight ratio and trajectory characteristics are described by descriptive knowledge, the
detailed introduction is shown as Tables 2 and 3, respectively. For example, according to Table 2, if the
weight ratio value W3/W1 is “low”, then we can see how to definite the maximum acceleration amax

that corresponding with “low” weight ratio value W3/W1. We can see from Table 3 that the maximum
acceleration amax’s definition is “high”. So we can get the corresponding relationship between the
weight ratio and trajectory characteristics, in other words, we can get weight adjustment’s procedural
knowledge, just as shown in Table 4. The corresponding relationship between the weight ratio and
the trajectory characteristics can be divided into two kinds. One is positive related and the other is
inversely related. In the proportional related example, “very low” weight ratio value can result in “very
low” characteristic value and “low” weight ratio value can result in “low” characteristic value. In the
inversely related example, “very low” weight ratio value can lead to “very high” characteristic value.
According to time-related trajectory characteristic values, the descriptive knowledge of weight ratio
value W3/W1 is related to the descriptive knowledge of trajectory characteristic value. According to
distance related trajectory characteristic value, for example, the values of minimum distance dmin and
LIM, the default LIM’s “intermediate” value is 3, LIM is defined as linear related with shortest distance.

When the vehicle drives in the dynamic scene, the rolling planning method is used to make
the trajectory planning real-timely. According to the environment, the trajectory is planned in one
sampling period using this paper’s method and the trajectory is planned again using this paper’s
method in the next sampling period, the process of rolling planning cycle until the vehicle complete the
whole journey. In every sampling period, the trajectory’s sensors can obtain the real-time information
around the vehicle, the information is relative to time and distance and the information is also called
trajectory feature value Ct (i.e., the distance from the obstacles d and the driving time t), the real-time
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trajectory feature value is sent to estimation module, and the estimation module compare the real-time
trajectory feature value with the constraint condition, if the constraint condition cannot be met, then
the estimation module would call the weight adjustment module to adjust the weight values to meet
the constraints, the new weight values Wi will be calculated, the process is running until the feasible
weight value is found and the optimized trajectory is generated using the feasible weight value in the
trajectory planning module. The detailed process is introduced as follows:

When the trajectory optimized process is running, the initial weight set WINT can be sent to
trajectory planning module and the trajectory can be generated using the trajectory planning module,
the vehicle will drive along the planned trajectory, then the real-time trajectory characteristic value Cti
(i.e., umax = 30 m/s) can be obtained using the sensors and sent to estimation module. In estimation
module, the trajectory characteristic value Cti can be compared with the constraints Rej (i.e., 30 m/s < u <
40 m/s), if the constraint condition can be met, the trajectory can be returned, the trajectory optimized
process is successful; if the constraint condition cannot be met, then the weight adjustment module
would be called to adjust the weight values to meet the constraints, the new weight values Wi+1 will
be calculated. For example, if the maximum speed umax cannot meet the constraints “umax < 40 m/s”,
because the maximum speed umax is a trajectory characteristic that is related to time, so the Equation (11)
Ct = q1(W3/W1)

−λ is used to calculating. The detailed compute procedure can be shown as follows:
Firstly, in Equation (11), the value of λ is constant in a certain range, the real-time characteristic value
umax is known, the weight ratio W3/W1 is known according to the WINT, so the value of q1 can be
calculated. Secondly, according to the Equation (11) Ct = q1(W3/W1)

−λ, the trajectory characteristic
value gets from the constraints as the ideal characteristic value Ct, the value of q1 are also known, so
the new weight ratio W3/W1 can be calculated. The circulation process is running until the feasible
weight value is found.

5. The Simulation Analysis of the Trajectory Planning Method

The simulation analysis used this paper’s trajectory planning method is done based on ACT-R
cognitive model (abbreviation: AR) and the traditional OC method that is the method based station
spaced (abbreviation: OC), respectively. The OC is the method based station spaced and the method
can generate optimal trajectory for the intelligent vehicle to complete the ability of collision-avoidance
in different obstacles environment. The AR is a method combined with ACT-R and OC. The OC is the
traditional trajectory planning method, the ACT-R cognitive model is not used in the OC. To be more
clear, the method AR is mainly based on the ACT-R cognitive model and the method has human’s
cognitive characteristic, while the OC is mainly based on station space, it is a numerical calculation
method. The architecture of AR included initialization module, estimation module, trajectory planning
module, and weight adjustment module, while the architecture of OC only has the trajectory planning
module and weight adjustment module and the weight adjustment module run in Matlab instead of
ACT-R. The OC is completed in the software Matlab and CarSIM, while the method AR is completed
in the software ACT-R, Matlab and CarSIM.

