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Abstract: Natural gas exists in considerable quantities in tight reservoirs. Tight formations are
rocks with very tiny or poorly connected pors that make flow through them very difficult, i.e.,
the permeability is very low. The mixed finite element method (MFEM), which is locally conservative,
is suitable to simulate the flow in porous media. This paper is devoted to developing a mixed
finite element (MFE) technique to simulate the gas transport in low permeability reservoirs.
The mathematical model, which describes gas transport in low permeability formations, contains
slippage effect, as well as adsorption and diffusion mechanisms. The apparent permeability is
employed to represent the slippage effect in low-permeability formations. The gas adsorption on the
pore surface has been described by Langmuir isotherm model, while the Peng-Robinson equation
of state is used in the thermodynamic calculations. Important compatibility conditions must hold
to guarantee the stability of the mixed method by adding additional constraints to the numerical
discretization. The stability conditions of the MFE scheme has been provided. A theorem and three
lemmas on the stability analysis of the mixed finite element method (MFEM) have been established
and proven. A semi-implicit scheme is developed to solve the governing equations. Numerical
experiments are carried out under various values of the physical parameters.

Keywords: natural-gas; low permeability reservoirs; mixed finite element simulation; porous media;
stability analysis

1. Introduction

Natural gas was formed in tight formations over millions of years, when organic material was
buried under high heat and pressure and slowly converted to natural gas. Some of this natural
gas escaped into the adjacent conventional rock layers with higher porosity and permeability, and
is relatively easy to extract. However, the majority remained locked in tighter, lower permeability
layers where they could not be extracted through conventional means. In tight-gas formations, micro-,
and nano-pores, the no-slip surface condition may not be satisfied and flow slippage may take place.
Due to the gas slippage effect, the permeability of a sample to a gas varies with the molecular weight
of the gas and the applied pressure, which was first proposed by Klinkenberg [1], i.e., the so-called
Klinkenberg effect. This non-Darcy Klinkenberg effect occurs when the mean free path length of the gas
molecules is close to the average size of pores. This condition results in the acceleration of individual
gas molecules along the flow path [2]. In recent years, the Klinkenberg effect gains more attractions
with the development of shale gas [3]. Wu et al. [4] have developed some analytical solutions for
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analyzing steady-state and transient gas flow through porous media including Klinkenberg effects.
Other popular approaches such as those by Pazos et al. [5], and Esmaili and Mohaghegh [6] consider
the determination of the shale gas permeability. Javadpour et al. [7] and Javadpour [8] have described
the fluid flow and transport in a shale matrix by Knudsen diffusion and slip flow in the nanopores,
desorption from the surface of kerogen, and diffusion in solid kerogen. Cui et al. [9] have introduced
some measurements of gas permeability and diffusivity of the tight reservoir rocks using different
approaches. Shabro et al. [10] have presented numerical simulation of shale-gas production including
pore-scale modeling of slip-flow, Knudsen diffusion, and Langmuir desorption and reservoir modeling
of compressible fluid. A study on shale-gas permeability and diffusivity inferred by improved
formulation of relevant retention and transport mechanisms has been introduced by Civan et al. [11].
Freeman et al. [12] have investigated gas composition changes in shale gas well. Recently, screening
improved recovery methods in tight-oil formations by injecting and producing through fractures,
have been presented by Singh and Cai [13]. Ge et al. [14] have investigated organic related pores in
unconventional reservoir and its quantitative evaluation. Nanoporous structure and gas occurrence of
organic-rich shales have been studied by Qi et al. [15]. Salama et al. [16] have presented an intensive
review on the recent advances of the flow and transport phenomena in tight and shale formation.
El-Amin et al. [17] have introduced a comparative study of transport of shale-gas in fractured porous
media. El-Amin et al. [18,19] have presented analytical solutions using the power-series method for
the apparent permeability and fractional derivative gas-transport equation in porous media.

