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Abstract: This paper describes the power stage design, control, and performance evaluation of
a 13.2 kV/10 kVA solid-state-transformer (SST) for a power distribution system. The proposed
SST consists of 10 modules where each individual module contains a unidirectional three-level
power factor correction (PFC) converter for the active-front-end (AFE) stage and an LLC resonant
converter for the isolated DC-DC stage. The operating principles of the converters are analyzed and
the modulation and the control schemes for the entire module are described in detail. The DC-link
voltage imbalance is also less than other SST topologies due to the low number of uncontrollable
switching states. In order to simplify the control of the power stage, a modulation strategy for the
AFE stage is proposed, and the modulation frequency of the LLC converter is also fixed. In addition,
a compensation algorithm is suggested to eliminate the current measurement offset in the AFE stage.
The proposed SST achieves the unity power factor at the input AC current regardless of the reactive
or nonlinear load and a low voltage regulation at the AC output. In order to verify the effectiveness of
the SST, the 13.2 kV/10 kV SST prototype is built and tested. Both the simulation and the experimental
results under actual 13.2 kV line show the excellent performance of the proposed SST scheme.

Keywords: solid-state-transformer (SST); three-level power factor correction (PFC) converter;
LLC converter; multi-level converter

1. Introduction

Recently, solid-state-transformers (SSTs) have emerged in the electricity industries where new
technologies such as the smart grid, the renewable energies, and the DC distribution systems are
adopted [1–6]. A SST is a power transformer, which is based on power electronics technology, so that
the voltage and the current of the primary and the secondary sides can be actively compensated
or controlled which cannot be realized in traditional power transformers. Among various stages in
a power system including the generation, the transmission and the substation, and the distribution
systems, the power transformers in distribution stages are good candidates to be replaced with SSTs
because they are directly connected to the loads, and have relatively lower input voltage compared to
the one in the other stages.

Figure 1 compares the structures of a traditional distribution power transformer and a SST
configuration. In the Republic of Korea, the primary and the secondary voltages of power distribution
stages are standardized as 13.2 kV and 220 V in root-mean-square (rms) value. It means a SST in the
distribution stage should be able to operate in the input and the output voltage ranges. Unlike the
traditional transformers, the SST consists of three individual power stages, the active-front-end (AFE),
the isolated DC-DC, and the load inverter stages. The main roles of each stage are described as follows.
First, the AFE converter performs the input power factor correction (PFC) with low total harmonic
distortion (THD) as well as regulating the input DC voltage of the isolated DC-DC stage. It means
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that the utility grid can treat the SST as a purely resistive load, which does not produce harmonics.
Since the unity power factor (PF) can be achieved, only a real power is transferred from the power
system to the load regardless of the characteristics of the load. This is an important merit of the SST
regarding the power system, because no reactive power is supplied. In fact, it is also possible to supply
a reactive power according to the topology selection of the SST. Second, the load inverter stage exists to
supply a regulated output voltage. The load inverter employs the DC-link capacitors so that a voltage
sag or a short period of an under-voltage fault on the primary sides does not degrade the quality of the
output voltage. Furthermore, the load voltage can be easily adjusted when the utility grid is necessary
the feature. If a DC distribution is required in the utility grid, the load inverter can be omitted or
replaced with a DC-DC converter. Third, the isolated DC-DC stage is employed to offer electrical
isolations between the power grid and the load stages. Its input and output voltages are 25 kV and
500 V in this paper, respectively. By combining all three power stages, the SST features very attractive
functions as summarized in Table 1.
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Figure 1. Distribution Transformer (a) Traditional distribution transformer (b) the solid-state-transformer (SST)
configuration. AFE: active-front-end.

Table 1. Comparison between a traditional distribution transformer and the solid-state-transformer.

