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Abstract: For a high penetration level of distributed energy resources (DERs) in the grid, virtual
synchronous generator (VSG) control is applied to the power electronic converters to mimic the
rotating mass and damping property of a conventional synchronous generator (SG), which can
support virtual inertia and damping for the power system. For VSG control, a phase locked loop
(PLL) is needed to estimate the angular frequency of the point of common coupling (PCC); however,
the deviation of PLL will affect the accuracy of the active power reference, and even the VSG stability
control. From this perspective, an enhanced active power controller without PLL was proposed for
VSG control. Furthermore, an accurate small-signal model of the multiple parallel VSGs system that
considers the dynamic characteristics and the changing of a steady state operation point was derived
for system analysis and parameter design. Based on this model, the influence rules of the eigenvalues
by droop and virtual inertia were acquired. The simulation and experimental results are presented to
verify the validity of the proposed active power controller and parameter design rules.

Keywords: multiple parallel operation; DG inverter; virtual synchronous generator; state-space
model; small-signal analysis

1. Introduction

In recent years, distributed generation (DG) systems based on renewable energy have been
playing an increasingly important role in power systems. As the interface between the grid and DG
systems such as fuel-cells, photo-voltaic, and micro-turbines, these power electronic converters are
important links to inject high-quality power into the grid [1,2]. Traditional energy mostly connects
to the power grid by a synchronous generator (SG), which can provide robustness and operability
during grid faults and power disturbances. Compared with conventional synchronous generators,
the distributed power inverter has the advantage of a quick response; however, power electronic
converters cannot offer enough inertia and damping support to the power grid [3–5].

When traditional generation sources based on synchronous generators (SGs) are replaced by
distributed power units with power electronic interfaces, it appears that the total rotating mass of
the system is seriously reduced. So, as the penetration of distributed sources increases, the problem
will seriously affect the dynamic response and stability of the power system [6]. Therefore, the
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concept of a virtual synchronous generator was proposed and studied. The main idea of a virtual
synchronous generator (VSG) is to mimic the synchronous generator operating characteristics by
controlling the switching pattern of the DG inverters. Therefore, the power electronics interface of
the DG system can exhibit a reaction with the inertia and damping components, which are similar to
those of a synchronous generator during load changes or frequency disturbances. Due to the principle
of the VSG, every DG inverter can be considered as a synchronous generator, so that the relevant
control strategy and theoretical analysis of the traditional synchronous generator can be effectively
transplanted into a microgrid with a high penetration of distributed renewable energy for the friendly
access of the distributed energy resources (DERs) [7].

In 1997, the static synchronous generator (SSG) was first exploited as an efficient control paradigm
by the task force research group of IEEE. In the relative terms of the flexible AC transmission system
(FACTS), SSG was defined as that which may be coupled to an AC power system for the purpose of
exchanging independently controllable real and reactive power. Based on this idea, the concept of a
virtual synchronous machine (VISMA) was firstly proposed in 2007, describing a new type of grid
feeding inverter which entirely operates with a storage system and exhibits the amount of inertia and
damping properties of electromechanical synchronous machines. At the same time the VSYNC project
funded by the European Commission under the FP6 framework program started, in which the concept
of Virtual Synchronous Generator (VSG) is demonstrated and put into practice. Additionally, the
synchronverter concept, another implementation of VSG, was presented in 2009, which directly embeds
the mathematical model of SG into the controller to control the voltage generated [7]. The virtual
inertia, friction coefficient, field inductance, and mutual inductance of a synchronverter can be flexibly
set to design the parameters of a synchronverter according to the grid connected. In recent years, many
researchers have conducted many studies on the virtual synchronous generator.

Up until now, VSG control technology has been developed for nearly 40 years, where the research
work on VSG has mainly focused on VSG modeling, control strategy, stability analysis, and application.

VSG Modeling

Based on SG models in a different order, the mathematical model of VSG is established such as the
second order, the third order, the fourth order, and the fifth order [8]. Due to the existence of several
VSG control algorithms for DG inverters, they can be classified into two categories: the high-order
model and the low-order model. The high-order VSG control algorithm has two configurations: the
voltage-to-current model and the current-to-voltage model [9].

However, the high order model is too complex to realize, so the low-order model has been
widely used in the recent literature. Current research mainly focuses on the second-order model of a
synchronous generator, which contains the mechanical part and the electrical part. The rotor inertia
and damping characteristics of the synchronous generator are reflected by the mechanical rotation
equation, otherwise known as the swing equation [10]. The electrical part of the low-order model is
based on the stator voltage equation, which describes the relationship between stator voltage and
current. If the intrinsic electromagnetic properties of the stator are considered, the electromagnetic
model of the synchronous inverter can be used, as proposed in [11].

Power-Frequency Control and Excitation Control

Actually, the power-frequency control and excitation control of VSG are used to reveal the P-f (P-ω)
and Q-U droop characteristics by emulating the governor and excitation regulator of a synchronous
generator, respectively.

In [12], the differential term of active power and reactive power was introduced in P-f droop
control, where the active power and reactive power terms were used to ensure the steady-state
characteristics; and the differential term was used to improve the dynamic characteristics. The
linearized transfer equation of active power was used to decouple the damping factor from the angular
deviation for reducing power and frequency oscillation in the system. In other work [13], the virtual
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impedance was equivalent to the VSG impedance, and the droop characteristic of the micro-power
output voltage was realized through the voltage drop of virtual impedance. The VSG reactive power
was precisely distributed through the influence of line impedance inconsistency on power allocation,
which was reduced by dynamically adjusting the droop coefficient of parallel DGs [14]. However, the
phase locked loop (PLL) is needed in droop control to obtain the frequency of the point of common
coupling (PCC), and the deviation of PLL will affect the accuracy of the active power reference
calculated by the method previously mentioned, and even the stability of the VSG control system.