Simulation of transport phenomena in tight geological media demands high accuracy and
local mass conservation to be able to handle the dramatic change in spatial and temporal scales.
Some numerical approximation schemes fail to preserve important physical and/or mathematical
principles and lead to erroneous simulation results. For example, the continuous Galerkin finite element
method is not locally mass conservative, while the mixed finite element methods (MFEM) [20–25]
are all locally conservative. The mixed method is based on the conservation law together with the
constitutive law for the flux in terms of pressure and solving the flux and the pressure together.
Since this preserves the structure of the equations, this approach is consistent with the required
properties of the numerical methods. In addition, the MFE schemes can be extended to a higher-order
approximation easily. Moreover, in the MFEM, the approximation to velocity can be more accurate
than the approximation to pressure. For example, in the lowest order Brezzi–Douglas–Marini (BDM1)
mixed finite element method space, an enhanced linear space has been used for velocity approximation,
while a piece-wise constant space has been used for pressure approximation. In general, the finite
element methods can handle unstructured mesh.

This paper presents a model to simulate the transport of gas in tight permeability formations
considering slippage, adsorption, and diffusion effects. The mixed finite element method (MFEM)
was applied and its stability analyzed. A theoretical foundation of the stability analysis is provided.
Numerical experiments are also provided and selected results are presented. The rest of the paper
is organized as follows. In Section 2, the mathematical model of the problem under consideration is
described. The solution method is presented in Section 3: mathematical preliminaries are introduced
in Section 3.1; the mixed finite element method of the current problem is given in Section 3.2; and the
numerical algorithm is presented in Section 3.3. Section 4 considers the stability analysis, while
numerical discussions are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Modeling and Formulation

In this section, the model of a single equation to simulate the transport of gas in tight
permeability formations has been developed with considering slippage, adsorption and diffusion
effects. In low-permeability formations, the Klinkenberg effect takes place and the apparent
permeability model has been used to describe this effect. The cubic Peng-Robinson equation of
state to compute the gas deviation factor has been employed. In this study, it has been assumed that



Energies 2018, 11, 208 3 of 18

the flow is a single-phase and isothermal, and the gravity is neglected. The mass accumulation of the
adsorbed gas on the surface is described by the Langmuir isotherm model [9–12], as,

qa =
(1− φ)ρs MwVL p

Vstd(PL + p)
(1)

where Vstd (m3 mol−1) is the mole volume under standard conditions; VL (m3 kg−1) is the Langmuir
volume; PL (Pa) is the Langmuir pressure; ρs (kg m−3) is the density of the shale core; p (Pa) is the
pressure; and Mw (kg mol−1) is the molar weight. Manipulating the time derivative of the adsorbed
mass, Equation (1), such that,

∂qa

∂t
=

∂qa

∂p
∂p
∂t

=
ρs MwVLPL

Vstd(PL + p)2
∂p
∂t

. (2)

The mass accumulation of both free and absorbed gas is given by, M = φρ + (1− φ)qa, and the
mass density can be written as,

ρ =
pMw

ZRT
. (3)

To compute the gas deviation factor, Z, the cubic Peng-Robinson equation of state is employed,
which can be expressed as follows [25],

Z3 − (1− B)Z2 + (A− 3B3 − 2B)Z− (AB− B2 − B3) = 0 (4)

where
A =

aT p
R2T2 , B =

bT p
RT

. (5)

The coefficients aT and bT are functions of the critical properties, thus,

aT = 0.45724
R2T2

c
pc

, bT = 0.0778
RTc

pc
. (6)

The slippage factor rectifies the slippage effect on permeability measurements.
In low-permeability formations or under low-pressure condition, the Klinkenberg effect takes
place and the apparent permeability is expressed as a function of the gas pressure,

kapp = k0(1 +
b
p
), (7)

where b (Pa) is the Klinkenberg slippage factor which is a function of the gas molecule slippage
along the pore walls at low values of pore pressure, and k0 (m3) is the intrinsic permeability value.
The Klinkenberg slippage factor b, can be written as [7,8],

b =

√
8πRT

Mw

1
r

(
2
α
− 0.995

)
µ. (8)