Traditional Transformers Solid-State-Transformers

AC distribution only either DC or AC distribution
Limited steps of voltage conversion ratio Wide voltage conversion ratio

No power quality compensation Power quality compensation available
Heavy Relatively light

Without DC-link With DC-link (easily interfaced with other power conversion systems)
Mature technology New technology

Regarding SSTs, many research has been conducted. In [7–12], SSTs named intelligent universal
transformer (IUT), smart transformer (ST), and power electronics transformer (PET), for the medium
voltage systems were proposed and tested. In the documents, the neutral point clamp (NPC) type
AFE and isolated DC-DC converters were implemented for 2.4 kV AC line. The excellent performance
of the SST under the voltage sag and the nonlinear load conditions were demonstrated [8]. In [9],
the frequency adaptive repetitive controller is studied for the solid state transformer to interface
medium voltage (MV) to low voltage (LV) distribution line, where the operating frequency is varied.
The voltage and power balance control methods were presented in [13–15] where the cascaded AFE
and dual-active-bridge (DAB) converters with all H-bridge modules were employed. Reference [16]
discussed the design strategy of the efficient and reliable silicon carbide (SiC) based DC-DC converter
for ST. The design of PETs for electric traction applications are dealt in [17,18]. The SSTs for the DC
distribution system were described in [4,19]. In [4], the DC droop control strategy was presented, so that
the usefulness of the SST in the DC distribution system could be advanced. The 3D space modulation
technique of the cascaded converter was proposed in [2]. By using the method, the current and the
voltage control performances of the AFE stage could be improved. Reference [20] presented a 15-kV
class SST. In the paper, the authors have employed 1.2 kV SiC metal oxide semiconductor field effect
transistors (MOSFETs) to the individual power stage to secure high efficiency. Some papers [21–25]
have dealt with the SSTs using high voltage switching devices whose voltage rating is over 10 kV.
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If such high voltage devices become more common, it is expected that the use of SSTs in the power
grid can be dramatically increased.

In this paper, a single-phase 10 kVA SST is proposed for the 13.2 kV/220 V power distribution
system with 1.7 kV SiC MOSFETs. The proposed SST consists of 10 modules whose voltage rating is
1.32 kV. Each module is composed of a unidirectional three-level PFC converter for the AFE stage and
an LLC resonant converter for the isolated DC-DC stage. Compared to other SSTs, where a bidirectional
three-level inverter is employed, the proposed AFE stage is simple and reliable. The DC-link voltage
imbalance is less than others, because the uncontrollable switching states are much less than them, and
no significant power imbalance problem has occurred. The control and modulation are also simple in
the proposed AFE and LLC stages. The operations of the individual and total power stage are described
in detail. Furthermore, the current offset compensation algorithm for the current measurement offset
in the AFE stage is proposed. By using the proposed offset compensation algorithm, the input current
offset can be effectively compensated. The simulation and the experimental results show that the
excellent current and voltage regulation performance of the proposed SST in practical 13.2 kV power
distribution system.

2. Solid-State-Transformer for Electric Power Distribution System

2.1. Power Stage Configuration

Figure 2 illustrates the entire power stage configuration of the SST dealt in this paper. In the
Republic of Korea, the primary voltage of the distribution stage is standardized as 13.2 kV in rms.
In order to handle such the high voltage, a total of 10 modules are cascaded. The input voltage of each
individual module is 1.32 kV, so that 1.7 kV or 3.3 kV switching devices can be employed according to
the topology of the circuit. The outputs of the modules are paralleled while generating 500 V in DC.
The final purpose of the SST is to supply 220 V/60 Hz load. To do this, a load inverter is connected at
the output of the module. Since there are a lot of research articles for such a low voltage standalone
inverter, the discussion about the inverter is not addressed in this paper.
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Figure 2. Power stage configuration of the 13.2 kV/10 kVA SST.