The aim of the simulation is to test the superiority of this paper’s trajectory planning method
AR. The simulation environment is the obstacle environment with 4 different obstacles {Bi} {i = 1, 2,
3, 4} and the constraints are Rei{i = 1, 2, 3, 4, 5}. The detailed simulation method of AR is as follows:
Firstly, according to the constraints, the initial weight set is generated by ACT-R’s initial module, and
the initial weight set is sent to Matlab, then, the trajectory is generated by the trajectory planning
module based on the initial weight value in Matlab and the vehicle drives along with the generated
trajectory in CarSIM, Finally, the trajectory’s characteristic values are extracted in CarSIM and the
characteristic values are sent to the estimation module of ACT-R. The ACT-R’s estimation module can
judge the trajectory’s characteristic value whether it meets the constraint conditions, if the characteristic
values cannot meet the constraint condition, the ACT-R’s weight adjustment module is called to adjust
the weight value. The weight adjustment process is done until the characteristic values meet all
the constraint conditions. The detailed simulation method of AR is as follows: Firstly, according to
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the constraints, the default weight set WDfault is sent to Matlab, then, the trajectory is generated by
the trajectory planning module based on the default weight set WDfault in Matlab and the vehicle
drives along with the generated trajectory in CarSIM, Finally, the trajectory’s characteristic values
are extracted in CarSIM and the characteristic values are sent to the weight adjustment module in
Matlab. The weight adjustment module can adjust the weight value to meet the constraints based on
the weight adjustment rule. The weight adjustment process is done until the characteristic values meet
al.l the constraint conditions.

Suppose that the vehicle’s driving velocity is higher in the simulation, so the vehicle’s dynamical
model is considered, the dynamical model use the simplified linear dynamical model, the dynamical
model is as Formula (2). Suppose that the intelligent vehicle is electric drive, about 20 times simulation
analysis is done to test this paper’s method. The vehicle’s driving region is 200 m × 150 m, the driving
time is 10 s, and the obstacle set {Bi} is as follows:

{B1} = {(160, 40), 3}
{B2} = {[(26, 23), 5], [(32, 13), 5], [(70, 66), 5], [(108, 55), 7], [(135, 111), 7], [(83, 55), 7], [(160, 99), 2.5]}
{B3} = {[(25, 35), 5], [(50, 80), 2.5], [(120, 120), 10]}
{B4} = {[(16, 4), 2], [(30, 10), 2.5], [(30, 20), 5], [(80, 60), 7], [(100, 80), 5], [(120, 90), 6], [(150, 100), 3]}

The constraint set is as follows:

Re1 = {Soft = [a bit fast], [very curious]}

Re2 = {Hard = [umax < 110 km/h], Soft = [quickly]}

Re3 = {Hard = [umax > 110 km/h, amax ≤ 0.2 g], Soft = [80 km/h ≤ uavg ≤ 100km/h, appropriate safely]}

Re4 = {Hard = [umax < 100 km/h, amax ≤ 2 m/s2], Soft = [80 km/h ≤ uavg ≤ 100km/h]}

Re5 = {Hard = [dmin ≥ 3 m, amax ≤ 25 m/s2], Soft = [safely]}

The constraint set Re1 includes two soft constraints, the constraints set Re3 includes two hard
constraints, one soft numerical value constraint, and one soft language constraint.

In the 20 times simulation analysis, the two trajectory planning methods begin run based on the
weight set WDz0 = [1, 1, 1, 1] generated by the state space trajectory planning method and the weight
set WDa0 = [15, 3, 1, 1] generated by the trajectory planning method based on ACT-R cognitive model,
respectively. Where, the four weights of the weight set are time, the distance away from the obstacle,
energy and limit LIM. The second constraint set Re2 includes hard constraint condition umax < 110 km/h
and soft constraint condition “quickly”, the soft constraint condition “quickly” can extend to high
maximum speed umax and average speed uavg, the same as Soft = {100 km/h ≤ umax ≤ 120 km/h,
85 km/h ≤ uavg ≤ 100 km/h}. In the 20 times simulation analysis, when the vehicle drives in the
obstacle set {B2} and constraint set Re2, the weight adjust result is shown in Tables 5 and 6. Where, umax

is the vehicle’s maximum speed, uavg is the vehicle’s average speed, WDzi{i = 1, 2, 3}, and WDai{i = 1,
2} express weight set’s numerical value of different iterative process. Dzi{i = 0, 1, 2} and Dai{i = 0, 1}
express each iterative calculative result in the weight adjust process.