Small Signal Modeling and Parameter Analysis

The main purpose of VSG technology is to improve the stability of a power system that a large
number of micro-power elements have access to, and the small signal analysis method is usually used
to analyze the stability of the system [14,15]. Using the small-signal analysis method, state-space
models are built to analyze the oscillation of output active power. The VSG control inherits the
advantages of droop control, but easily appears as low-frequency oscillation [15]. Consequently, the
line-frequency-averaged small-signal model of the VSG is derived for system analysis and parameter
design. Based on the model, the decoupling conditions between the active power loops and the
reactive power loops of the VSG are given in [16]. In [17], a high-order small signal model of VSG
was established, and the influence of the main control parameters on the stability of the system was
discussed by root trajectory analysis. Some studies have quantitatively analyzed the influence of the
VSG’s parameter perturbation on grid power tracing, and discussed the design method of the virtual
inertia and damping parameters [18]. In [19], the stability of the VSG small signal was analyzed in
both the grid-connected and island modes. It was pointed out that the change of inertia time constant,
damping coefficient, and reactive power droop coefficient had a great influence on system stability [20].
However, the changing of the state operation point was not considered to simplify the analysis in
the above literatures as it was not accurate enough. Therefore, precise small signal modeling and the
analysis of the multiple parallel VSG system have become urgent problems that need to be solved.

In this paper, an enhanced active power controller without PLL is proposed for the establishment
of VSG control, and an accurate small-signal model of a multiple parallel VSG system was established
step by step, before the variation of the system eigenvalues and their influence on the stability of small
signals system were analyzed with the deviation of VSG key parameters (droop coefficient and virtual
inertia). The design rule of the droop coefficient and virtual inertia for the main parameters of the
multiple parallel VSGs system are then shown.

2. Basic Operation Principle of Inverters as VSG

Figure 1 shows the basic principle of the VSGs. The distributed energy resources such as wind and
solar energy can be equivalent to a prime motor, and a classical three-phase voltage-source inverter was
used as synchronous generators that can mimic the properties of SGs such as power droop, damping,
and inertia. Following the principle of the VSG, every distributed grid-connected inverter operated as
a synchronous generator, so that the method and theory of large-scale grid stability controlling could
be transplanted into controlling a microgrid with a high penetration of distributed energy resources
(DREs) [21,22]. Therefore, the problem of the fluctuating DREs affecting the voltage and frequency of
the microgrid can be solved effectively.

There are two important parts of VSG realization: the mathematical modeling and the operation
control algorithm. The existence of VSG control algorithms can be classified into two categories:
high-order models and low-order models [8]. As the high-order models such as the fifth order model
and seventh order model are very complex, the low-order models have been used in enormous
applications in recent literature. The second order model is a typical low-order model of VSG, which
consists of two parts: the mechanical part and the electrical part. The swing equation is known to
describe the relation of the inertia, damping, and rotor angular velocity of SGs. Depending on the
swing equation, the control algorithm of the second order model is equivalent to the traditional droop
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mechanism. Similarly, the swing equation has two main types, as shown in Table 1. Both of the two
types of swing equation have extensive applications in a VSG control system. It is noted that the two
types of the swing equation cannot be mixed. In the swing equation under System International (SI),
the rotor inertia J is used to denote the virtual inertia of VSG. However, the per unit inertia constant H
is usually used for the swing equation in per unit (pu). In the pu type of the swing equation, ωJ is the
per unit rotor angular frequency; Tm and Te are the per unit mechanical and electromagnetic torque,
respectively; kD is the damping coefficient; θ is the rotor phase angle with the number of pole-pairs
being set to 1; and the base angular grid frequency is defined by ωbase. The corresponding parameters
in Type SI are represented in Equation (1).
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Figure 1. Concept of a virtual synchronous generator.

Table 1. The Swing equation with type SI and type pu.

Tpye Type SI Type pu

Swing equation

{
Jω

d(ω−ωN)
dt = Pm − Pe − kD

(
ω−ωg

)
dθ
dt = ω

{
2H dωJ

dt = Tm − Te − kD
(
ωJ − 1

)
dθ
dt = ωJ ×ωbase

This paper adopted the classical second order model for VSG modeling, which mainly includes
the mechanical part and the electrical part, as seen in Equation (1). The mechanical part is indicated by
the rotor motion equation; moreover, the electrical part is shown by the stator voltage equation. It is
noteworthy that all the equations in this paper are presented in SI, for unity of the variables.

J d(ω−ωN)
dt = Pm

ω −
Pe
ω − D

(
ω−ωg

)
dθ
dt = ω

.
E =

.
U +

.
I(ra + jxa)

(1)

where Pm is the mechanical active power that is the same as the one of the prime mover; Pe is the
electromagnetic active power; ω is the rotor angular frequency; ωN is the rated angular frequency;
ωg is the angular frequency of the grid; θ is the electric angle of rotor; D is the damping factor; J is

the virtual rotor inertia; ra is the armature resistance; ra is the synchronous reactance;
.

U is the output
voltage of the VSG;

.
E is the excitation electromotive force; and

.
I is the stator current [22].

Based on the basic control principle of SG, the traditional droop control method was used in the
VSG control system for mimicking the actual frequency regulator and voltage regulator. The rotor
angular frequency reference and the voltage amplitude reference used for the inner voltage and current
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loop control can be calculated by Equation (2), which were obtained under the assumption of a purely
inductive transmission line. {

ω = ωN − DP(P− PN) (DP > 0)
u = uN − Dq(Q−QN)

(
Dq > 0

) (2)

where PN and QN are the rated active power and reactive power, respectively; P and Q are the output
active power and reactive power of VSG, respectively; DP is the damping coefficient of the P-ω control
loop; and Dq is the damping coefficient of the Q-U control loop. Figure 2 shows the block diagram
of the traditional frequency control and virtual inertia control of VSG. ωPCC is the frequency at PCC
measured by the phase locked loop (PLL). Regardless of whether the inverter was island or grid-tied,
ωPCC was the same when the frequency of the PCC was nearly constant with a ±0.2 Hz deviation. The
frequency dynamics were determined by the droop characteristic so that the load disturbance could be
shared among the VSGs with appropriate droop characteristics.

