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Abstract: A distributed energy resource (DER) system, which can be defined as a medium or small
energy conversion and utilization system with various functions for meeting multiple targets, is
directly oriented towards users and achieves on-site production and energy supply according to
users’ demands. Optimization research on system construction has recently become an important
issue. In this paper, simple stochastic mathematical equations were used to interpret the optimal
design problem of a DER system, and based on this, a novel method for solving the optimization
problem, which has multi-dimensional stochastic uncertainties (involving the price of input-energy
and energy supply and demand), was put forward. A mixed-integer linear programming (MILP)
model was established for the optimal design of the DER system by combining the ideas of mean
value and variance, aiming to minimize the total costs, including facility costs, energy purchase
costs, and loss caused by energy supply shortage, and considering the energy balance and facility
performance constraints. In the end, a DER system design for an office building district in Xuzhou,
China, was taken as an example to verify the model. The influences of uncertainty on the selection of
system facilities and the economic evaluation were analyzed. The result indicated that uncertainty of
energy demand played a significant role in optimal design, whereas energy price played a negligible
role. With respect to economy, if uncertainties are not considered in system design, it will result in a
short supply, and therefore the total cost will increase considerably. The calculation convergence was
compared with previous work. The implementation results showed the practicality and efficiency of
the proposed method.

Keywords: distributed energy resource system; energy supply and demand; stochastic; MILP

1. Introduction

1.1. Background

A distributed energy resource (DER) system, which is directly user-oriented and can produce
energy in local areas, is a small or medium energy conversion and utilization system characterized
by high versatility and the ability to meet multiple objectives [1]. The advantage of a DER
system is embodied in combined cooling, heating, and power (CCHP) [2]. CCHP conforms to
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“cascade utilization” of the total energy system, and has good energy efficiency. Although large
(heat) power plants can transmit energy over long distances, it is necessary to build power grids
and substations, which leads to transmission losses. Furthermore, long-distance delivery is difficult
for heating and cooling energy. In general, it is difficult to find enough appropriate users who need
heating and cooling energy near plant locations by virtue of the requirements for the site selection of
large plants, leading to ineffective CCHP. However, a DER system can overcome this issue by being set
near the demand and cooperating with users as much as possible. In this way, long-distance heating
and cooling delivery, as well as power-loss of grids, are avoided [3]. A DER system allows the use
of units that possess more capability for adjustment, control, and assurance, and promises sufficient
supply of various secondary energies for the using units, which are applicable for power, heating
and cooling energy supplies for cities [4], factories [5], commercial districts [6], large-scale public
facilities [7,8], and transportation systems [9], and reduces environmental pressure. All in all, a DER
system can provide the possibility for comprehensive cascade utilization of energy, opens up new
directions for renewable energy, and makes a significant contribution to improving energy efficiency,
security, and solving environmental pollution [10].

A DER system, however, is related to many kinds of resources and facilities, which have
complicated relationships [11]. Considering the variation of regional resource prices [12], demands [13],
the environment [14], etc., the optimal design of a DER system is a complex task [15]. Hence, the study
of the optimal design of a DER system plays an important role in cutting down on facility costs, energy
purchase costs, and losses caused by energy supply shortage, as well as enhancing energy efficiency.

1.2. Literature Review

Recently, many scholars have researched different optimization issues related to DER systems,
such as heating networks [16], power networks [17,18], heating and cooling networks [19], heating
and power networks [20,21], and complex networks [22]. Previously, some scholars solved this kind of
issue based on the linear programming (LP) [23,24] method. Later, many were inclined to use mixed
integer linear programming (MILP) [25–27], mixed-integer nonlinear programming (MINLP) [28,29]
and multi-objective programming (MOP) [30–33] methods for this issue. Pedrasa et al. [34] scheduled a
smart-home energy services DER system using a decision-support tool that was able to optimize
energy service provisions, and then schedule the available DER to maximize the net benefits.
The corresponding optimization problem was solved using particle swarm optimization (PSO).
Zhu and Tomsovic [35] proposed a three-stage optimal algorithm for optimal distribution power
flow of a DER system. In that paper, a region of Japan was set as an example to verify the practicality
of the algorithm. Calvillo et al. [36] proposed a hybrid energy system consisting of wind, photovoltaic
(PV), and fuel cells, designed to supply continuous power to a load. A simple and economical control
was used for maximum power point tracking and, hence, maximum power extraction from a wind
turbine and PV array. Mehleri et al. [37] presented a new model for the optimal configuration of DER
systems and the design of a heating pipeline network. The model was applied to a neighborhood of
10 buildings located in Central Greece, which demonstrated the practicality of the proposed model.
Subsequently, Mehleri et al. [38] proposed an MILP model that considered the effect of PVs on system
economy and the environment, and applied the model to a neighborhood of five buildings located
in Athens (Greece). Yang et al. [39] put forward an MILP model to design centralized generation
district-scale DER systems, which was applied to an urban area in Lianyungang City, China. Results
demonstrated that, based on reduced total annual costs of energy, equipment and operation, in
addition to the revenue from energy subsidies of 14.1%, the additional initial investment for the
proposed DER systems could be paid back within three years. This research established a DER system
from a different perspective, which was successfully put into practice. Buoro et al. [40] took both
economic and environmental objectives into account, and presented a multi-objective model for the
optimal design and operation of a district heating network. A case of a region in Italy was given to
demonstrate the practicality of the proposed model. Ruan et al. [41] analyzed the energy consumption
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characteristics of different commercial buildings, and examined the variability of BCHP (building
combined heat and power) in different commercial buildings. However, few have discussed the
uncertainty of model parameters.