Table 5. The weight adjusted result based on the state space trajectory planning method Optimal
Control (OC).

Iterative Process WDzi umax (km/h) uavg (km/h)

Dz0 [1, 1, 1, 1] 115.25 110.36
Dz1 [1, 1, 1.73, 1] 108.66 105.81
Dz2 [1, 1, 1.73, 2.13] 100.08 99.85
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Table 6. The weight adjusted result based on the ACT-R trajectory planning method AR.

Iterative Process WDai umax (km/h) uavg (km/h)

Da0 [15, 3, 1, 1] 105.78 103.85
Da1 [9.75, 1, 1, 1.27] 100.07 99.76

We can see from Table 5 that the trajectory characteristic value umax = 115.25 km/h what is
generated by WDz0 cannot satisfy the hard constraint condition umax < 110 km/h and uavg = 110.36 km/h
cannot satisfy soft constraint condition 85 km/h ≤ uavg ≤ 100 km/h, so the weight that is related to
time should be adjusted. The adjusted weight is weight set WDz1, the trajectory characteristic value
of average speed generated by adjusted weight set WDz1 uavg = 105 km/h cannot meet the constraint
condition 85 km/h ≤ uavg ≤ 100 km/h, so in the next weight adjust process Dz2, the weight that is
related to the time would be adjusted again. The trajectory characteristic values generated by adjusted
weight set in the iteration Dz2 can meet all of the constraints. We can see from Table 6 that, the trajectory
characteristic values generated by weight set WDa0 cannot meet the average speed constraint condition
85 km/h ≤ uavg ≤ 100 km/h, because the intelligent vehicle in order to meet the constraint condition
“quickly”, the speed is more quickly, so the average speed constraint condition cannot meet, so in the
next iteration process INT1, the weight that is related to time is adjusted, the trajectory that can meet
hard constraints and soft constraints can be generated in the driving process.

We can see from Tables 5 and 6 that the feasible results got from initial weight set WDz0 need
3 iterations. However, the feasible results got from initial weight set WDa0 only need 2 iterations, the
results showed that the goal can be reached faster used the initial weight set generated by this paper’s
method. We can see from the weight set’s value that the weight set WDa0 generated by this paper’s
method is different from the weight set WDz0 generated by the trajectory planning method based on
the state space, because the constraint “quickly” need the driving time more shortly, so the driving
time’s weight value W1 is higher, the value of W1/W2 in the weight set WDa0 is 5 times of default.

The one time iteration results are denoted as Da1 and Dz1, the iteration results generated from
the weight set WDa0 generated by this paper’s method and WDz0 generated by the trajectory planning
method of state space respectively. The finished weight adjusted results are denoted as Dan and Dzn

respectively. From Figures 6–10 are the trajectory and trajectory characteristic’s simulation results used
this two methods respectively. We can see from Figures 6–10 that the changed curves of the trajectory
characteristic value optimized by AR are more smooth than the changed curves of the trajectory
characteristic value optimized by OC, we also can see from Figure 10 that the lateral acceleration ay

optimized by OC cannot meet the recognized driving stability constraint ay < 0.4 g, while the maximum
lateral acceleration aymax = 0.39 g that is optimized by AR can meet the driving stability constraint
ay < 0.4 g.

Figure 6. The sketch map of the vehicle’s driving trajectory optimized by AR and Optimal Control.
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Figure 7. The changed curve of the longitudinal velocity optimized by AR and OC.

Figure 8. The changed curve of the lateral velocity optimized by AR and OC.

Figure 9. The changed curve of the longitudinal acceleration optimized by AR and OC.

Figure 10. The changed curve of the lateral acceleration optimized by AR and OC.
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We can see from the two methods’ simulation results that when we need to plan the trajectory
using the adverb constraint condition in the complex environment, the AR method is in well accordance
with that of OC method, and that the AR is superior to OC for some parameters. Because of ACT-R’s
human memory and learning ability, the trajectory planning method based on ACT-R can calculate
the weight value more quickly and more close to the solution. The solution results returned by the
solver have better convergence, it can better conform to the human’s behavioral characteristic and
meet various constraint condition’s requirement. The simulation research shows that the AR method
is applicable for high speed condition. The experiments with model car and comparison simulation
research show that the AR method is feasible, and it can be deduced that the method could be applied
for both low and high speed conditions.