According to Equations (1) and (2), the active power controller—which includes the droop
controller and virtual inertia controller—can be described as:

J
d(ω−ωN)

dt
=

PN
ω
− Pe

ω
− D

(
ω−ωg

)
+

1
ωDP

(ωN −ω) (3)

Energies 2018, 11, 203  5 of 21 

 

   

   

= 0

= 0

N P N P

N q N q

D P P D

u u D Q DQ

    


  

 (2) 

where PN and QN are the rated active power and reactive power, respectively; P and Q are the output 

active power and reactive power of VSG, respectively; DP is the damping coefficient of the P-ω control 

loop; and Dq is the damping coefficient of the Q-U control loop. Figure 2 shows the block diagram of 

the traditional frequency control and virtual inertia control of VSG. 
PCC  is the frequency at PCC 

measured by the phase locked loop (PLL). Regardless of whether the inverter was island or grid-tied, 

PCC  was the same when the frequency of the PCC was nearly constant with a ±0.2 Hz deviation. 

The frequency dynamics were determined by the droop characteristic so that the load disturbance 

could be shared among the VSGs with appropriate droop characteristics. 

According to Equations (1) and (2), the active power controller—which includes the droop 

controller and virtual inertia controller—can be described as: 

 
   

d 1

d

N N e
g N

P

P P
J D

t D

 
   

  


       (3) 

 

Figure 2. Active power controller of VSG. 

Hence, the deviation of PLL will affect the accuracy of the active power reference calculated by 

the method previously mentioned, and even the stability of the VSG control system. Furthermore, it 

is not easy to obtain the transient frequency deviation in practical projects. Therefore, a simplified 

active power controller of VSG without PLL is presented. In situations where the grid frequency’s 

offset is in general very small, g  can be considered as 
N , and a new form of Equation (3) is shown 

as Equation (4). Thus, the simplified active power controller of VSG is shown in Figure 3. 

 
 

'

d 1

d

N N e
N

P

P P
J

t D

 
 

 


     (4) 

where  / 1p p pD D D D      . 

 

Figure 3. Simplified active power controller of VSG. 

Figure 4 shows the reactive power controller of the VSG, which is operated as an excitation 

regulator in the SG control system. ki is the integral constant of the proportional-integral (PI), which 

N 
NP

PLL

D

1

Js

1

pD

1

s
PCC

VSGP
PCCu

mP

PCCuPCC

N 

Droop controller Virtual inertia










 


PLL

NP

'
PD

1

Js

1

s

VSGP
N 
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Hence, the deviation of PLL will affect the accuracy of the active power reference calculated by
the method previously mentioned, and even the stability of the VSG control system. Furthermore, it
is not easy to obtain the transient frequency deviation in practical projects. Therefore, a simplified
active power controller of VSG without PLL is presented. In situations where the grid frequency’s
offset is in general very small, ωg can be considered as ωN , and a new form of Equation (3) is shown
as Equation (4). Thus, the simplified active power controller of VSG is shown in Figure 3.

J
d(ω−ωN)

dt
=

PN
ω
− Pe

ω
− 1

D′P
(ω−ωN) (4)

where D′p = ωDp/
(
1 + D ·ω · Dp

)
.

Energies 2018, 11, 203  5 of 21 

 

   

   

= 0

= 0

N P N P

N q N q

D P P D

u u D Q DQ

    


  

 (2) 

where PN and QN are the rated active power and reactive power, respectively; P and Q are the output 

active power and reactive power of VSG, respectively; DP is the damping coefficient of the P-ω control 

loop; and Dq is the damping coefficient of the Q-U control loop. Figure 2 shows the block diagram of 

the traditional frequency control and virtual inertia control of VSG. 
PCC  is the frequency at PCC 

measured by the phase locked loop (PLL). Regardless of whether the inverter was island or grid-tied, 

PCC  was the same when the frequency of the PCC was nearly constant with a ±0.2 Hz deviation. 

The frequency dynamics were determined by the droop characteristic so that the load disturbance 

could be shared among the VSGs with appropriate droop characteristics. 

According to Equations (1) and (2), the active power controller—which includes the droop 

controller and virtual inertia controller—can be described as: 

 
   

d 1

d

N N e
g N

P

P P
J D

t D

 
   

  


       (3) 

 

Figure 2. Active power controller of VSG. 

Hence, the deviation of PLL will affect the accuracy of the active power reference calculated by 

the method previously mentioned, and even the stability of the VSG control system. Furthermore, it 

is not easy to obtain the transient frequency deviation in practical projects. Therefore, a simplified 

active power controller of VSG without PLL is presented. In situations where the grid frequency’s 

offset is in general very small, g  can be considered as 
N , and a new form of Equation (3) is shown 

as Equation (4). Thus, the simplified active power controller of VSG is shown in Figure 3. 

 
 

'

d 1

d

N N e
N

P

P P
J

t D

 
 

 


     (4) 

where  / 1p p pD D D D      . 

 

Figure 3. Simplified active power controller of VSG. 

Figure 4 shows the reactive power controller of the VSG, which is operated as an excitation 

regulator in the SG control system. ki is the integral constant of the proportional-integral (PI), which 

N 
NP

PLL

D

1

Js

1

pD

1

s
PCC

VSGP
PCCu

mP

PCCuPCC

N 

Droop controller Virtual inertia










 


PLL

NP

'
PD

1

Js

1

s

VSGP
N 



 

Figure 3. Simplified active power controller of VSG.