From the definition of b, one may notice that the coefficient b depends on both T (K) and
µ (Pa s), however, in the current study, it was assumed that the system is isothermal and µ is constant,
so the value of b becomes constant. The variation of T and µ may be considered in a future work.
The Klinkenberg effect may express the pore geometry difference between conventional and tight
reservoirs as given by Equation (7). At very high pressure, the slippage effect disappears as a result
and the gas behavior. In order to simplify the model, it is assumed that the flow in the shale reservoir
is a single-phase and isothermal, while the gravity is neglected. On the other hand, Brown et al. [26]
presented the theoretical coefficient, F = 1 +

√
8πγ

µ
rp (

2
α − 1), to correct the slip velocity in a tube. It is
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clear from this formula that α has an opposite effect on the slip effect which, in turn, improves the
flow on the boundary. This may interpret the previous observation. Javadpour et al. [7] have reported
that α = 0.8 to fit with the experimental data by Rot et al. [27]. In addition, El-Amin et al. [17] have
constructed model which gives a good match with experimental results [27] for the same value of
α = 0.8.

Using the general mass balance equation, the governing equation is stated as,

f1(p)
∂p
∂t
−∇ ·

[
ρ(p)

µ
k0

(
1 +

b
p

)
∇p
]
= −Q(p), (9)

where φ is the medium porosity and

f1(p) =
Mwφ

ZRT
+

MwVLρs

Vstd

PL(1− φ)

(PL + p)2 . (10)

The production well source is represented by,

Q(p) =
θρk

µ ln re
rw

(pe − pw) , (11)

where rw (m) is the well radius. If the production well is located in the center, θ = 2π, while, if the
production well is located in the corner, θ = π/2. pe (Pa) is the average pressure around the well. re

(m) is the drainage radius, which is defined by,

re = rc

√
(∆x)2 + (∆y)2, (12)

such that rc is a constant and ∆x, ∆y are the x−, y− space mesh size, respectively.
The initial conditions are

p(·, 0) = p0 in Ω. (13)

The boundary conditions are

p(·, t) = pw on ΓD × (0, T), (14)

u · n = 0 on ΓN × (0, T). (15)

3. Method of Solution

The model of transport in porous media is usually described by a parabolic system with two
natural variables, a scalar variable and its flux, each of them belongs to a different space. The mixed
finite element method was developed to approximate the two variables simultaneously. Important
compatibility conditions must hold for the two finite element spaces to guarantee the stability,
the consistency and the convergence of the mixed method. These requirements are based on properties
of the governing partial differential equations. In the following, some preliminaries have presented
about the finite element spaces that used in the MFEM analysis.

3.1. Preliminaries

Let the polygonal/polyhedral Lipschitz connected domain Ω ⊂ Rd, d ∈ {1, 2, 3}, with the smooth
boundaries, ∂Ω = ΓD ∪ ΓN . Firstly, define the inner product in Ω as,

( f , g)Ω =
∫

Ω
f (x)g(x)dx ∀ f , g : Ω→ R, (16)



Energies 2018, 11, 208 5 of 18

and the inner product on ∂Ω is defined as,

〈 f , g〉∂Ω =
∫

∂Ω
f gdS ∀ f , g : ∂Ω→ R. (17)

One may denote,

L2(Ω) = { f : Ω→ R :
∫

Ω
f 2dx < +∞}. (18)

Denote ‖ · ‖ as the standard norm of L2(Ω) and (L2(Ω))d. The space H(div, Ω) is defined as

H(div, Ω) = {u ∈ (L2(Ω))d : ∇ · u ∈ L2(Ω)}. (19)

Furthermore, one may define the norm of H(div, Ω) as

‖u‖2
H(div,Ω) = ‖u‖

2 + ‖∇ · u‖2 . (20)