6. The Experiment Verification of the Trajectory Planning Method

The experimental verification was done using the method of AR and obstacle avoidance
path planning method based on fuzzy neural network fusion (abbreviation: FN) [30], respectively.
The method of FN is a path planning method of combining with fuzzy and neural network, while
the method AR is a trajectory planning method of combining with ACT-R and OC. The related
configuration parameters for experimental vehicle: wheel base is 2.578 m, vehicle body length is
4.199 m, and vehicle body width is 1.786 m. This vehicle has been modified to be an intelligent
vehicle, the vehicle can know the environmental information by CCD camera, by GPS, laser radar,
and ultrasonic sensor installed on both sides of the vehicles for directional orientation. According to
the real-time road information that is provided by the sensors, the methods of AR and FN is used to
plan the trajectory and the trajectory is sent to steering controller, the controller will control the vehicle
drive along the planned trajectory. The obstacles set {B} is as follows:

{B} = {[(755, 397), 50], [(630, 476), 50], [(490, 423), 25], [(185, 124), 50], [(251, 398), 50],

[(290, 594), 50], [(782, 731), 25], [(550, 470), 50], [(436, 486), 50]}

The constraint set Re is as follows:

Re = {Hard = [ |ay max | ≤ 0.4 g]; Soft = [(safely), (better economy)]}

The soft constraints Soft = [(safely), (better economy)] can be expanded to{lower maximum velocity
umax, lower average velocity uavg, lower maximum acceloration amax, The right distance dmin, the same
as Soft = {40 km/h ≤ umax ≤ 60 km/h, 30 km/h ≤ uavg ≤ 50 km/h, amax ≤ 0.1 g, 3 m < dmin ≤ 4 m}.

The vehicle’s driving trajectory planned by AR and FN is shown as Figure 11. We can see from
Figure 11 that the shortest distance dmin = 3.6 m from the barrier that is planned by AR can meet the
constraint condition 3 m < dmin ≤ 4 m, while the shortest distance dmin = 7.2 m from the barrier that
is planned by FN cannot meet the constraint condition 3 m < dmin ≤ 4 m. The changed curve of the
longitudinal velocity, lateral velocity, longitudinal acceleration, and lateral acceleration planned by AR
and FN are shown as Figures 12–15. We can see from Figure 12 that the maximum acceleration planned
by AR is 0.123 g, it can satisfy the constraint condition

∣∣∣aymax

∣∣∣ ≤ 0.4 g, while the maximum acceleration

planned by FN is 0.46 g, it cannot satisfy the constraint condition
∣∣∣aymax

∣∣∣ ≤ 0.4 g. We also can see from
Figures 12–15 that the variation curve of vehicle response parameters along the trajectory generated
by AR is more smooth than that of vehicle response along the trajectory generated by FN, all of this
indicated that the trajectory that is generated by AR can meet the dynamical constraint condition.
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It can be obtained from the above analysis that the AR method is more feasible than the method
FN. The method of FN is a path planning method, only the static path is planned in the method,
however the trajectory parameters related time such as velocity and acceleration cannot be planned.
So, when the vehicle driving along the planned path, the dynamical constraints may not be met. While
the method AR is a trajectory planning method, not only the feasible path is generated, but also the
trajectory parameters related to time, such as velocity and acceleration, can be planned. The time
factor, vehicle model, human’s behavior characteristics and dynamical constraints are considered,
so the planned trajectory generated by AR has more human behavior characteristics and meets the
dynamical constraints. When the vehicle drives along the planned trajectory, the vehicle will not take
side skidding and other problems that do not meet the driving stability.

7. Conclusions

This paper presents a new electric vehicle active obstacle avoidance system’s trajectory planning
method based on ACT-R cognitive model, the conclusions are as follows.

(1) This method contacts optimization control method and ACT-R cognitive model, the different
driving trajectory can be dynamically planned to meet different constraints in different
road environment.
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(2) The method based on the ACT-R cognitive model is mainly to intelligent optimization the
trajectory’s parameters, the human’s behavioral characteristics is considered in the method,
the planned trajectory has memory and learning ability and the trajectory’s parameters can be
intelligent optimized to ensure the optimal trajectory’s generation.

(3) The simulation analysis is done used this paper’s trajectory planning AR method and the method
OC, respectively. The simulation results showed that AR method has obvious superiority than
the OC method and the solution results returned by the solver have better convergence and
can better conform to the human’s behavioral characteristic and can meet various constraint
condition’s requirement. The simulation research showed that the AR method is applicable for
high speed work condition.

(4) The experimental verification was done used this paper’s trajectory planning method AR and the
method FN, respectively. The experiment results showed that the AR method is more feasible then
the FN method, the trajectory that was generated by AR has more human behavior characteristics
and meets the dynamical constraints. When the vehicle travels along the planned trajectory, the
vehicle will not take side skidding and other problems that do not meet the driving stability.
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