Figure 3 illustrates the circuit configuration of the 1.32 kV/1 kVA module. Here, the three-level
PFC converter is implemented for PFC operation of the input current as well as establishing the DC-link
voltage which is the sum of Vdch and Vdcl. It should be noticed that the three-level PFC converter is
a unidirectional converter so that the reverse power flow from the load to the grid is not allowed.
Nevertheless, the three-level PFC topology is beneficial in the application, where the unidirectional
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SST is necessary, because of the efficiency and the simple control. Moreover, the DC-link voltage
imbalance is less than other bidirectional three-level topologies such as neutral point clamped (NPC)
and T-type NPC structures due to the less number of non-controllable switching states and balanced
high frequency (HF) transformer construction [20,26]. At the output of the three-level PFC converter,
the LLC converter is connected to produce 500 V DC output from 2.5 kV DC-link voltage as well as
guaranteeing an electrical isolation. It should be noticed that the LLC converter is operated in the
open-loop control manner to simplify entire control loop of the SST. It will be detailed in a later section.
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Figure 3. Circuit configuration of the 1.32 kV/1 kVA module. PFC: power factor correction.

2.2. Three-Level PFC Converter Operation

The operation modes of the three-level PFC converter are determined by the direction of the input
current and the status of the switching devices. Figure 4 depicts the current conduction paths of the
converter when the input current ig is under positive cycles. Here, four different modes are addressed
according to the switching functions which are expressed as the combinations of the switching signals
as follows:

Q = (q1, q2, q3, q4) (1)

where q1, q2, q3, and q4 are the elements of the switching function which correspond to the status of Q1,
Q2, Q3, and Q4, respectively. Here, the value of an element becomes 1 if the matching switch turns on
whereas it becomes 0 when the switch turns off.

Figure 4a shows the current conducting path when all switches are turned on. At this moment,
ig flows through Lg, Q2, D2, D3, Q3, and the voltage source, and the energy is stored in the inductor Lg.
Even if Q1 and Q3 turn on, no power flows from the DC-link to the grid because of the blocking diodes
D1p and D3p. The inductor current ig and the pole voltage of the PFC converter vinv are represented as:

dig

dt
=

vg

Lg
(2)

vinv = 0 V (3)

In Figure 4b, Q3 turns off while the others are under turned on. In this case, ig flows through
Lg, Q2, D2, Cdcl, D4p, Q4, and the voltage source. The energy stored in Lg is transferred to the lower
DC-link capacitor Cdcl. Here, the current flows from the source to the drain in Q4. Since the gate signal
of Q4 is applied, the current conducting path in Q4 does not pass the internal body diode, which has
poor switching characteristics, but the channel whose conduction and switching losses are relatively
lower than the body diode. By doing so, the losses induced in Q4 can be significantly reduced. This is
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based on exactly the same concept with a synchronous rectification mode of a DC-DC converter using
MOSFETs [27–29]. The inductor current and the pole voltage are written as:

dig

dt
=

vg −Vdcl

Lg
(4)

vinv = Vdcl (5)
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Figure 4. Operation modes of the three-level PFC converter under ig > 0. (a) Q = (1,1,1,1); (b) Q = (1,1,0,1);
(c) Q = (1,0,1,1); (d) Q = (1,0,0,1).

Figure 4c illustrates the current conduction path when Q is (1,0,1,1). Again, the stored energy in
Lg is transferred to the DC-link, and the upper capacitor Cdch takes it. The current conduction path
consists of Lg, Q1, D1p, Cdch, D3, and the voltage source. Similar to the case of Figure 4b, Q1 conducts
the current from the source to the drain through the channel. While the pole voltage is the same with
(5), the inductor current is obtained as below.

dig

dt
=

vg −Vdch

Lg
(6)

The last case where Q is (1,0,0,1) is shown in Figure 4d. At this instant, the inductor current passes
through Lg, Q1, D1p, Cdch, Cdcl, D3p, Q4, and the voltage source as well as discharging the energy stored
in Lg. Both Q1 and Q4 are conducted through the channels in reverse. The equations for ig and vinv are
represented as follows:

dig

dt
=

vg − (Vdch + Vdcl)

Lg
(7)
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vinv = Vdch + Vdcl (8)

It is interesting that Q1 and Q4 keep turn-on continuously for positive cycles, and only Q2 and
Q3 alter their switching status as can be seen in Figure 4. In fact, the modulation strategy using
these switching combinations are suitable for reducing a conduction loss in a power stage employing
MOSFETs, because the poor internal body diodes in MOSFETs do not turn on [30,31]. However, it may
not be a good solution for a power stage using insulated gate bipolar transistors (IGBTs). In such cases,
simple modulation methods [30–32] can be acceptable.