Load analysis is essential for DER system design. If the load analysis or evaluation for buildings
is not detailed enough, it will exert a great deal of influence on operations [42,43]. However, energy
supply and demand are usually characterized by strong uncertainty [44]. If the uncertainty is not taken
into account, there will be a mismatch between supply and demand for a DER system and, thereby,
the investment and operation and maintenance (O&M) costs will be increased. For example, in winter
or summer, there may be insufficient energy supply. In transition seasons, there may be inadequate
utilization of a DER system. In light of the above considerations, many scholars have conducted
further research on DER system optimization with regard uncertainty. With regard to stochastic
uncertain optimization, the Monte Carlo simulation is one of the most common methods to deal
with models [45–47]. The principle is that the uncertain parameters of the models are stochastically
generated with several groups of values according to probability distributions. The groups of values
are combined to divide the problem into a number of scenarios. In this way, an uncertain optimization
problem is transformed into a certain optimization problem for multiple scenarios [48].

Marquez et al. [49] proposed a general approach to complex system reliability assessment,
based on Monte Carlo simulations. Alarcon-Rodriguez et al. [50] presented a novel multi-objective
planning framework for the integration of stochastic and controllable DER in a distribution grid.
Calvillo et al. [51] put forward an optimization model based on stochastic price for the optimal
planning and operation of an aggregated DER system. Mavrotas et al. [52] established a novel method
for energy-planning optimization, considering uncertain economic parameters and coupled with MILP
and Monte Carlo simulations. Similarly, Li et al. [53] proposed an optimization method coupling
MINLP and Monte Carlo simulations, applied to building cooling, heating, and power (BCHP) systems.
Yang et al. [15] and Zhou et al. [54] proposed an effective two-stage stochastic programming model
to work out a DER system on the basis of Monte Carlo simulations, which was respectively verified
through a real case. Ahmed et al. [55] developed a branch-and-bound algorithm to address two-stage
stochastic integer programs. This method was well applicable since the explicit enumeration of all
discontinuities of value functions could be avoided and the uncertainties in the cost parameters and
constraint matrix could be allowed. Somma et al. [56] introduced a multi-objective linear programming
model that could satisfy time-varying user demands and reduce both energy costs and environmental
impacts. A hypothetical large hotel (16,000 m2) located in Italy was set as an example to verify the
practicality. Afterwards, Somma et al. [57] developed a multi-objective model, in which exergy was
investigated in a DES (Distributed Energy System) design to attain a rational use of energy resources.
A case study on a hypothetical cluster of 30 buildings, located in Turin (Italy), was presented to
demonstrate that the maximum reduction in total annual costs and primary exergy inputs were equal
to 33.5% and 35.8%, respectively, when using the proposed model. Additionally, the sensitivities of
energy prices and demand scales were also examined to investigate their influence on the optimization
model. Somma et al. [58] considered energy demand and supply uncertainty, established a stochastic
programming model for a DER system with multiple energy devices, and finally provided good
solutions for DER system operators, based on economic and environmental priorities.

The optimization model of a DER system coupled with Monte Carlo simulations has matured
and obtain good results. However, the disadvantage is that the number of divided scenarios cannot be
decided before solving models. If there are fewer scenarios, the solving time will be longer, and the
strong uncertainty of model parameters requires many more scenarios to ensure the rationality of the
model. If the scale of the study problem is too great, leading to strong uncertainty in model parameters,
it will be difficult to obtain an optimal result in an ideal solving time.

This paper puts forward a novel approach to the optimization issue with multi-dimensional
stochastic uncertainty. The probability distribution function of uncertain parameters was incorporated
in the MILP model using appropriate logical processes. The uncertainty of the model was expressed
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by analytic equations, so as to transform the optimization model with multi-dimensional stochastic
uncertainty into certainty. The model solution was carried out by the MILP algorithm; therefore,
the reduction in computational efficiency, which is caused by Monte Carlo simulations introducing
more scenarios into the model could be effectively avoided. Additionally, the effect of the uncertainties
in energy demand and energy price on the optimal system design was investigated in detail.

1.3. Contributions of This Work

• A novel approach is put forward to solve optimization issues with multi-dimensional
stochastic uncertainty.

• Mean values and variances are introduced to build up a MILP model for optimal design of a
DER system.

• The practicality and solving efficiencies of the proposed model are verified through a real-world
case study.

1.4. Paper Organization

This paper is divided into six sections. The adopted methodology and details of the mathematical
model are given in Sections 2 and 3, respectively. Section 4 provides a detailed description of the
example, Xuzhou, China, and provides four cases. Section 5 presents the implementation results.
Conclusions are provided in Section 6.

2. Methodology

2.1. DER System Configuration

This paper focuses on the optimal design of a DER system. The superstructure of the system is
shown in Figure 1. There are two kinds of facilities in the system, used for energy generation and
storage. The energy generation facilities consist of energy supply and conversion facilities, and the
storage facilities usually include heating and cooling storage. Energy, such as purchased power, wind
energy, solar energy, and natural gas, is input into the system as the basis for the normal operation
of energy generation facilities, which is called input-energy for convenience. The system finally
generates demanded energy, such as power, heating and cooling energy, which is called output-energy,
while the heating and cooling energy need to be stored in storage facilities before being provided to
the demand-side. In a DER system, various types of energy may be generated during the operation of
energy-generation facilities. For example, some energy (such as exhaust gas energy) can be used by
other facilities (such as absorption chiller/heater) to generate output-energy. This kind of energy is
named “mid-energy” in the paper.

2.2. Problem Description

Input-energy is mainly composed of purchased power, wind energy, solar energy, natural gas, etc.
In districts with a complete infrastructure, the supply of purchased power and natural gas in a DER
system is relatively stable, which indicates a smaller variance in supply distribution function. However,
for wind energy and solar energy, the supply is associated with climate, thereby leading to strong
uncertainty, indicating a greater variance in the supply distribution function. It is the uncertainty of
input-energy that causes output-energy in a DER system to be full of strong uncertainty. Meanwhile,
climate, user numbers, units using quantity, and the randomness of accidents continue to strengthen
the uncertainty of demand for output-energy, contributing to the complex issue of optimal design of a
DER system. On the basis of the probabilistic method, this paper was able to obtain the distribution
function of available energy by subtracting energy demand from energy supply, and then solving
the probability density of energy sources, which is less than zero; thus, the probability of the energy
supply shortage can be worked out.
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Figure 1. Superstructure of a DER (distributed energy resource) system.