Energies 2018, 11, 203 6 of 22

Figure 4 shows the reactive power controller of the VSG, which is operated as an excitation
regulator in the SG control system. ki is the integral constant of the proportional-integral (PI), which is
used to make the voltage of PCC follow the voltage reference; and QVSG is the output reactive power
feedback value of VSG.
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3. Modeling of Multiple Parallel VSGs System

In this work, a multiple parallel inverters system was studied where every paralleled inverter was
a typical three-phase voltage source inverter using VSG control. The structure of the multiple parallel
VSGs system is shown in Figure 5. VSGs #1–#n and the public load are connected to the PCC, and the
PCC is connected to the grid through the isolation switch. The same control scheme was used in the
paralleled VSGs #1–#n, so only the control structure of VSG #1 is presented in detail. Note that it was
assumed that the multiple parallel VSGs system was connected to distributed energy resources (DERs)
with an infinite capacity, so the DC side voltage of the VSG was kept stable all the time. Therefore,
the impact of the DC side voltage on the modeling of the multiple parallel VSGs system will not be
further discussed.
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3.1. State-Space Model of Individual VSG

To obtain the modeling of the multiple parallel VSGs system, the state-space model of an
individual VSG needed to be first established. In this section, all elements in the VSG control system
as shown in Figure 1 are expressed in terms of mathematical equations as a basis for the small-signal
model. For clarity, the proceeding of individual VSG state-space modeling is divided into two parts.
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3.1.1. Power Circuit Part

Inverter

As is well-known, an inverter is a switch-mode circuit in nature. If the switching frequency of
Insulated Gate Bipolar Transistors (IGBTs) is high enough, it can be assumed that the switching action
will not affect the evolution of the model states. During the components production development, the
switching frequency of IGBTs becomes higher, where the aforementioned assumption becomes more
possible. As the inverter can be seen as a saturated voltage gain, no state equations are needed [23].

LC Filter Equations

A typical LC filter was used as the output filter of the VSG, which was composed of the filter
inductance Lf and its equivalent resistance Rf, and the filter capacitor is given by Cf. Following
Kirchhoff’s voltage law (KVL), the state equations of the LC filter can be presented as:

di f
dt =

−R f
L f

i f +
1

L f
ui − 1

L f
uo

duo
dt = 1

C f
i f − 1

C f
io

(5)

where if is the filter inductor current, io is the current flowing through the transmission line and into
the PCC, ui is the output voltage of the inverter, and uo is the filter capacitor voltage.

In this case, with amplitude-invariant Park transformation, Equation (1) in the two-phase
synchronous reference frames (dq-axis) can be expressed as:

di f d
dt =

−R f
Lf

i f d +
1

L f
(uid − uod) + ωi f q

di f q
dt =

−R f
L f

i f q +
1

L f

(
uiq − uoq

)
−ωi f d

duod
dt = 1

C f

(
i f d − iod

)
+ ωuoq

duoq
dt = 1

C f

(
i f q − ioq

)
−ωuod

(6)

where ω is the angular frequency at the PCC; if the multiple parallel VSGs system is in a grid-connected
operation, ω will follow the angular frequency of the grid; otherwise, ω is the angular frequency of the
VSG since the system is an islanded operation.

With the losses in switching elements (e.g., IGBTs and diodes) neglected, it can be assumed that
the output voltage of the VSG-controlled inverter will be equal to its reference value, as follows:{

u∗id = uid
u∗iq = uiq

(7)

where u∗id and u∗iq are the voltage reference of the inverter in the dq-axis, and uid and uiq are the actual
voltage of the inverter in the dq-axis.

Transmission Line Equations

The DER inverter interface is connected with the PCC through the transmission line, with the line
parameters consisting of resistance Rline and inductance Lline, as shown in Figure 5. Like the LC filter,
the state space equations of the transmission line in dq-axis are given as follows:{ diod

dt = −Rline
Lline

iod +
1

Lline
(uod − uPCCd) + ωioq

dioq
dt = −Rline

Lline
ioq +

1
Lline

(
uoq − uPCCq

)
−ωiod

(8)

where uPCCd and uPCCq are the PCC voltage in the dq-axis.
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Load Equations

A typical RL load is represented by the combination of the resistor Rload and inductor Lload. In
the case of an island operation, the state space equations describing the load dynamics are given
in Equation (9). If the isolation switch closed, the voltage of the multiple parallel VSGs system is
controlled by the voltage of the grid, so uPCC = ugrid.{ dild

dt = − Rload
Lload

ild + 1
Lload

uPCCd + ωilq
dilq
dt = − Rload

Lload
ilq +

1
Lload

uPCCq −ωild
(9)

3.1.2. Control System Part

abc-dq and dq-abc Transformation

In the control system of the multiple parallel VSGs system as shown in Figure 5, the output voltage
and current of the VSG interface in the stationary reference frame are transformed into d-axis and
q-axis components through a abc-dq block. Following this, after a series of mathematical algorithms, a
dq-abc block is used to obtain the three-phase modulation voltage in the stationary reference frame at
the end. The transformation matrices of the abc-dq block and dq-abc block are defined by Equations (10)
and (11), separately.

Tabc−dq =
2
3

 cos ωt cos
(
ωt− 2π

3
)

cos
(
ωt + 2π

3
)

− sin ωt − sin
(
ωt− 2π

3
)
− sin

(
ωt + 2π

3
)

1
2

1
2

1
2

 (10)

Tdq−abc =

 cos ωt − sin ωt 1
cos
(
ωt− 2π

3
)
− sin

(
ωt− 2π

3
)

1
cos
(
ωt + 2π

3
)
− sin

(
ωt + 2π

3
)

1

 (11)

It can be clearly seen that there are no state variables in the expressions in Equations (10) and (11),
so no state space equation is needed.