Similarly, the current conduction paths for ig < 0 are shown in Figure 5. The operational principle
is identical to the previous case where ig is positive except the switching combinations and the pole
voltage whose values can be 0 V, −Vdch, −Vdcl, and −(Vdch + Vdcl). As compared to the previous case,
the status of Q2 and Q3 are not changed while the ones of Q1 and Q4 are continuously changed in
every switching cycle.
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Figure 5. Operation modes of the three-level PFC converter under ig < 0. (a) Q = (1,1,1,1); (b) Q = (1,1,1,0);
(c) Q = (0,1,1,1); (d) Q = (0,1,1,0).

Table 2 summarizes the relationship between the switching functions and the pole voltages
including all cases. If Vdcl and Vdch are well balanced, so that their magnitudes are the same as
Vdc, the PFC converter has five levels in total: −2Vdc, −Vdc, 0 V, Vdc, and 2Vdc. It is well-known
that carrier-based modulation strategies are simple, and much research has been conducted for
the carrier-based pulse-width-modulation strategies in NPC applications [33–35]. Hence, a simple
carrier-based method is employed in this paper.



Energies 2018, 11, 201 7 of 21

Table 2. The relationship between the switching function and the pole voltage.

Polarity of ig Switching Function Q Pole Voltage vinv

ig > 0

(1,1,1,1) 0 V
(1,1,0,1) Vdcl
(1,0,1,1) Vdch
(1,0,0,1) Vdch + Vdcl

ig < 0

(1,1,1,1) 0 V
(1,1,1,0) −Vdch
(0,1,1,1) −Vdcl
(0,1,1,0) −(Vdch + Vdcl)

Figure 6a describes the modulator structure of the PFC converter to achieve the current conduction
modes addressed in Figures 4 and 5. The limiter 1 only extracts the positive component from the
original duty reference while the limiter 2 obtains the negative one. Let us assume that the grid current
ig is well regulated with unity power factor operation. When ig is positive, Q1 should be always turned
on, and Q2 is switching according to d2. If ig is negative, the roles of Q1 and Q2 are exchanged. For the
switching leg consisting of Q3 and Q4, the inverse of the original duty reference is applied. By doing
so, the effective switching frequency becomes double, and the switching ripple on the inductor current
is significantly reduced.
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Although the structure shown in Figure 6a is completely suitable for the power stage in this paper,
it requires four different carrier signals. This may be a significant burden for the digital controller,
and the implementation will be complicated. To simplify the realization, the modified structure for the
modulator is proposed in Figure 6b. In the modified structure, only two carrier signals (whose phase
difference is 180 degrees) are necessary, and the method to extract individual duty references d1, d2, d3,
and d4 is slightly different. By doing so, the process shown in Figure 6b is exactly equivalent to the
structure illustrated in Figure 6a.

2.3. LLC Converter Operation

Figure 7 depicts the circuit configuration of the LLC converter. It is fed by the separate DC sources
Vdch and Vdcl which are established by the output of the front-end PFC converter. The main switching
circuit is implemented in the manner of NPC type inverter, but the switching scheme is different. In the
LLC converter, the upper and the lower switch pairs are defined. The upper switch pair consists of
Qc1 and Qc2 while the lower switch pair contains Qc3 and Qc4. Unlike NPC inverters, each switch pair
operates as a single switch, so that the switch elements in a switch pair alter their status simultaneously.
As a result, the output voltage vpri reveals a two-level voltage whose peak and valley values are
Vdch and Vdcl. Meanwhile, the rating of individual switching devices can be cut by half due to the
clamping action of DC1 and DC2. At the output of the NPC inverter, the isolated HF transformer and
the LC resonant tank are existent. Since the output of the resonant tank is AC voltage, the diode
rectifier composed by Dr1, Dr2, Dr3 and Dr4 is necessary. In order to design the LLC converter, let us
consider the equivalent resonant circuit as shown in Figure 8 where Lm, Lr and Cr are the magnetizing
inductance of the HF transformer, the resonant inductor, and the resonant capacitor, respectively [36].
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The resonant tank gain is defined as follows:

K =

∣∣∣∣ Vo_ac(s)
Vin_ac(s)

∣∣∣∣ = F2
x (m− 1)√

(m · F2
x − 1)2 + Fx2(F2

x − 1)2
(m− 1)2Q2

(9)

where Vo_ac(s), Vin_ac(s), Q, m, and Fx are the Laplace transformations of vin_ac and vo_ac, the quality
factor, the ratio of the total primary inductance to resonant inductance, and the normalized switching
frequency. They are represented as:

Q =

√
Lr
Cr

Rac
(10)

m =
Lr + Lm

Lr
(11)

Fx =
fs

fr
(12)

Here, fs is the switching frequency, and the resonant frequency fr and the reflected load resistance
Rac are written as:

fr =
1

2π
√

LrCr
(13)

Rac =
8

π2

N2
p

N2
s

Ro (14)

where Np, Ns, and Ro are the primary turns ratio, the secondary turns ratio, and the load resistance.
Figure 9 compares the voltage gains under different m and Q factors. In the figure, the voltage

conversion ratio can be extended as decreasing m factor. However, a low m factor requires a low Lm,
so that the magnetizing current increases. Thus, the conduction loss of the magnetic component is
increased. In terms of Q factor, it is proportional to the load. According to the figure, the voltage gain
cannot be higher with a heavy load. In fact, the voltage gain is changed by both m and Q factors.
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One simple approach to select these parameters is setting the switching frequency to be the
resonant frequency, so that Fx becomes 1 [36–38]. By doing so, (9) can be simplified as below.

K =

∣∣∣∣ vo_ac

vin_ac

∣∣∣∣ = (m− 1)√
(m− 1)2

= 1 (15)

It means the voltage gain of the resonant tank is the unity. Hence, the output voltage is determined
by the primary and the secondary turn ratio of the HF transformer. By this way, the LLC converter can
be considered as a DC transformer.
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2.4. Control Strategy of the Power Stages

In a single module, the switching frequency of the three-level PFC converter is effectively double
the original one, because the interleaved operation is achieved by employing the two carriers with
180 degrees of phase difference. In the whole active front end stage, where a total of 10 modules are
connected, the three-level PFC converters in the stage are cascaded to distribute such the high input
AC voltage into the individual modules. In addition, the phase shift modulation is applied for the
entire cascaded PFC converters.

Figure 10 depicts the carrier waveforms for individual modules. Let us assume that the number
of the modules is represented as N. From the figure, the phase difference θn between nth module and
the first module is represented as [39–41]:

θn =
180
N

(n− 1) degree (16)
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The effective switching frequency fsw_pfc considering the phase difference is written as:

fsw_p f c = 2N × fc_p f c (17)