In this paper, the output-energy demand and supply are assumed to obey the normal distribution
function, which represents the mean value and variance. The distribution function of the available
energy sources can be obtained through subtraction between the two normal functions, i.e., as shown
in Figure 2. To solve the probability density of this function, which is less than zero, the zero point
of this function can be determined by the corresponding probability density of the standard normal
function, which can be obtained by consulting the table of standard normal distribution.

Input-energy mainly consists of power, wind energy, natural gas, etc.; among which power and
natural gas are usually provided by industry or government with a more stable supply, and therefore
with lower uncertainty. For wind energy and solar energy, supply is mainly decided by local climate,
such as in summer having stronger solar radiation supporting relatively abundant solar energy, while in
winter there is weaker solar radiation, supporting relatively little solar energy. Therefore, significant
uncertainty can result in uncertain output-energy and storage facilities. Meanwhile, changes in the
price of input-energy, user numbers, unit usage quantity, and random factors such as accidents, further
make the output-energy uncertainty stronger, contributing to the complex issue of optimal design for
a DER system.

This study suggests a new way to solve the multi-dimensional uncertainty issue, i.e.,
by introducing variance to show various uncertainties in the system based on a stochastic method.
Assuming input-energy fulfills a normal distribution (µs1, σs1),in which µs1 shows the average
value of input-energy, and σs1 shows the variance of input-energy; output-energy fulfills a normal
distribution (µs2, σs2), in which µs2 shows the average value of output-energy, σs2 shows the variance of
output-energy; then, the available system energy will follow a normal distribution (µs1 − µs2, σs1 + σs2),
as shown in Figure 2. If the available system energy’s average value is lower than 0, the system will have
a short supply. Based on the probability density function of available system energy, the probability of
system in short supply can be worked out.
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Based on such a theory, to reduce the probability of a short supply of energy, the average values
of input-energy and output-energy (higher and as closer as possible to zero) are needed. Therefore,
the problem in the optimal design of a DER system is to find the most economic energy distribution
plan for users.

2.3. MILP Model

Building a MILP model is a typical way of solving the issue mentioned in 2.2. For such a
question, the lowest total cost (i.e., facility cost, energy purchase cost, and loss caused by energy
supply shortage) is the objective function. Meanwhile, constraint conditions, such as facilities, energy
balance, etc., are also taken into consideration. Based on the in situ data and facility alternatives,
the optimization of energy distributed system can be converted into a MILP model. In accordance
with the branch-and-bound approach, the final result can be determined.

To describe the method proposed in this paper and facilitate understanding for in situ engineers,
the model can be performed using the following compact form:

min
d,o

F = f1(d, o, p) + f2(o, p)

s.t.ϕ1(d, o, p) ≤ 0
ϕ2(d, o, p) = 0
φ1(d, o, p) ≤ 0
φ2(d, o, p) = 0

(1)

where d represents the decision variable for facilities; o represents the decision variable for system
operation; p represents the model parameters; F represents the objective function; f1 represents the
facility purchase cost function, which is relative to d, the variable for system operation; f2 represents
the energy purchase cost, which is relative to the variable for system operation; ϕ1, ϕ2 represents the
inequality in energy balance between supply and demand; and φ1, φ2 represent the facility performance
inequality and equality constraints.
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Considering energy input, demand and price with a definite uncertainty, combining the MILP
modeling method with multiple scenarios is common. The structural framework of the model is
shown as Equation (2). Uncertainty among models could be solved perfectly using such a method.
However, for such a problem, energy input, demand and price strongly mix together, and if the model’s
uncertainty is strong, or there are multiple uncertain variables, more scenarios will be required to show
such uncertainty factors. Despite having more scenarios, the larger a model’s scale is, the slower the
model converges.

min
d,o

F = ∑
s
[ f1s(d, os, pPUs, pC) + f2s(os, pPUs)]/NS

s.t. ϕ1(d, os, pDUs, pPUs, pC) ≤ 0
ϕ2(d, os, pDUs, pPUss, pC) = 0
φ1(d, os, pDUss, pPUss, pC) ≤ 0
φ2(d, os, pDUs, pPUs, pC) = 0

(2)

where pDUs, pPUs represent the indefinite parameter of model energy supply and demand and price in
a specific scenario; pC represents the definite parameter of the model, such as facility cost; os represents
the system operation related decision variable in a specific scenario; f1s, f2s represents the facility
purchase cost function in a specific scenario; NS is the total number of scenarios.

The new method put forth in this paper is shown below: We discovered that the uncertainty
parameter (pDUs) was only shown in the model constraints, and was not shown in an objective function.
Therefore, we were able to use various kinds of transfers to change the uncertainty parameter into
a certainty constraint in order to reduce the coupling degree of uncertainty. Based on the analysis
in the previous section, we introduce the mean value and variance into the constraint to show the
uncertainty of input-energy and demand, which can be shown by the probability of energy supply
shortage. Therefore, the uncertainty parameter (pDUs) can be saved to reduce the coupling degree of
the uncertainty parameter in the model; in other words, to reduce the number of scenarios in order to
solve the model, and to improve the convergence and calculation rates. The specific model structure is:

min
d,o

F = ∑
s
[ f1s(d, µs, σs, pPUs, pC) + f2s(µs, σs, pPUs) + f3s(µs, σs)]/NS

s.t. ϕ1(d, µs, σs, pPUs, pC) ≤ 0
ϕ2(d, µs, σs, pPUs, pC) = 0
φ1(d, µs, σs, pPUs, pC) ≤ 0
φ2(d, µs, σs, pPUs, pC) = 0

(3)

where f3s is a penalty term of the objective function, introduced when a system is in a scenario of short
supply; µs, σs represent mean value and variance of energy supply and demand.