In the context of the mixed finite element, the pressure and velocity usually belong to L2(Ω) and
H(div, Ω), respectively. Therefore, the seeking solution is,

(p, u) ∈ L2(Ω)×H(div, Ω). (21)

For numerical discretization, the r-th order (r ≥ 0) Raviart–Thomas (RTr) subspaces [20] are
introduced to approximate H(div, Ω)

Wh ⊂ L2(Ω), dim(Wh) < +∞, (22)

Vh ⊂ H(div, Ω), dim(Vh) < +∞. (23)

The condition Vh ⊂ H(div, Ω) translates into a continuity condition over the inter-element
boundaries E ∈ Eh of the mesh Kh. In other words, one requires that the normal component u · n
is continuous across the inter-element boundaries. The velocity uh ∈ Vh and the pressure ph ∈ Wh
are sought.

3.2. Mixed Finite Element Approximation

The main idea of using the MFEM is to separate the equation into two equations, one for the
pressure and the other for the velocity. Thus, one may rewrite the governing equation as,

f1(p)
∂p
∂t

+∇ · u = −Q(p) in Ω× (0, T), (24)

D(p)−1u = −∇p in Ω× (0, T), (25)

where

D(p) =
ρk0

µ

(
1 +

b
p

)
. (26)

The function D(p) has been moved into the left hand side to avoid discontinuity when one
integrates ∇p by parts. Selecting any ϕ ∈ L2(Ω) and ω ∈ H(div, Ω), the weak formulation takes
the form, (

f1(p)
∂p
∂t

, ϕ

)
+ (∇ · u, ϕ) = −(Q(p), ϕ), (27)

(D(p)−1u, ω) = (p,∇ ·ω)− 〈pw, ω〉ΓD . (28)
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Now, let the approximating subspace duality Vh ⊂ H(Ω; div) and Wh ⊂ L2(Ω) be the r-th order
(r ≥ 0) Raviart–Thomas space (RTr) on the partition Th. The mixed finite element problem are stated
as: Find ph ∈Wh and uh ∈ Vh such that,(

f1(ph)
∂ph

∂t
, ϕ

)
+ (∇ · uh, ϕ) = −(Q(ph), ϕ), ϕ ∈Wh, (29)

(D(ph)−1uh, ω) = (ph,∇ ·ω)− 〈pw, ω〉ΓD , ω ∈ Vh. (30)

3.3. Numerical Algorithm

Dividing the total time interval [0, T] into NT time steps such that the time step length is
∆tn = tn+1 − tn. The current time step is represented by the superscript n + 1, while the previous one
is represented by n. The backward Euler time discretization is used for the time derivatives terms
in the two equations of pressure. The following semi-implicit scheme has been used for the time
discretization. (

f1(ph,n)
ph,n+1 − ph,n

∆t
, ϕ

)
+ (∇ · uh,n+1, ϕ) + (Q(ph,n), ϕ) = 0, (31)

(D(ph,n)−1uh,n+1, ω) = (ph,n+1,∇ ·ω)− 〈pw, ω〉ΓD . (32)

Assume that ph,n is calculated or provided, the thermodynamical variables have been updated
explicitly and in this case, and Equations (31) and (32) are linear. In this work, the RT0 space on the
rectangular mesh is employed. The quadrature rule in the MFE scheme has been used to obtain an
explicit formulation of uh,n+1, and Equations (31) and (32) have been reduced to an equation of ph,n+1

as discretized by the cell-centered finite difference method.

4. Stability Analysis

To ensure that the discrete solutions are bounded in a reasonable range, the stability analysis of
the proposed technique has been considered. The nonlinearity of the pressure is considered as a key
issue encountered in the stability analysis. Hence, one defines some auxiliary functions and analyze
their boundedness. Now, one may define the following two functions,

F1(ph) =
∫ ph

0
f1(ph)dph, G1(ph) =

∫ ph

0
F1(ph)dph, (33)

Therefore,

F1(ph) =
Mwφ

RT
ph − MwVLρs(1− φ)

Vstd
(1 +

ph

PL
)−1. (34)

If ph < PL, and ph

PL
< 1, one can use the following expansion,

(
1 +

ph

PL

)−1

= 1− ph

PL
+

(
ph

PL

)2

−
(

ph

PL

)3

+ · · · ≈ 1− ph

PL
.