where fc_pfc is the carrier frequency of a switching leg. As can be seen in (17), the effective switching
frequency can be increased as proportional to N. Figure 11 shows the entire control structure of the
SST. For the isolated DC-DC stage, the switching signals are modulated with a fixed frequency with
a fixed duty reference, so that technically no closed-loop control is applied to the stage. The isolated
DC-DC stage only interfaces between the high voltage primary and the low voltage secondary sides.
Once the turn ratio of the HF transformers in the isolated DC-DC stage is determined, the secondary
output voltage Vo is directly proportional to the primary DC-link voltage. It means the regulation of
Vo is achieved by adjusting the primary DC-link voltage. However, it is not that simple, because the
primary DC-link voltage of the isolated DC-DC stage consists of cascaded multiple DC-links. It requires
10 DC-link voltage sensors. In addition, the signal conditioning circuitries to interface the individual
DC-link voltage sensor require at least 20 kV of isolation capability. Apparently, these increase the
implementation cost and complexity. In order to resolve this issue, the voltage controller Gvc(s)
directly regulates Vo by controlling the input current of the AFE stage. The controller consists of the
voltage controller Gvc(s) and the current controller Gcc(s). For the voltage and the current controllers,
a proportional-integral (PI) and a proportional-resonant (PR) structures are employed. The output
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of Gvc(s) is multiplied by the phase angle detected from the phase-locked-loop (PLL), and the input
current reference ig_ref is obtained. After that, ig is regulated to track ig_ref by the operation of Gcc(s).
The output of Gcc(s) is dpfc which is the duty reference of the AFE stage. The PFC modules in the AFE
stage shares dpfc, but the phases of individual PFC modules are different by reflecting (16).
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3. Proposed Input Current Offset Compensation Method

For a grid-tied power electronic converter, the input AC current should not contain any DC offset
component to prevent a DC excitation to the power grid and the distribution transformer, where the
converter is connected. However, it is hard to avoid a measurement offset on the current sensor used in
a converter. In order to mitigate the problem, an offset compensation algorithm is proposed. Figure 12a
shows the proposed offset compensation method including the PR current controller. Assume that
there is the DC offset Igo in the current measurement path. Then, the error, which is the input of the PR
controller, is represented as:

ierr = ig_re f − ig − Igo (18)

Here, the estimated DC offset Igo_est is not contained. Then, the output of the PR controller only
considering Igo is written as:

ierr_go = −Igo

(
Kpc +

Krcs
s2 + ω2

r

)
(19)

where ωr is the fundamental frequency of the grid. Since Igo can be considered as a unit step function
with the gain Igo, the inverse Laplace transform of (19) is obtained as (20).

Ierr_go = Kpc Igo +
Krc Igo sin(tωr)

ωr
(20)

In fact (20) is a part of the duty reference dpfc, and the first term of the right-hand-side (RHS) is
apparently a DC component. From this, it is supposed that a DC offset induces a DC component in dpfc
which is the output of the PR controller.
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Here, dpfc is taken as the input of the current offset compensation block, which consists of the
limiters, the band stop filters (whose cut-off frequency is ωr), and the proportional-integral (PI)
estimator. In the compensation block, the positive and the negative parts of dpfc are distinguished by
the limiters. After that the band stop filters are applied the DC component Kpc·Igo in dpfc is extracted.
If Igo is a positive value, the upper branch in the current offset compensation block has a positive
output while the lower block shows zero value. On the other hand, the lower block has a positive value
with a negative Igo. The output of the PI estimator Igo_est, which is the estimated DC offset, is connected
to the current feedback junction and is adjusted to obtain zero at the input of the estimator. As long as
the input of the estimator is zero, it is supposed that there is no DC component in dpfc. It means there is
no DC offset in the current measurement path. Figure 12b analyzes the open-loop gain of the proposed
control loop including the offset compensation algorithm. The duty reference to the inductor current
model Gid(s) is simply assumed as a first model shown in (21).

Gid(s) =
Vdch + Vdcl

Lgs
(21)
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Without the offset compensation algorithm, the loop-gain in Figure 12b shows a typical open-loop
frequency response of an inductor current model adapting a PR controller whose proportional and
resonant gains are 0.2 and 500, respectively. The magnitude at the fundamental frequency 60 Hz is
evaluated as 200 dB. The phase margin is close to 90 degrees. For the offset compensation algorithm,
the controller parameters are selected as ωb = 62.83 rad/s, Kpo = 1 × 10−5, and Kio = 0.2, respectively.
As can be seen in the figure, the DC gain is slightly reduced with the offset compensation algorithm.
However, it does not affect the entire control performance, because the operating frequency of the
control system starts from 60 Hz.

