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Abstract: Wind energy has been drawing considerable attention in recent years. However, due to 

the random nature of wind and high failure rate of wind energy conversion systems (WECSs), how 

to implement fault-tolerant WECS control is becoming a significant issue. This paper addresses the 

fault-tolerant control problem of a WECS with a probable actuator fault. A new stochastic model 

predictive control (SMPC) fault-tolerant controller with the Conditional Value at Risk (CVaR) 

objective function is proposed in this paper. First, the Markov jump linear model is used to describe 

the WECS dynamics, which are affected by many stochastic factors, like the wind. The Markov jump 

linear model can precisely model the random WECS properties. Second, the scenario-based SMPC is 

used as the controller to address the control problem of the WECS. With this controller, all the 

possible realizations of the disturbance in prediction horizon are enumerated by scenario trees so that 

an uncertain SMPC problem can be transformed into a deterministic model predictive control (MPC) 

problem. Finally, the CVaR object function is adopted to improve the fault-tolerant control 

performance of the SMPC controller. CVaR can provide a balance between the performance and 

random failure risks of the system. The Min-Max performance index is introduced to compare the 

fault-tolerant control performance with the proposed controller. The comparison results show that 

the proposed method has better fault-tolerant control performance. 

Keywords: wind energy conversion system; scenario tree; stochastic model predictive control; 

fault-tolerant control; conditional value at risk; Min-Max 

 

1. Introduction 

Wind energy is drawing considerable attention as an important kind of green energy [1]. Wind 

turbines with variable speed and pitch angle have become the main Wind Energy Conversion 

System (WECS) since they have the advantages of maximizing wind energy capture and providing 

stable output power. However, WECSs have many real difficulties such as high rates of facility 

faults, maintenance inconvenience caused by their poor reliability, and high outage losses [2,3]. 

Therefore, how to realize the fault-tolerant control of WECS is significant to improve the utilization 

rate of wind energy and reduce maintenance costs. 

Modeling WECSs and investigating suitable controllers are hard since they are mathematically 

integrated with the characteristics of high order, multi-variable and strong coupling. Meanwhile, the 

randomness of wind speed magnitude and direction, the fluctuation of the grid parameters, and the 

atmospheric conditions are all possible disturbances of a WECS, which makes the WECS a typical 

stochastic hybrid system. Scenario-based stochastic model predictive control (SMPC) has been one 

of the hot topics in the field of model predictive control in recent years, which is a good control 
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method for stochastic Markov jump liner systems. The advantage of Scenario-based SMPC is that it 

can consider the full probability information of the disturbance for prediction. The SMPC approach 

has been applied in constrained network control systems [4], energy management [5], and stock 

option market studies [6–9]. In [10], Bemporad proposed the Discrete Hybrid Stochastic Automata 

(DHSA) model and gave an SMPC optimization algorithm of this model. However, this algorithm 

only considers the expected optimal performance index of the system under normal conditions, 

without considering the random failure risk of the discrete hybrid system. To the authors’ limited 

knowledge, the scenario-based SMPC has not been applied to solve the control problem of WECS 

[11]. 

For the fault problems of WECSs, in recent years, there is a great deal of research work focusing 

on the fault-tolerant control of WECS [12–19]. Shahbazi [12] designed a six/five-leg converter to 

realize active fault-tolerant control for open-circuit switch faults to solve unknown but bounded 

noise and modeling errors. In [13], an adaptive step-by-step sliding mode observer and a 

compensation fault-tolerant control (FTC) strategy were developed for wind turbine pitch systems 

to maintain nominal pitching performance and compensate the considered low pressure actuator 

faults. Schulte [14] presented a T-S sliding mode observer for actuator fault diagnosis and fault 

compensation fault-tolerant control of hydrostatic transmission wind turbine. For a WECS system at 

a given operating point, Shi [15] formulated its Stochastic Piece Wise Affine (SPWA) model and 

implemented fault-tolerant control of WECS. The main limitation of the current research on WECS 

modeling and fault-tolerant control is that it does not provide a thorough description of the 

stochastic and nonlinear switching dynamic characteristics of wind turbines at random wind speeds. 