Power Calculator

The power calculator applied in this case for calculating the instantaneous active power p(t) and
reactive power q(t), as well as its block diagram, is shown in Figure 6 in detail. The dq-axis output
voltage uodq and the dq-axis output current iodq are taken from the measurements of the VSG interface.
Then, the instantaneous power is passed through low-pass filters with the cut-off frequency ωc, in
order to obtain the active and reactive power [22,23]. The state space equations describing the power
calculator are expressed by: {

dP
dt = −Pωc +

3
2 ωc(uodiod + uoqioq)

dQ
dt = −Qωc +

3
2 ωc(uoqiod − uodioq)

(12)
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Virtual Impedance

Droop control is an important part of the VSG control system for sharing the load power
autonomously. The well-known P-ω and Q-U droop method is usually adopted to ideally make
it easy for the droop control to connect with the swing equation. Furthermore, the traditional P-ω and
Q-U droop control are valid under the assumption that the line impedance is inductive. However, the
low-voltage line is more resistive [12], so to deal with this problem, virtual impedance is often used to
meet the requirement for traditional droop control.

As shown in Figure 5, the equations of the virtual impedance block are:[
u∗od
u∗oq

]
=

[
u∗Dd
u∗Dq

]
−
[

Rv −ωLv

ωLv Rv

][
iod
ioq

]
(13)

where Rv and Lv are the resistor and inductor of the virtual impedance, separately.

Voltage and Current Loop Control

The voltage and current loop control block diagram is shown in Figure 7 in detail, which is in the
traditional form including all feed-back and feed-forward terms. Kpv and Kiv are the parameters of
the proportional-integral (PI) controller of the outer voltage loop; and Kpc and Kic are the parameters
of the PI controller of the inner current loop. The gain factors F and H are used to disable or enable
the voltage and current feed-forward, separately, with their values being set to 1 or 0. Thus, both the
voltage reference (u∗id, u∗iq) and current reference (i∗f d, i∗f q) for the VSG-controlled inverter are defined by:


i∗f d = Fiod −ωC f uoq + Kpv

(
u∗od − uod

)
+ Kivφd

i∗f q = Fioq + ωC f uod + Kpv

(
u∗oq − uoq

)
+ Kivφq

u∗id = Huod −ωL f i f q + Kpc(i∗f d − i f d) + Kicγd

u∗iq = Huoq + ωL f i f d + Kpc(i∗f q − i f q) + Kicγq

(14)

Energies 2018, 11, 203  9 of 21 

 

odu
3

( )
2

od od oq oqu i u i

oqu

odi

oqi
3

( )
2

oq od od oqu i u i

c

cs




 

11 N e P
N N

P

P P D D

J D


  

  

 
    

 


 N q Nu D QQ 

1

s



* *, 0Dd Dqu u 

Power Calculator

mux

c

cs





 p t

 q t

P

Q

 

Figure 6. Power calculator. 

 Virtual Impedance 

Droop control is an important part of the VSG control system for sharing the load power 

autonomously. The well-known P-ω and Q-U droop method is usually adopted to ideally make it 

easy for the droop control to connect with the swing equation. Furthermore, the traditional P-ω and 

Q-U droop control are valid under the assumption that the line impedance is inductive. However, 

the low-voltage line is more resistive [12], so to deal with this problem, virtual impedance is often 

used to meet the requirement for traditional droop control.  

As shown in Figure 5, the equations of the virtual impedance block are:  

* *

* *

odv vod Dd

oqv voq Dq

iR Lu u

iL Ru u





       
       

          

 (13) 

where Rv and Lv are the resistor and inductor of the virtual impedance, separately. 

 Voltage and Current Loop Control  

The voltage and current loop control block diagram is shown in Figure 7 in detail, which is in 

the traditional form including all feed-back and feed-forward terms. pvK  and 
ivK  are the 

parameters of the proportional-integral (PI) controller of the outer voltage loop; and pcK  and 
icK  

are the parameters of the PI controller of the inner current loop. The gain factors F and H are used to 

disable or enable the voltage and current feed-forward, separately, with their values being set to 1 or 

0. Thus, both the voltage reference ( *

idu , *

iqu ) and current reference ( *

fdi , *

fqi ) for the VSG-controlled 

inverter are defined by:  

 

 

 

 

* *

* *

* *

* *

fd od f oq pv od od iv d

fq oq f od pv oq oq iv q

id od f fq pc fd fd ic d

iq oq f fd pc fq fq ic q

i Fi C K u K

i Fi C K u K

Hu L i K i i K

Hu L i K i i K

u u

u u

u

u

 

 

 

 

     

     


    


    

 (14) 

 

Figure 7. Block diagram of the voltage and current loop control. 

*

oqu

*

odu

oqi

odi








pv ivK K s

pv ivK K s

fC

fC

F

F











pc icK K s

pc icK K s















fL

fL

odu
H

oqu
H





fdi

fqi

*

fdi

*

fqi

odu

oqu

*

idu

*

iqu

Voltage control Current control

dd dt

qd dt

dd dt

qd dt

Figure 7. Block diagram of the voltage and current loop control.

The states ϕ and γ are defined to assess the dynamic properties of the PI controllers in the voltage
and current loop, and the corresponding state equation in the dq-axis is shown as:

dφd
dt = u∗od − uod

dφq
dt = u∗oq − uoq
dγd
dt = i∗f d − i f d

dγq
dt = i∗f q − i f q

(15)
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3.2. Small-Signal Model of Individual VSG and Multiple Parallel VSGs System

3.2.1. Small-Signal Model of Individual VSG

As previously discussed, all the state-space equations needed for modeling the VSG have been
introduced. Based on Equations (2), (3), (6), (8), (9), (12), and (15), the state-space model of the i
individual VSG in the system contains 15 state variables and two input signals, and the state vector
xVSGi and input vector u are defined by Equations (18) and (19), respectively.

xvsgi = [ωi Pi Q i φdi φqi γdi γqi i f di i f qi uodi uoqi iodi ioqi]
T (16)

xload = [ild ilq]
T (17)

xVSGi = [xvsgi; xload ] (18)

u = [uPCCd uPCCq]
T (19)

It can be seen that the voltage of PCC is considered as the input to each VSG, but the PCC voltage
perturbation usually occurs with load step jumping. To effectively describe the PCC voltage by state
variables, it can be assumed that a virtual resistor rn with a large enough resistance is connected at the
PCC, and therefore, the virtual resistor has a negligible influence on the system dynamic. Hence, the
equations about the PCC voltage are given as:{

uPCCd = rn(iod − ild)

uPCCq = rn(ioq − ilq)
(20)

Then, the state-space model of the individual VSG system is given by:

.
xVSGi = A · xVSGi (21)

It is clear that the steady state operating point of the ith individual VSG can be found with the
condition defined by Equation (22), and the state variables at this point are denoted by xVSGi0.