2.4. Model Requirements

The model was formulated as a MILP, and the optimization was executed using MATLAB 2014.
A detailed design and operation scheme of a DER system can be determined by solving the model.

Given:

• Numbers of seasons and corresponding days.
• Costs of purchased facility and energy, as well as O&M and depreciation rate.
• Input-energy supply and output-energy demand distributions at every time window of

every season.

Determine:

• Design scheme of DER system: Facility specifications.
• Operation scheme of DER system: Operation scheme of energy generation and storage facilities.
• The probability of energy supply shortage of a DER system.
• Mean O&M cost of the system per day in every season.
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Objective:
Minimize the total mean facility cost per day, energy purchase cost, and loss caused by energy

supply shortage under various operational and technical constraints.
In order to build and solve the model effectively, the following assumptions were made:

• This paper assumes that stochastic uncertainties of supply and demand conform to
a normal distribution.

• The characteristic equations of input- and output-energy are linear.
• The influence of ambient air temperature on facility operation is not taken into consideration.
• The facility capacity is optimal, based on investigations, which can maximize savings in facility

investment costs, and the parameter representing the facility capacity is a fixed value in the model.

3. Mathematical Model

3.1. Objective Function

The objective function is min F = f1 + f2 + f3 , where f1 represents the mean facility cost per day;
f2 represents the mean input-energy cost per day; and f3 represents the mean cost of the mismatch
between supply and demand per day.

The mean facility cost per day includes purchase depreciation cost of storage and generation
facilities and O&M costs, where the daily depreciation rate is equal to the ratio of the sum of 1 and the
residual rate (unit: %) to the product of facility service life (a) and 365; in general, the residual rate
is 5%.

f1 = ∑
s

∑
is

BSs,is(RSPs,isCSPs,is + CSMOs,is) + ∑
o

∑
io

BOo,io(ROPo,ioCOPo,io + COMOo,io)

s ∈ S, is ∈ ISs, o ∈ O, io ∈ IOo

(4)

The mean input-energy cost per day is related to the used quantity and unit price of
fundamental energy:

f2 = ∑
sa

∑
se

[
NSse∑

t
∆τ∑

m
CEPse,t,mVEEsa,se,t,m

]
/NYNSA, sa ∈ SA, se ∈ SE, t ∈ T, m ∈ M (5)

The mean cost of the mismatch between supply and demand per day is related to the mean
probability of demand exceeding supply per day. Generally, an energy system should avoid the
condition where demand exceeds supply as much as possible; thus, CLERRORs is given a larger value in
the model, with an order of magnitude of 106:

f3 = ∑
sa

∑
se

[
NSse∑

t
∑

s
(CLERRORsPLERRORsa,se,t,s)

]
/NYNSA, sa ∈ SA, se ∈ SE, t ∈ T, s ∈ S (6)

3.2. Energy Balance Constraints

At the start of a time window, the mean value of available output-energy equals the mean value
of available output-energy at the start of the last time window, minus the attrition rate, plus the mean
value of output-energy generated by the operating facilities, and minus the mean value of energy
demand and the excess energy released:

µSRsa,se,t+1,s = (1− γSRs)µSRsa,se,t,s + µSAsa,se,t,s − µSDsa,se,t,s −VDJsa,se,t,s

sa ∈ SA, se ∈ SE, t ∈ T, s ∈ S
(7)

The variance of available output-energy at the start of a time window is equal to the variance
of available output-energy at the start of the last time window, multiplied by 1, minus attrition rate
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difference, plus the square of the variance of the output-energy generated by the operational facilities,
and minus the variance of demand:

δSRse,t+1,s = (1− γSRs)
2δSRse,t,s + δSAse,t,s + δSDse,t,s, se ∈ SE, t ∈ T, s ∈ S (8)

Binary variables can be used to judge the ranges that the variance of available output-energy
belong to:

(BABse,t,s,a − 1)Ma + ABmina ≤ δSRse,t,s, se ∈ SE, t ∈ T, s ∈ S, a ∈ AB (9)

ABmaxa + (1− BABse,t,s,a)Ma ≥ δSRse,t,s, se ∈ SE, t ∈ T, s ∈ S, a ∈ AB (10)

The variance of output-energy can only belong to one single range:

∑
a

BABse,t,s,a = 1, se ∈ SE, t ∈ T, s ∈ S, a ∈ AB (11)

Linearize the relationship between variance and standard deviations using the phased approach,
and determine the variance ranges in order to select the linearized equation parameters:

σSRse,t,s ≤ αSRaδSRse,t,s + βSRa + (1− BABse,t,s,a)Ma, se ∈ SE, t ∈ T, s ∈ S, a ∈ AB (12)

σSRse,t,s ≥ αSRaδSRse,t,s + βSRa + (BABse,t,s,a − 1)Ma, se ∈ SE, t ∈ T, s ∈ S, a ∈ AB (13)

After obtaining the variance and standard deviation of available output-energy at the start of a
time window, the probability of demand exceeding supply (i.e., the probability density of available
output-energy, which is less than zero) can be calculated. In this paper, the probability distribution
of the available output-energy is transformed into a standard normal distribution, and then the
application of binary variables and a look-up table were employed to solve the probability density of
available output-energy, which was less than zero:

µSRsa,se,t,s ≤ APmaxaσSRse,t,s + (1− BAPLsa,se,t,s,a)Ma, sa ∈ SA, se ∈ SE, t ∈ T, s ∈ S, a ∈ AP (14)

µSRsa,se,t,s ≥ APminaσSRse,t,s + (BAPLsa,se,t,s,a − 1)Ma, sa ∈ SA, se ∈ SE, t ∈ T, s ∈ S, a ∈ AP (15)