4. Simulation Results

The simulation model of the module shown in Figure 3 is built in Power SIM 9.0 from Power SIM
Corporation to examine the power conversion performance. Table 3 gives the parameters used for
the simulation study. Figure 13a shows vg, vinv, and ig. At the beginning, the module is operated at
the no-load condition. After that, the full load is instantly applied, and the input current ig increases.
As analyzed in Table 1, vinv has total 5 levels. Apparently, the unity PF operation is achieved. Figure 13b
shows the plot of the secondary side voltage and the current of the HF transformer, vsec and iLr. Due to
the resonant tank consists of Lr and Cr, the shape of the secondary side current is sinusoidal.

Table 3. Parameters for the simulation.

Power Stage Parameters Values

active-front-end (AFE) converter
DC-link capacitance Cdc 250 µF

Filter inductance Lg 10 mH
Switching frequency fs_AFE 20 kHz

LLC converter

Resonant inductance Lr 16 µH
Resonant capacitance Cr 1 µF

HF transformer turn ratio (Np:Ns) 120:48
Magnetizing inductance Lm 100 mH
Switching frequency fs_LLC 40 kHz

DC-link capacitance Co 470 µF
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Figure 14 shows the switching waveforms of the MOSFETs in the LLC converter. In the figure,
vds_Qc1, vds_Qc2, vds_Qc3, and vds_Qc4 represents the drain to source voltages of the switching devices Qc1,
Qc2, Qc3, and Qc4, respectively. As can be illustrated in the figure, the device currents iQc1, iQc2, iQc3,
and iQc4 rise after the devices are fully turned on, so that the drain to source voltages are zero. It means
zero-voltage-switching (ZVS) is achieved in the individual devices. A merit of LLC converters is high
efficiency, which is expected due to the ZVS guaranteed in these devices.
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Figure 15 represents the performance of the proposed offset compensation method. Initially,
−0.5 A of current sensing offset is assumed with no compensation. After 3 cycles, the proposed method
is applied, and the current offset is eliminated in 4 cycles.
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Since 10 modules are employed in the SST, the simulation with total modules working together has
been performed. Figure 16 shows vinv and ig at the rated power condition 10 kVA. The input voltage is
13.2 kV in rms. With 10 modules, the input voltage has multiple steps due to the interleaved operation
among individual modules, so that the input current ripple is significantly reduced. Theoretically,
vinv can have 39 steps with the maximum duty cycle. However, it has 31 steps in the simulation,
because the duty cycle does not reach the maximum value.
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5. Experimental Results

Figure 17 shows a photograph of the experimental setup for the SST prototype. For the load,
a resistor load bank is connected to the output of the power stage. The same parameters represented
in Table 3 are utilized. To obtain 13.2 kV AC voltage in the laboratory, two transformers, the variac
and the pole transformer, are employed. Since the pole transformer is connected to the output of the
variac, variable high voltage can be easily obtained to test the SST prototype. In order to measure
the high input voltage, a commercial potential transformer is used. For the AFE and the DC-DC
converters, Cree’s C2M1000170D MOSFETs and Global Power’s GP2D005A170B devices have been
utilized. They are both silicon carbide devices, and the switching frequency can be much higher than
using traditional silicon devices. By doing so, the physical sizes of the magnetic components can be
significantly reduced. Furthermore, a low switching loss is expected. The control structure of the SST
contains a global and a local controller. The voltage and current control algorithms are implemented in
the global controller using an in-house developed digital control board based on Texas Instruments’
TMS320F28335. Since the number of the pulse-width-modulation channel in the digital controller is not
enough to cover the SST system, which requires 80 channels, the local controllers using TMS320F28035
are equipped in the individual 1.32 kV/1 kVA modules. The local controllers receive the duty reference
from the global controller, and they generate interleaved modulation signals. The communication
between the global and the local controllers is realized through the optic connected serial peripheral
interface buses. The SST was tested at the full load condition, 10 kVA.
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Figure 18 demonstrates the switching voltage and the input current of the single AFE converter
where the input voltage is 1.32 kV. As analyzed in the previous section, the switching voltage of the
AFE converter has five steps. The input current has a significant current ripple, but the power factor is
close to the unity. The switching voltage and the input current of the AFE stage with two cascaded
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modules are shown in Figure 19. The input voltage is 2.6 kV at this condition. Due to the interleaved
operation of the two modules, the input current ripple is considerably reduced. Through Figures 18
and 19, it can be recognized that the simulation results performed in the earlier section are well
matched with the experimental results.
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Figure 20 shows vinv and ig when total 10 modules are operated under 13.2 kV input voltage.
Since vinv has multiple steps, which was confirmed in the simulation, its shape is close to sinusoidal.
Compared to the previous results, the ripple in the input current is considerably mitigated. Note that
the input current offset Igo is existent in the result due to the current measurement offset caused
by the non-ideal characteristics of the signal conditioning circuit. In Figure 21, the proposed offset
compensation algorithm is applied, so that the current offset Igo is eliminated.
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Figure 21. The switching voltage and the input current of the AFE converter cascaded in 10 modules
with the proposed offset compensation algorithm.