.
xVSGi = 0 (22)

Thus, the state space equations from Equation (21) can be linearized around the steady state
operating point, and the small-signal model of the individual VSG system can be described by:

∆
.
xVSGi = AVSGi(xVSGi0) · ∆xVSGi (23)

where the prefix ∆ denotes small-signal deviations around the steady-state operating point.

3.2.2. Small-Signal Model of Multiple Parallel VSGs System

In the multiple parallel VSGs system, every individual VSG connects to the PCC of the whole
system where each VSG operates in its own local reference frame. For small-signal modeling of
the whole multiple parallel VSGs system, all the state variables need to be converted to the same
unified reference frame using the transformation method as shown in Figure 8, and the transformation
equations are shown as:[

fD

fQ

]
uni f ied

=

[
cos δi − sin δi
sin δi cos δi

][
fdi

fqi

]
local

= Ti

[
fdi

fqi

]
local

(24)
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T−1
i =

[
cos δi sin δi
− sin δi cos δi

]
(25)

where δi is the angle difference between the local reference frame of the VSG #i and the unified
reference frame.

Generally, the local reference frame of the VSG #1 is taken as the unified reference frame, so the
state vector δmulti−VSGs is defined by:

δmulti−VSGs = [δ12 δ13 · · · δ1k · · · δ1n]
T (26)

where δ1k is the angular difference between VSG #k and VSG #1, and k is from 2 to n.
Finally, the small-signal model of the multiple parallel VSGs system can be obtained as:

∆
.
xmulti−VSGs = Amulti−VSGs · ∆xmulti−VSGs (27)

where ∆xmulti−VSGs = [∆xVSGs; ∆δmulti−VSGs ; ∆xload ], ∆xVSGs = [∆xVSG1 ∆xVSG2 · · · ∆xVSGn]
T .
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4. Results and Analysis

In this section, the results from the time-domain simulations and the electrical simulations in
MATLAB/Simulink are presented for the verification of the presented small-signal model. Moreover,
the stability analysis and evaluation of the parameters on the system dynamics were conducted.
To explain the problem more clearly, a two-parallel VSGs system is discussed as an example, as shown
in Figure 9.Energies 2018, 11, 203  12 of 21 
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4.1. Verification of Small-Signal Model

By applying the parameters listed in Table 2, the perturbation of the load occurred in the
two-parallel VSGs system at 2 s. First, the averaged model was simulated in MATLAB/Simulink to
obtain the stable operating points, around which the nonlinear system could be linearized. Under
the parameter conditions (before the load changing and after the load changing), there were two set
of operating points. The dynamic response of the state-space variables in the small-signal model
(ssm) are shown in Figures 10 and 11, together with the results from the electrical simulation model
(esm), labeled as “(ssm)” and “(esm)”, respectively. Furthermore, the start-up transient and initial
steady-state before 1.8 s are not contained in the results for simplicity. The subscripts “1” and “2”
denote whether the results were from VSG #1 or from VSG #2. The dynamic response of the angular
frequency, active power, and reactive power is shown in Figure 10. During stage (0 < t < 2 s), the
two-parallel VSGs system was originally operated with load1, and load2 was connected to the system
at t = 2 s to emulate a load perturbation at PCC. It is clear that the changed tracks of ω(ssm) and
ω(esm) are nearly the same, decreasing from 315.7 rad/s to 314.4 rad/s. The changed trend of active
power is opposite to that of the angular frequency, which is properly in accordance with the droop
control method after a load perturbation in the system. At 2.0 s, the load2 is connected to PCC, and
both the angular frequency and active power change from a steady-state to another via an obvious
time delay, which is the representation of virtual inertia in VSG control. The intermediate control
signals of the VSGs system are shown graphically in Figure 11, and in all of the graphs, the transient
response decays in about 0.6 s. For all signals considered, the prediction of the small-signal model
very closely resembles that found in the electrical simulation model, both in terms of the transient and
steady-state response. Additionally, the visible ripples are shown in the electrical simulation results
for ifd, ifd, iod, and iod.

Table 2. The parameters and initial conditions.

Parameter Value Parameter Value

Sb1,2/kW 15 Udc/V 800
fsw/kHz 6 uo 220 V, 50 Hz
Lf1,2/mH 2 Lv1,2/mH 4
Rf1,2/Ω 0.1 Rv1,2/Ω 0.1
Cf1,2/µF 500 J1,2/kg·m2 0.1
Rline1/Ω 0.396 Lline1/mH 0.22
Rline2/Ω 0.792 Lline2/mH 0.44

Dp1,2 0.0002 Dq1,2 0.0006
load1 8.712 Ω; 9.2 mH ωc/rad·s−1 20
load2 4.316 Ω; 4.6 mH ωn/rad·s−1 314.159
rn/Ω 1000 Pref1,2/kW 15
Kpv 5 Kpc 5
Kiv 20 Kic 2