Thus,

F1(ph) =

(
Mwφ

RT
+

MwVLρs(1− φ)

VstdPL

)
ph − MwVLρs(1− φ)

Vstd
, (35)

By integration, one gets,

G1(ph) = 1
2

(
Mwφ
RT + MwVLρs(1−φ)

VstdPL

)
ph2 − MwVLρs(1−φ)

Vstd
ph. (36)
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In the following, lemmas have been introduced to prove the boundedness of the associated
functions and parameters which are necessary for the proof of the main theorem of the stability.

Lemma 1. For a sufficiently large ph, there exist two positive constants,

γ1 =
Mwφ

RT
+

MwVLρs(1− φ)

VstdPL
,

and

γ2 =
MwVLρs(1− φ)

2Vstd
,

such that,
(F1(ph), ph) ≥ γ1‖ph‖2 − γ2|Ω|. (37)

Proof. For a sufficiently large ph, one may have,

(F1(ph), ph) ≥
([

Mwφ

RT
+

MwVLρs(1− φ)

VstdPL

]
ph, ph

)
−
(

MwVLρs(1− φ)

Vstd
, ph
)

.

However,([
Mwφ

RT
+

MwVLρs(1− φ)

VstdPL

]
ph, ph

)
≥
[

Mwφ

RT
+

MwVLρs(1− φ)

VstdPL

]
‖ph‖2,

(
MwVLρs(1− φ)

Vstd
, ph
)
≥ MwVLρs(1− φ)

Vstd
‖ph‖ ≤

MwVLρs(1− φ)

2Vstd
‖ph‖2 +

MwVLρs(1− φ)

2Vstd
.

where the inequality, ‖ph‖ ≤ (1 + ‖ph‖2)/2 has been used. Therefore, from the above two inequalities,
the required estimate is obtained.

Lemma 2. For a sufficiently large ph, there exist two positive constants, γ1 and γ2, such that,

(G1(ph), 1) ≤ γ1

6
‖ph‖3 +

γ2

2
‖ph‖2, (38)

Proof. For a sufficiently large ph, by integrating Equation (36) over Ω, and holding the inequality
‖ph‖ ≤ (1 + ‖ph‖2)/2, it is easy to prove Equation (38), which completes the lemma proof.

Lemma 3. Assuming that,

0 < ρg∗ ≤ ρg ≤ ρ∗g, 0 < k∗ ≤ k ≤ k∗, 0 < µg∗ ≤ µg ≤ µ∗g, (39)

then, Q(ph) is bounded.

Proof. Since pe is bounded by pw and p0, i.e., pw ≤ pe ≤ p0, then, 0 < pe − pw ≤ p0 − pw = Cp,
such that Cp is a positive number. Holding the conditions in Equation (39), one may find that,

0 <
kρg(pe − pw)

µg
≤

k∗ρ∗gCp

µ∗g
= CQ > 0. (40)
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Theorem 1. Holding the results in the above Lemmas 1–3, namely,

(F1(ph), ph) ≥ γ1‖ph‖2 − γ2|Ω|, (G1(ph), 1) ≤ γ1

6
‖ph‖3 +

γ2

2
‖ph‖2, (41)

with assuming that pe, pw ∈ L2(0, T; L2(Ω)). Then

‖ph‖2
L∞(0,T;L2(Ω))

+ ‖ph‖3
L∞(0,T;L2(Ω))

+ ‖D(ph)−1/2uh‖2
L2(0,T;L2(Ω))

≤ C(F1(p0), p0)

+C(G1(p0), 1) + C(‖pe‖2
L2(0,T;L2(Ω))

+ ‖pw‖2
L2(0,T;L2(Ω))

).
(42)

where C is constant.