∑
a

BAPLsa,se,t,s,a = 1, sa ∈ SA, se ∈ SE, t ∈ T, s ∈ S, a ∈ AP (16)

PLERRORsa,se,t,s = ∑
a

BAPLsa,se,t,s,aPSTANDa, sa ∈ SA, se ∈ SE, t ∈ T, s ∈ S, a ∈ AP (17)

The mean value of the available output-energy at the start of a time window should be greater
than zero:

µSRsa,se,t,s ≥ 0, sa ∈ SA, se ∈ SE, t ∈ T, s ∈ S (18)

The paper defines one day as a study cycle. The mean value of available output-energy at the
final time window, plus the mean generation value of output-energy at the final time window, and
minus the demanded mean value, should equal the mean value of the available output-energy at the
start of the first time window:

µSRsa,se,tm,s + µSAsa,se,tm,s − µSDsa,se,tm,s = µSRsa,se,1,s, sa ∈ SA, se ∈ SE, s ∈ S (19)

3.3. Facility Performance Constraints

The mean value of available output-energy at the start of a time window should be lower than
the upper limit of the storage facilities:

∑
is

BSs,isVSmaxs,is ≥ µSRsa,se,t,s, sa ∈ SA, se ∈ SE, t ∈ T, s ∈ S, is ∈ ISs (20)
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The mean value of output-energy generated by generation facilities can be worked out using their
characteristic equations, which are related to input-energy and facility performance parameters.

µOYsa,se,t,o,io,n ≤ αOo,io,nµOXsa,se,t,o,io + βOo,io,n + (1− BOo,io)Ma

sa ∈ SA, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, n ∈ No
(21)

µOYsa,se,t,o,io,n ≥ αOo,io,nµOXsa,se,t,o,io + βOo,io,n + (BOo,io − 1)Ma

sa ∈ SA, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, n ∈ No
(22)

The variance of output-energy generated by generation facilities remains linear with the
input-energy:

δOYse,t,o,io,n ≤ α2
Oo,io,n

δOXse,t,o,io + (1− BOo,io)Ma, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, n ∈ No (23)

δOYse,t,o,io,n ≥ α2
Oo,io,n

δOXse,t,o,io + (BOo,io − 1)Ma, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, n ∈ No (24)

If one generation facility is not selected, the mean value of output-energy generated by this facility
(i.e., the equation) should be zero:

∑
n

(
∑
sa

µOYsa,se,t,o,io,n + δOYse,t,o,io,n

)
≤ BOo,io Ma

sa ∈ SA, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, n ∈ No

(25)

In the system, there should be no more than one type of facility:

∑
io

BOo,io ≤ 1o ∈ O, io ∈ IOo (26)

∑
is

BSs,is ≤ 1s ∈ S, is ∈ ISs (27)

In the system, the total usage of input-energy should equal the sum of input-energy that all the
generation facilities need:

VEEsa,se,t,m = ∑
o

FOXo,m∑
io

µOXsa,se,t,o,io, sa ∈ SA, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, m ∈ M (28)

The input-energy variance of generation facilities should equal the variance of input-energy in
the system:

∑
io

δOXse,t,o,io = FOXo,mδSMse,t,m, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, m ∈ M (29)

The total generation of output-energy in the system should equal the sum of the energy generated
by all the generation facilities:

µSAsa,se,t,s = ∑
n

∑
o

FOYo,n,s∑
io

µOYsa,se,t,o,io,n

sa ∈ SA, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, s ∈ S, n ∈ No

(30)

The total generation variance of every output-energy should equal the variance sum of the energy
generated by all the generation facilities:

δSAse,t,s = ∑
n

∑
o

FOYo,n,s∑
io

δOYse,t,o,io,n, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, s ∈ S, n ∈ No (31)
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If there is mid-energy applied in the system, the mean value of the output should equal the mean
value of usage minus the energy released:

∑
n

∑
o

FOYMo,n,mo∑
io

µOYsa,se,t,o,io,n = ∑
o

FOXMo,mo∑
io

µOXsa,se,t,o,io −VEMOse,t

sa ∈ SA, se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, mo ∈ MO, n ∈ No

(32)

If there is mid-energy applied in the system, the variance of usage should equal the variance of
the output:

∑
n

∑
o

FOYMo,n,mo∑
io

δOYse,t,o,io,n = ∑
n

∑
o

FOXMo,n,mo∑
io

δOXse,t,o,io,n

se ∈ SE, t ∈ T, o ∈ O, io ∈ IOo, mo ∈ MO, n ∈ No

(33)

4. Example

To verify the model’s practicality, an example—namely, a DER system design based on an office
building district in Xuzhou, China—is presented in this paper. The required parameters, including
climate, energy price and demand of the district, as well as the facility specifications of a DER system,
are displayed below. The local climate, including ambient air temperature, solar radiation intensity,
wind energy density, and the energy demand, hardly vary within a two-hour time window. Fewer time
windows and a smaller model scale will result in a faster solving efficiency. Therefore, we determined
12 time windows every day, with each time window being 2 h.