It can be seen that the transient and steady-state response of the small-signal model and the
electrical simulation model very closely resembled each other. During the transient response, the active
power of the VSG varied, as opposed to the reference values from the P-ω controller. Additionally, the
response of the high-frequency switching ripple was obvious for all signals.
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Figure 10. Transient impact of the electrical simulation model and small-signal model with load
perturbation: the angular frequency; and the active and reactive power: (a) The angular frequency at
PCC in ssm; (b) The angular frequency at PCC in esm; (c) The active power of the two VSGs in ssm;
(d) The active power of the two VSGs in esm; (e) The reactive power of the two VSGs in ssm; (f) The
reactive power of the two VSGs in esm.
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Figure 11. Transient impact of the electrical simulation model and small-signal model with load
perturbation: the intermediate control signals in the VSG control system: (a) The ifd and ifq of the VSG
#1 in ssm; (b) The ifd and ifq of the VSG #1 in esm; (c) The ifd and ifq of the VSG #2 in ssm; (d) The ifd
and ifq of the VSG #2 in esm; (e) The iod and ioq of the VSG #1 in ssm; (f) The iod and ioq of the VSG #1 in
esm; (g) The iod and ioq of the VSG #2 in ssm; (h) The iod and ioq of the VSG #2 in esm; (i) The uod and
uoq of the VSG #1 in ssm; (j) The uod and uoq of the VSG #1 in esm; (k) The uod and uoq of the VSG #2 in
ssm; (l) The uod and uoq of the VSG #2 in esm.

4.2. System Stability by Eigenvalue Analysis

The small-signal dynamics of the linearized small-signal model as shown in Equation (21) were
accessed by performing an eigenvalue analysis for the main parameters in the system. With the values
of the main system parameters of the two-parallel VSGs system as discussed previously, the system
eigenvalues are shown in Table 3. Based on the damping ratio, the eigenvalues were divided into three
groups: fast states, middle states, and slow states. The eigenvalues with indexes 3 to 10 contributed to
the fast dynamics, the eigenvalues with indexes 17 and 18 contributed to the slow dynamics, and the
eigenvalues with indexes 11 and 14 belonged to the middle ones. The natural oscillation frequency
of the first and second eigenvalues’ real parts were much more negative (on the order of 107) when
compared to the rest of the eigenvalues, and their nature frequency was near the system frequency.
Therefore, they have little association with the dynamic behavior of the system, and are thus neglected
in the following discussion.

By plotting the eigenvalue loci in the complex plane, the impacts of the main parameters on system
dynamics could be quantified. The eigenvalue loci in the complex plane with the parameters changing
are shown in Figures 12 and 13, such as the droop coefficient and inertia value. The eigenvalues are
marked with red stars, and arrows indicate the direction of the parameter sweep. For simple analysis,
the parameters of the two VSGs were set at the same value, and only the important eigenvalues
were plotted.
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Figure 12. Eigenvalue loci (only the important eigenvalues shown) for a parametric sweep of the droop
coefficient: (a) Dp1,2 in a range from 0.00005 to 0.002; and (b) Dq1,2 in a range from 0.00015 to 0.006.
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Table 3. The system eigenvalues.

Index Re Im Frequency (Hz) Damping Ratio (%) Major Participants

1,2 −7,037,345.45 ±314.46 50.0482 100 iod1,2, ioq1,2

3,4 −1309.7346 ±5598.81 891.08 22.78
ifd1,2, ifq1,2

uod1,2, uoq1,2

5,6 −1331.2822 ±5148.72 819.44 25.03
7,8 −1312.4180 ±4999.23 795.65 25.39

9,10 −1231.7901 ±4716.59 750.67 25.26

11,12 −1701.1536 ±1074.67 171.04 84.54 iod1,2, ioq1,2

13,14 −968.8792 ±347.88 55.37 94.12 Iloadd, iloadq

15 −161.7842 0 0 100 ω1, ω216 −159.2115 0 0 100

17,18 −5.6145 ±18.74 2.98 28.71 δ12, P1, P2

19 −29.5180 0 0 100 P1,2
Q1,2

20 −19.8484 0 0 100
21 −20.4529 0 0 100

22 −4.0124 0 0 100
φd1,2, φq1,223 −3.9929 0 0 100

24,25 −4 ±0.0019 0.0003 100

26,27 −0.4 0 0 100 γd1,2, γq1,228,29 −0.4 0 0 100
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Impact of Droop Coefficient on System Dynamics

With a variation of droop coefficient Dp1,2, which changed from 0.00005 to 0.002, the parametric
eigenvalue analysis was repeated. In the overview of the eigenvalue loci shown in Figure 12a,
the eigenvalues λ3–14 were neglected due to little change in their location. The eigenpair λ15,16 moved
towards the right half of the complex plane, and the real part of λ17,18 increased as the damping ratio
was reduced. Furthermore, when the value of Dp1,2 was more than 0.00055, an obvious vibration
appeared, and the λ17,18 entered the unstable region of the complex plane that generated the instability
of the system.

Figure 12b shows the eigenvalues loci in the parametric sweep of droop coefficient Dq1,2 varying
in the range of 0.00015 to 0.006. Due to little location changing, the eigenvalues λ3–16 were neglected
and are not discussed in the following. With the reactive power droop coefficient increasing, it was
clear that the damping ratio of the eigenpair λ17,18 was reduced, and gradually became close to the
imaginary axis, which was not conducive to the stability of the system. This loci showed that an
increase in the reactive power droop coefficient could result in a narrow range of stable operation, and
even caused instability of the system.

Impact of Virtual Inertia on System Dynamics

The virtual inertia feature is one of the main characteristics of the VSG system when compared to
the traditional DC/AC inverter, so it is needed to assess the impact of inertia on the system dynamics.
For the analysis in the following, the line parameter in the system was set to different cases such as the
pure inductive line, pure resistive line, and resistor-inductance line. Then, the parametric sweep of
inertia was conducted in the range of 0.1 kg·m2 to 4.1 kg·m2.