Figure 22 shows the switching voltages and currents of the primary and the secondary sides of
the HF transformer in the LLC resonant converter under 10 kVA operation. Since total 10 modules
are employed, the output power of the LLC resonant converter is only 1 kW. From the figure, it is
supposed that the soft-switching operation has occurred.

Figure 23 shows the thermal simulation of the power stage under 30 percent load with 2 h
operating condition. In order to perform the thermal analysis, ANSYS R16.2 academic version is
utilized. The ambient temperature is given as 20 degrees Celsius, and a natural cooling is assumed.
The maximum temperature is measured as 36.8 degrees Celsius on the diodes. Although it is hard to
sense the efficiency accurately, it is supposed that the power stage loss is not very high even under the
high frequency hard switching condition.
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6. Conclusions 

This paper describes the design and the control of the 10 kVA SST for 13.2 kV/220 V power 
distribution system. The proposed SST consists of the cascaded multi-level AFE converters, the 
isolated DC-DC converters, and the load inverter. The operations, the modulation strategies, and the 
control of the individual and the entire stages have been explained. In addition, the input current 
offset compensation method has been proposed to eliminate a potential current offset in the AFE 
stage. Since the SST can actively regulate the input current, the unity power factor with a low THD 
is achieved even under a nonlinear or a reactive load condition. On the other hand, the SST is able to 
supply a very well-regulated output voltage to the load under an input voltage sag or swell condition 
as long as the energy stored in the DC-links is enough to supply during transients. In order to verify 
the proposed structure, the 10 kVA SST has been built and tested. Through the experiments in the 
practical 13.2 kV AC grid, it is confirmed that the proposed SST can perform the power conversion 
between the 13.2 kV and the 220 V lines, so that it can be utilized as an alternative power distribution 
transformer in the grid.  
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Figure 23. Thermal simulation of the power stage during the operation.

6. Conclusions

This paper describes the design and the control of the 10 kVA SST for 13.2 kV/220 V power
distribution system. The proposed SST consists of the cascaded multi-level AFE converters, the isolated
DC-DC converters, and the load inverter. The operations, the modulation strategies, and the control
of the individual and the entire stages have been explained. In addition, the input current offset
compensation method has been proposed to eliminate a potential current offset in the AFE stage.
Since the SST can actively regulate the input current, the unity power factor with a low THD is
achieved even under a nonlinear or a reactive load condition. On the other hand, the SST is able to
supply a very well-regulated output voltage to the load under an input voltage sag or swell condition
as long as the energy stored in the DC-links is enough to supply during transients. In order to verify
the proposed structure, the 10 kVA SST has been built and tested. Through the experiments in the
practical 13.2 kV AC grid, it is confirmed that the proposed SST can perform the power conversion
between the 13.2 kV and the 220 V lines, so that it can be utilized as an alternative power distribution
transformer in the grid.
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