4.1. Climate Data

The ambient air temperature, solar radiation intensity, and wind energy density of the city
fluctuate throughout different seasons. The ambient air temperature and solar radiation intensity are
higher in summer, but lower in winter than in spring and autumn; and the wind energy density is
similar for spring and autumn. Therefore, the climate can be divided into three periods: Mid-season,
summer, and winter, with durations of 92, 153, and 120 days, respectively. The ambient air temperature,
solar radiation intensity, and wind energy density of the city, for different periods, are shown in
Figure 3. Here, we assume that solar radiation intensity meets the normal distribution, [59] with the
variance taken as the mean value multiplied by 0.5, and that wind energy density meets the Weibull
distribution [60], which is as follows:

F(Dens; τ, ν) = 1− exp
[
−(Dens/τ)ν] (34)

where τ is the scale parameter, and represents the value of each point on the curves in Figure 3c; ν is
the shape parameter, and equals 3.69.
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4.2. Energy Demand

The heating and cooling energy, and the power demand of the district at different periods
were obtained by site investigation, as shown in Figure 4. More energy is required during the
daytime, while less is required during the night. In the mid-season, summer, and during winter days,
the demand for energy differs. The demand for cooling energy in summer is far higher than in winter,
while the demand for heating energy is far higher in winter than in summer. The demand for power
experiences less fluctuation in the three periods. In this paper, we assume that the energy demand
satisfies a normal distribution, and the variance is taken as the mean value multiplied by 0.5.
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4.3. Energy Price

The input-energy consists of power, natural gas, wind energy, and solar energy, where the power
price is 0.92 CNY/kWh, the natural gas price is 0.32 CNY/kWh, and the wind energy and solar energy
price are 0. To study the price uncertainty of input-energy, many scholars have applied a uniform
distribution, normal distribution, and triangular distribution to describe the energy prices. In this
paper, uniform distribution was selected to deal with the uncertainty of power price. The upper and
lower limits of power price are 1.03 CNY/kWh and 0.81 CNY/kWh, respectively. The triangular
distribution is determined for the uncertainty of the natural gas price, with the upper and lower limits
of 0.37 CNY/kWh and 0.27 CNY/kWh, and a mode of 0.35 CNY/kWh.

4.4. DER System and Facility Parameter

This paper denotes power, natural gas, wind energy, and solar energy as the input-energy, exhaust
gas as the mid-energy, and power, heating and cooling energy as the output-energy. The energy
supply facilities generate the mid- or output-energy through the input-energy, mainly including
internal combustion engines, gas turbines, gas boilers, fuel cells, wind turbines, solar PV, and solar
heat collectors, shown in Table 1. The energy conversion facilities generate the output-energy by
inputting the mid-energy, which includes absorption chillers/heaters, heat exchangers, electric heaters,
water-source chillers/HPs and air-source chillers/HPs, and the detailed parameters are shown in
Table 2. Detailed parameters of energy storage facilities are shown in Table 3. The operation principle
of the energy flow of each facility is shown in Figure 5.

Table 1. Parameters of energy supply facility [14,39,61].

Facility Facility Price
(CNY/kW)

O&M Cost
(CNY/kWh)

Power Generation
Efficiency (%)

Heating Generation
Efficiency (%) Service Life (a)

Internal
combustion engine 4357 0.072 35 50 30

Gas turbine 7900 0.068 25 55 30

Gas boiler 851 0.002 0 90 20

Fuel cell 37,215 0.200 36 45 10

Wind turbine 6000 0.080 35 0 20

Solar PV 20,700 0.010 12 0 30

Solar heat collector 2250 0.010 0 40 15
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Table 2. Parameters of energy conversion facility [14,39,61].

Facility
Facility

Price
(CNY/kW)

O&M Cost
(CNY/kWh)

Coefficient of
Performance (COP)

Service Life (a)
Heating

Generation
Cooling

Generation

Absorption
chiller/heater 1228 0.008 1.00 1.2 20

Heat exchanger 205 0.0022 0.98 0 20

Electric heater 1200 0 1.00 0 20

Water-source
chiller/HP 2000 0.0097 4.00 5.00 20

Air-source
chiller/HP 1200 0.0097 3.00 3.00 20

Table 3. Parameters of energy storage facility.

Facility Facility Price
(CNY/kW)

O&M Cost
(CNY/kWh) Efficiency (%) Service Life (a)

Fuel cell 1782 8.300 75 13.5

Heating storage facility 90 0.180 90 20

Cooling storage facility 190 0.200 65 20
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4.5. Setting of Cases

In the model, there may be uncertainties, such as the price of input-energy, supply of wind and
solar energy, and energy demand. This paper will discuss four cases, as follows:

1. All of the prices of input-energy, as well as the energy supply and demand, are fixed values.
2. The price of input-energy is perceived as an uncertain factor, and the energy supply and demand

are fixed values.
3. The price of input-energy is a fixed value and the energy supply and demand are uncertain factors.
4. All of the prices of input-energy and the energy supply and demand are uncertain factors.
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5. Implementation Results

5.1. Convergence Analysis

During model solving, it is possible that the calculation results of different scenarios differ from
one another. A proper scenario can be obtained by analyzing the tendency of the objective value
as the scenario number varies, in order to avoid failing to search for the optimal solution due to
fewer scenario numbers and larger amounts of time being spent. Since the uncertainties of energy
supply and demand are expressed by variances, the convergence effect should be better in light of
theoretical analysis. To verify the advantage of this method, the previous method (the uncertainties of
energy supply and demand are expressed by scenarios) was employed for comparison. Table 4 shows
the problem size and computing times for Cases 2, 3, and 4, with 10, 20, and 30 selected scenarios,
respectively. In each case, all scenarios have an equal probability of occurrence. It is obvious that,
in different scenarios, the problem size of the proposed method is larger than the previous method,
causing longer solving times.

Figure 6 shows the mean values of the daily total costs of the two different methods in different
scenarios. Figure 7 displays the computing times of two different methods in different scenarios. It
can be seen that the mean value of the objective of the proposed method fluctuates dramatically, and
when the scenario number exceeds 23, the mean value of the objective tends to be stable, converging
on 160,733 CNY. The corresponding computing time is approximately two hours. Thus, the scenario
number was determined and set at 25, to ensure an accurate mean value of the objective. With respect
to the previous method, the scenario number should be 40, so as to converge to 160,517 CNY, and
the corresponding computing time is far longer than four hours. In addition, the relative error of the
mean value of the total daily cost is only 0.13%. In this way, the computing efficiency and effect of
the proposed method are superior to the previous method, as fewer scenarios and shorter computing
times when converging, as well as lower relative errors, can be obtained from the proposed method.