The eigenvalue loci for the sweep of virtual inertia are plotted in Figure 13. It was observed that
the range of stable operation became narrow following the variation of inertia. The eigenvalue λ19

gradually moved towards the right side of the complex plane. With the virtual inertia increasing, the
eigenvalue λ15,16 became a pair of conjugate complex roots. The real component of the eigenvalue
λ17,18 increased gradually, as the imaginary part decreased. Obviously, λ17,18 played an important
role in influencing the stability of the system, and even makes the system potentially unstable.
It was clear that the low value of inertia could produce a higher risk of small-signal instability
with slow-frequency oscillation.

4.3. Design Rule for the Droop Coefficient and Virtual Inertia

Based on the previous sections, the design rule of the droop coefficient and virtual inertia for the
main parameters of the multiple parallel VSGs system are shown as the following:

1. The increase of the active power and reactive power droop coefficient may decrease the relative
damping with low-frequency eigenvalues, which goes against the system stability. Too large a
value of Dp and Dq can cause low-frequency oscillation in the multiple parallel VSGs system.

2. Decreases in the virtual inertia will increase the damping ratio of the low-frequency eigenvalues.
Even with plenty of large virtual inertia, the low-frequency eigenvalues will be presented with
divergent oscillation in the multiple parallel VSGs system.

This rule is important for parameter design and optimization of the multiple parallel VSGs system
such as the droop coefficient and the virtual inertia, which are the key parameters for VSG control.
During the parameter design based on the small-signal model analysis, it must be ensured that all the
eigenvalues of the system in every frequency range are provided with enough damping. The parameter
design for the multiple parallel VSGs system must combine the stability of the eigenvalues in every
frequency range.

To verify the design rule proposed, the simulation results (the active power of the two VSG,
labeled by P1 and P2) are shown in Figure 14 under the parametric variation around the critical values,
which can be obtained from the corresponding eigenvalue loci. In Figure 13a, it can be perceived that
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P1 and P2 became gradually unstable with the increasing of Dp, and the power oscillation occurred
between the two VSGs when Dp reached the value of 0.00055. Furthermore, the oscillation became
very violent when Dp was equal to 0.001. As shown in Figure 13b, the active power of the two VSGs
could be well shared before 2.0 s. However, after 2.0 s, the virtual inertia was changed from 0.1 kg·m2

to 3 kg·m2, which caused power divergent oscillation in the system. The oscillation will then become
strong enough to go against the system stability as time goes on.
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(a) Reactive power droop coefficient Dp increasing; and (b) Virtual inertia J increasing. (The red dotted
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4.4. Experimental Results

A prototype of parallel VSGs was fabricated and tested in the laboratory, in the island mode.
Under laboratory conditions, the load and experiment sequence is shown in the Table 4, and other
control parameters of the system are the same as those listed in Table 2. The inverter bridge was
comprised of three IGBTs modules (Infineon BSM50GB120DN2) which are driven by LMY DA962.
The main control algorithms were implemented in DSP (TMS320F28335). A DC analog voltage source
(Aino AN51015-800) was used to emulate the DC power source instead of a renewable energy source
to test the dynamic performance of the paralleled VSGs system. All the waveforms were sampled by a
Yokogawa DL850 Scope Corder (Yokogawa Electric Corporation, Tokyo, Japan) and WT3000 Precision
Power Analyzer (Yokogawa Electric Corporation, Tokyo, Japan).

Table 4. Experiment sequence.

Time P Load Q Load

t < t1 4 kW 2 kvar
t1 < t < t2 6 kW 2 kvar
t2 < t < t3 6 kW 4 kvar
t3 < t < t4 6 kW 2 kvar

t4 < t 4 kW 2 kvar

Figure 15 shows the dynamic performance of the system frequency, where the frequency f of the
PCC is obtained by the extra PLL circuit and the angular frequency reference ω from the DSP I/O
port. It can be seen that the change of ω very closely resembles f during the experiment sequence, but
the oscillation of ω is much bigger than f when the load perturbation occurs. The angular frequency
reference can follow the active load perturbation at t1 and t4, which is concordant with the P-ω droop
control. At t1 and t4, only the reactive load perturbation occurs. It is clear that ω can remain steady
after a small oscillation, while a big value ripple can be observed at t1 and t4. If the frequency f from
PLL is put into the VSG control system as a feedback signal, it will be bound to affect the stability of
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the whole system. This explains why the enhanced active power controller without PLL is proposed in
this paper.
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Figures 16 and 17 show the steady-state and dynamic waveforms of the parallel VSGs system. It is
clear that the active power and reactive power can go along with the load perturbations, respectively.
The decoupling of the active power and reactive power was realized well. It implies that the enhanced
VSG control can track the load transition rapidly and accurately without oscillation. Their fluctuation is
also acceptable for a power system application. From the zoom-in active power and angular frequency
waveforms, it is obvious that virtual inertia was obtained during the load perturbations, which is one
of the main purposes of the VSG control.
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5. Conclusions

With the higher penetration of DERs in the grid, more power electronic converters are used as
power interfaces. In comparison to the conventional synchronous generator, the power electronic
converters have little rotating mass and damping properties, which might cause stability issues in the
grid. For this reason, a virtual synchronous generator that enabled the power electronics converter to
behave as an SG was proposed as a solution for grid stability. This paper focused on the issues of the
stable operation and small-signal stability analysis for the multiple parallel VSGs system. First, this
paper pointed out that the deviation of PLL will affect the accuracy of the active power reference, and
even the stability control of the multiple parallel VSGs system, and thus an enhanced active power
controller without PLL was proposed. Second, based on the VSG control scheme described in the
previous section, a step-by-step method for accurate small-signal modeling of the multiple parallel
VSGs system was derived for system analysis and parameter design. The accuracy of the proposed
model was assessed through a comparison with the results from the electrical simulation model in
MATLAB/Simulink. With the proposed accurate small-signal model, the rule of system eigenvalues
varying caused by the change of droop coefficient and virtual inertia was carried out and analyzed.
The most important contributions of this paper were an enhanced active power controller for VSG,
the proposed accurate small-signal model of the multiple parallel VSGs system, and the design rule
for the key parameters of the VSG control system.
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