Proof. Let ϕ = ph in Equation (29) and ω = uh in Equation (30), summing the two equations, one gets,(
f1(ph)

∂ph

∂t
, ph

)
+ ‖D(ph)−1/2uh‖2 = −(Q(ph), ph). (43)

It follows from the definitions of F1 and G1 that(
f1(ph)

∂ph

∂t
, ph

)
=

∂

∂t
(F1(ph), ph)−

(
F1(ph),

∂ph

∂t

)

=
∂

∂t
(F1(ph), ph)−

(
∂G1(ph)

∂t
, 1

)
. (44)

Integrating Equation (44) from 0 to t (0 < t ≤ T) yields

(γ1 +
γ2

2
)‖ph‖2(t) +

γ1

6
‖ph‖3(t)− γ2|Ω|t +

∫ t

0
‖D(ph)−1/2uh‖2

≤ (F1(p0), p0)− (G1(p0), 1)−
∫ t

0
(Q(ph), ph). (45)

Thus,

(γ1 +
γ2

2
)‖ph‖2(t) +

γ1

6
‖ph‖3(t)− γ2|Ω|t +

∫ t

0
‖D(ph)−1/2uh‖2

≤ (F1(p0), p0)− (G1(p0), 1) + C
∫ t

0
(‖pe‖2 + ‖pw‖2 + ‖ph‖2). (46)

Finally, Equation (42) is obtained by Gronwall’s lemma.

5. Numerical Tests

The values of the physical and computational parameters have been presented in Table 1.
Use 10 × 10 m domain with regular rectangular mesh cells. Consider a gas reservoir with one
production well. Thus, for simplicity, one quarter can be used as a result of the domain symmetry.
The maximum run time of the model is 10 days.

Figure 1 provides a numerical verification for the theoretical results in Lemma 1, namely,
(F1(ph), ph) ≥ γ1‖ph‖2− γ2|Ω|. A logarithmic scale has been used in the y-axis in Figure 1. The results
in Figure 1 indicates that the computed stability condition is well satisfied by the theoretical proof
introduced in Lemma 1. Similarly, Figure 2 provides a numerical verification for the theoretical results
in Lemma 2, namely, (G1(ph), 1) ≤ γ1

6 ‖ph‖3 + γ2
2 ‖ph‖2. A logarithmic scale is used in Figure 2. Figure 2

indicates that the computed stability condition in Lemma 2 is well satisfied by the theoretical proof.
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Table 1. Physical parameters of the model.

Parameter Value Unit Description

k0 1× 10−4 md Permeability
φ 0.05 – Porosity
R 8.314 m3 Pa mol−1 K−1 Gas constant
p0 10.4 MPa Initial reservoir pressure
pw 3.45 MPa Bottom hole pressure
Mw 0.016 kg mol−1 Molecular weight of methane
Vstd 0.0224 m3 mol−1 Standard gas volume
PL 2.07 MPa Langmuir pressure
VL 2.83× 10−3 m3 kg−1 Langmuir volume
ρs 2550 kg m−3 Shale rock density
µ 1.02× 10−5 Pa s Initial gas viscosity
rw 0.1 m Wellbore radius
rc 0.14 – Constant

In the following, the sensitivity of the associated parameters, such as b, α, and θ, are investigated.
The production rate after 10 days for various values of the slippage factor b is plotted in Figure 3. It can
be seen from this figure that the slippage factor reduces the production rate. Figure 4 illustrates the
cumulative production after 10 days for various values of the slippage factor b. This figure indicates
clearly that the slippage factor reduces the cumulative production.

Figure 1. Numerical verification for the theoretical results in Lemma 1.
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Figure 2. Numerical verification for the theoretical results in Lemma 2.

Figure 3. The production rate for various values of the coefficient b.
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Figure 4. The cumulative production for various values of the coefficient b.