Table 4. Problem size and computing time of Cases 2–4 with different numbers of scenarios.

Methods and Test Items
Number of Scenarios

10 20 30

Proposed method

Problem size
Constraints 67,584 135,644 202,626

Total variables 20,422 40,822 61,222
Discrete variables 4572 9088 13,604

CPU time (s)
Case 2 1142 5776 18,654
Case 3 1464 7223 23,656
Case 4 2048 8664 14,686

gap 0.01 0.01 0.01

Previous method

Problem size
Constraints 47,808 95,568 143,328

Total variables 12,854 25,694 38,534
Discrete variables 7,948 15,868 23,788

CPU time (s)
Case 2 583 2898 14,661
Case 3 440 2275 9613
Case 4 703 3498 8229

gap 0.005 0.005 0.005
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5.2. Uncertainty Impact on Selection of System Facility

Table 5 shows the selection of system facilities in different scenarios, and it was found that the
selections of different cases were the same. Natural gas, wind energy, and power were regarded as
input-energy; internal combustion engines, gas turbines, and wind turbines were regarded as energy
supply facilities to generate power and heat; water-source chiller/HP and heat exchangers were
regarded as energy conversion facilities to generate heating and cooling energy by using part of the
power from supply energy facilities. Meanwhile, the system still determined heating and cooling
storage facilities. When the price of input-energy and the energy supply and demand were uncertain
factors, the selection program and energy flow of facilities are shown in Figure 8.

Table 5. Selection of system facilities in different cases.

Facility
Case 1 Case 2 Case 3 Case 4

Rated Capacity Rated Capacity Rated Capacity Rated Capacity

internal combustion
engine 8800 kW 8800 kW 8800 kW 8800 kW

gas turbine 7200 kW 7200 kW 8000 kW 8400 kW
wind turbine 400 kW 400 kW 400 kW 400 kW

heat exchanger 3200 kW 3200 kW 3200 kW 3200 kW
Water-source chiller/HP 2000 kW 2000 kW 2000 kW 2800 kW
Heating storage facility 44,068 kWh 44,068 kWh 46,092 kWh 53,608 kWh
Cooling storage facility 9034 kWh 10,934 kWh 12,743 kWh 15,087 kWh
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When the selection of the system facilities was optimized, under the premise that a short supply
should be avoided, the price of input-energy, conversion efficiency of generating power, heating and
cooling energy, facility price, etc., were considered, and multiple energy supply modes and operation
strategies were comprehensively compared to select the most economical operation mode to satisfy
user demands. In Case 2, the selected types of system facilities did not change compared with Case 1,
while the capacity of cooling storage facilities increased by 1900 kW, and it could be determined that
the price uncertainty of input-energy played less of a role in the implementation results. In Case 3,
the uncertainties of energy supply and demand had a great impact on the distribution of system
facilities compared with Case 1, and the capacities of gas turbines, heating and cooling storage
facilities increased by 800 kW, 2024 kWh, and 3709 kWh, respectively. It attributed (to the system)
the requirement to compare energy supply and demand of multiple scenarios and determined the
maximum for preventing supply from falling short of demand. In Case 4, the uncertainties in the
price of input-energy and the energy supply and demand influenced the system more significantly
compared to Case 1, and the capacities of gas turbines, water-source chillers/HPs, and heating and
cooling storage facilities increased by 1200 kW, 800 kWh, 9540 kWh, and 6053 kWh, respectively.

5.3. Uncertainty Impact on Economic Evaluation

Table 6 shows the daily costs in different cases. It can be seen that, in Case 2, the total cost
for purchased power and natural gas contributed the most in terms of total daily cost increases,
while facility investment and O&M costs contributed less to the total daily cost increase. This was
because the mean power purchase price and natural gas price in Case 2 were higher than in Case 1,
which played a leading role in power and natural gas cost variations. For Case 3, power and natural
gas purchase costs barely contributed to daily total cost increases, while facility investment and O&M
costs contributed the most. This is because, considering the uncertainty of energy supply and demand,
the optimal capacity of some facilities could increase. For Case 4, the total cost of purchased power
and natural gas contributed almost the same as facility investment and O&M costs to daily total cost
increases. Every kind of cost was higher than in Case 1 when considering uncertainties, indicating that
it exerted the greatest impact on the total cost when simultaneously considering the uncertainties of
the price of input-energy and the energy supply and demand, followed by the uncertainty of the price
of input-energy, and, finally, the uncertainty of energy supply and demand. Furthermore, the two
types of uncertainties had cumulative effects on the total daily costs.
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Table 6. Daily cost of the system in different cases.

Equipment Type

Case 1 Case 2 Case 3 Case 4

Cost
(CNY/d)

Mean
Value

(CNY/d)

Difference
with

CASE 1 (%)

Mean
Value

(CNY/d)

Difference
with Case

1 (%)

Mean
Value

(CNY/d)

Difference
with Case

1 (%)

Daily investment
of facility 8353 8443 1.07 9149 9.53 9188 10.00

Daily O&M cost
of facility 28,190 28,233 0.15 28,376 0.07 28,338 0.53

Daily cost of
power 11,013 11,478 4.22 10,248 −6.9 11,904 8.09

Daily cost of
natural gas 109,564 111,868 2.10 110,134 0.05 111,303 1.59

Daily total cost 157,120 160,022 1.85 157,907 0.50 160,733 2.30

5.4. Sensitivity Analysis on Uncertainty

In order to verify the effects of uncertainties on the model solution, we conducted sensitivity
analyses on the convergence rate for the demand and energy price uncertainties, respectively. If energy
supply and demand are uncertain factors, when the previous method starts to converge, the scenario
number will increase constantly as the uncertainties in energy supply and demand are strengthened.
However, the proposed method embeds the demand uncertainty into the model in the form of variance;
therefore, the increase in the demand uncertainty had little effect on the convergence rate of the model;
the results are shown in Table 7. Supposing that the price of input-energy is an uncertain factor, when
the two methods converge, both scenario numbers will increase constantly, as the uncertainty of the
input energy price is strengthened. However, the proposed method’s convergence rate was faster than
that of the previous method; the results are shown in Table 8. When the scenario number exceeds 50,
the traditional method still fails to converge, and since the server memory is insufficient, it is difficult to
predict the scenario number when the convergence is finished. This indicated that the price uncertainty
was more sensitive to the convergence rate. However, the convergence rate of the proposed method
was superior to that of the previous method, which showed that the former was more applicable for
dealing with systems with complex uncertainties.