The average pressure and the average apparent permeability after 10 days of production for
various values of the coefficient b are plotted, respectively, in Figures 5 and 6. The two figures show a
significant effect on both pressure and apparent permeability such that as coefficient b increases the
pressure and the apparent permeability decrease.

Figure 5. The average pressure profiles for various values of the coefficient b.
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Figure 6. The average apparent permeability for various values of the coefficient b.

Figure 7 shows the production rate after 10 days of production for various values of the tangential
momentum accommodation coefficient, α. From this figure, one may observe that, as α increases,
the production rate increases. Figure 8 illustrates the cumulative production after 10 days of production
for various values of the tangential momentum accommodation coefficient, α. It can be seen from this
figure that, as α increases, the cumulative production increases.

Figure 7. The production rate for various values of α.
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Figure 8. The cumulative production for various values of α.

The average pressure and the average apparent permeability after 10 days for various values of
the parameter α are plotted, respectively, in Figures 9 and 10 . It is clear from these two figures that as
α increases the pressure and the apparent permeability increase.

Figure 9. The average pressure for various values of the parameter α.
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Figure 10. The average apparent permeability for various values of the parameter α.

The parameter θ appears in the equation of the source of the production well, such that at θ = 2π,
the production well is located in the center of the field, while, at θ = π

2 , the production well is located in
the corner of the field. Figure 11 shows the effect of the parameter θ on the production rate after 10 days
of production for θ = π

2 and θ = 2π. It can be seen from this figure that when the production well is in
the center, the production rate is higher. The effect of the parameter θ on the cumulative production
after 10 days of production is plotted in Figure 12. This figure indicates that if the production well is
located in the center, the cumulative production will be higher.

Figure 11. The production rate for various values of the parameter θ.
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Figure 12. The cumulative production for various values of the parameter θ.

The average pressure profiles after 10 days for various values of θ are plotted in Figure 13.
This figure indicates that the pressure has higher values when the production well is located in the
center of the field. On the other hand, Figure 14 presents the average apparent permeability after
10 days for various values of θ. It can be seen in this figure that the apparent permeability have higher
values when the well is located in the center of the reservoir.

Figure 13. The average pressure for various values of the parameter θ.
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Figure 14. The average apparent permeability for various values of the parameter θ.

6. Conclusions

In the current paper, a mathematical model has been developed to represent the transport of
the natural gas in a low permeability reservoir. The developed transport model is a single-equation
contains the apparent permeability model to describe the slippage effect, and, the Langmuir isotherm
model to describe the gas adsorption on the pore surface. Moreover, the Peng-Robinson equation
of state has been employed to describe the thermodynamics deviation factor. On the other hand,
as the MFEM is a locally conservative method, it has been used to solve the gas transport equation by
splitting it into two equations, one for the pressure and the other for the velocity with two different
finite element spaces. The MFEM approximates the two variables, namely, pressure and velocity,
simultaneously. Additionally, a semi-implicit scheme and the backward Euler discretization have been
employed for the time discretization, and the thermodynamics calculations are performed explicitly.
Important compatibility conditions have been derived to guarantee the stability of the MFE algorithm,
which depends on the properties of the partial differential equations. The stability analysis of the
MFE algorithm has been proved in a theorem and three supported lemmas. Moreover, the stability
conditions of the MFEM are verified and estimated numerically. Selected numerical experiments
are performed for various values of physical parameters, the reservoir size, and the production time.
Results are represented in graphs such as cumulative rate and variations in pressures and apparent
permeability. One of the findings is that the apparent permeability decreases gradually as it goes
away from the production well, while the opposite is true for the pressure. Variation in the apparent
permeability is based on Klinkenberg effect, in which the apparent permeability depends on 1/p.
Moreover, a numerical discussion about selecting the appropriate parameters has been provided.
It has been found that, as α increases, the production rate and the cumulative production increase.
In addition, when the production well is located in the center of the field the production rate will be
higher than when the production well is located in the corner. Finally, it is worth to conclude that the
slippage factor b has a significant effect on the flow.
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