Table 7. Comparison of fluctuation result for energy supply and demand.

Variance The Previous Method The Proposed Method

0.50 40 23
0.55 42 23
0.60 43 24
0.65 45 24
0.70 48 24

Table 8. Comparison of fluctuation result for input energy price.

Power Price Range
(CNY/kWh)

Natural Gas Price
Range (CNY/kWh) The Previous Method The Proposed Method

0.87–0.97 0.30–0.34 15 12
0.85–0.99 0.29–0.35 17 13
0.83–1.01 0.28–0.36 24 18
0.81–1.03 0.27–0.37 40 23
0.79–1.05 0.26–0.38 >50 35
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6. Conclusions

This study applied simple stochastic mathematical equations to illustrate the design optimization
problems of a DER system. Then, a novel method for solving the optimization problem with
multi-dimensional stochastic uncertainty was proposed. A MILP model of optimal design of a
DER system was established based on the introduction of the mean value and variance, taking the
minimum total cost of facility cost (investment and O&M), energy purchase cost, and loss caused by
energy supply shortage as the objective, and considering the energy balance and facility performance
constraints. Finally, this study took a DER system design of an office building district in Xuzhou,
China, as an example, and four cases were investigated to verify the model: (1) all of the prices of
input-energy and the energy supply and demand are fixed values; (2) the price of input-energy is
perceived as an uncertain factor and the energy supply and demand are fixed values; (3) the price
of input-energy is a fixed value and the energy supply and demand are uncertain factors; and (4) all
of the prices of input-energy and the energy supply and demand are uncertain factors. Compared
with previous research, our method proved to have a better convergence. The implementation results
reflected the practicality and efficiency of the proposed method. However, at present, this method is
only applicable to conditions where supply and demand meet the normal distribution, and there are
different derivation processes and modeling methods for other distributions. This problem will be the
focus of future research.
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Nomenclature

Sets and Indices (The Set of)
a ∈ AB Number of region of variance
a ∈ AP Number of region of probability density
io ∈ IOo Number of optional capacity of energy generation facility o
is ∈ ISs Number of storage capacity of output-energy s
m ∈ M Number of input-energy
mo ∈ MO Number of mid-energy
n ∈ No Number of product of energy generation facility o
o ∈ O Number of energy generation facility
s ∈ S Number of output-energy
sa ∈ SA Number of scenario
se ∈ SE Number of season
t ∈ T = { 1, · · · , tm} Number of time-window
Continuous Parameters
CSP Unit cost of storage facility
RSP Rate of depreciation of storage facility
CSMO O&M cost of storage facility
ROP Rate of depreciation of energy generation facility
COP Unit cost of energy generation facility
COMO O&M cost of energy generation facility
∆τ Length of time-window
CEP Price of input-energy
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NS Number of days in a season
NY Number of days in a year
NSA Number of scenarios
CLERROR Cost of shortage of energy supply
µSD Mean value of energy demand
δSD Variance of energy demand
Ma A positive maximum value
ABmin Lower limit of region of variance
ABmax Upper limit of region of variance
αSR, βSR Parameters of linearized function of variance and standard deviation
APmax Upper limit of region of probability density
APmin Lower limit of region of probability density
PSTAND Standard value of probability density in region a
VSmax Upper limit of capacity of energy generation facility
αO, βO Parameters of characteristic function of energy generation facility
γSR Storage loss rate
Binary Parameters

FOXo,m
If the energy generation facility o operates with input-energy m,
FOXo,m = 1. Otherwise, FOXo,m = 0.

FOXMo,mo
If the energy generation facility o operates with mid-energy mo,
FOXMo,mo = 1 Otherwise, FOXMo,mo = 0.

FOYo,n,s
If the nth product of energy generation facility o is out-energy s,
FOYo,n,s = 1. Otherwise, FOYo,n,s = 0.

FOYMo,n,mo
If the nth product of energy generation facility o is mid-energy mo,
FOYMo,n,mo = 1. Otherwise, FOYMo,n,mo = 0.

Positive Continuous Variables
VEE Total input-energy consumption
PLERROR Probability of supply shortage
µSR Mean value of available output-energy
µSA Mean value of generated output-energy
VDJ Release of energy
δSR Variance of available output-energy
δSA Variance of generated output-energy
σSR Standard deviation of available output-energy
µOX Mean value of input-energy consumption of energy generation facility
µOY Mean value of output-energy generation of energy generation facility
δOY Variance of output-energy generation of energy generation facility
δOX Variance of input-energy consumption of energy generation facility
Binary Variables

BSs,is
If the storage of output-energy .. with capacity is is selected for energy
distribution system, BSs,is = 1. Otherwise, BSs,is = 0.

BOo,io
If the energy generation facility o with capacity io is selected for energy
distribution system, BOo,io = 1. Otherwise, BOo,io = 0.

BABse,t,s,a
If variance of available output-energy s in season se during
time-window t is in region a, BABse,t,s,a = 1. Otherwise, BABse,t,s,a = 0.

BAPLsa,se,t,s,a
If probability of supply shortage of output-energy s in season se during
time-window t is in region a, BAPLse,t,s,a = 1. Otherwise, BAPLse,t,s,a = 0.
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