Some works regard the wind speed as a Gaussian or bounded disturbance [15,20], thus failing to 

fully discover the statistical properties of wind speed. To the authors’ limited knowledge, there is no 

fault-tolerant control research on WECS with actuator faults under real-time and random wind 

speed conditions in the literature. 

Model Predictive Control (MPC) is an advanced fault-tolerant control method since it has many 

benefits arising from its features, such as prediction model [21–23], constraints [24–26], objective 

function [23,27], etc. Based on these features, the MPC controller can effectively deal with the 

influence on a WECS suffering from a fault. Notably, how to properly adjust the objective function 

of an MPC controller for fault-tolerant control is a very attractive research area [28]. Most of the 

existing research works on fault-tolerant model predictive control use the objective function adding 

the fault loss to realize a penalty on the objective function. However, this objective function cannot 

completely describe the fault risk of the WECS. CVaR is a performance indicator that can provide a 

balance between the performance and random failure risks of the system and it can achieve optimal 

performance control in the event the system runs into failure with a certain probability. CVaR is 

widely used for risk measurement in areas such as finance [29,30], energy [31], etc. The main 

advantages of CVaR are as follows [29]: (1) it is a coherent risk measure that satisfies variability, 

orthonormality, subadditivity and monotonicity; (2) it satisfies convexity, and can be transformed 

into a linear programming problem which is easy to solve. 

This paper focuses on the fault-tolerant control of WECS, and proposes a new scenario-based 

SMPC fault-tolerant controller with the Conditional Value at Risk (CVaR) objective function. First, a 

linear stochastic Markov jump linear model is used to describe the nonlinear switching of wind 

turbines and stochastic factors in WECS, which fully uses the probability information of the wind. 

Second, the scenario-based SMPC controller is used as the controller to solve the control problem of 

WECS. With this controller, all the possible realizations of the disturbance in the prediction horizon 

are enumerated by scenario trees, so that the uncertain stochastic model predictive control problem 

can be transformed into a deterministic model predictive control problem. Besides, the online 

optimization property of SMPC can incorporate many important factors to enable the control of 

systems subject to faults and changing dynamics. Finally, to improve the fault-tolerant control 

performance, the CVaR objective function is adopted in the scenario-based SMPC controller. With 

CVaR objective function, a certain risk probability is transformed into a Linear Programming (LP) 

problem, and the fault-tolerant control performance of WECS probabilistic failures is guaranteed. 
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The Min-Max index is introduced to compare with the proposed method [32]. The comparison 

results suggest that the proposed method has better fault-tolerant control performance than the 

controller with Min-Max index. 

This paper is organized as follows: Section 2 formulates the Markov Jump Linear Model of 

WECS. Section 3 designs the scenario-based SMPC controller. In Section 4, the design of our SMPC 

fault-tolerant controller is presented. Section 5 is the simulation results and analysis. Conclusions are 

drawn in Section 6. 

2. Markov Jump Linear Model of Wind Energy Conversion System 

Wind turbines exhibit complex nonlinear characteristics and the stochastic wind speed causes 

the frequent switching of wind turbine operating points. The Markov jump system has been well 

investigated due to the probabilistic description of model parameters switching induced by external 

causes (e.g., random faults, unexpected events, uncontrolled configuration changes). In this section, 

a Markov jump linear model is established for the wind turbine to describe the switching of the 

system between different operating conditions (e.g., normal and faulty). For the specified wind 

turbine, it can sample the low-frequency wind speed data in separate speed intervals. With these 

sampled data, the stochastic characteristic of the wind speed can be represented as a Markov 

process, and then the traditional operating points of the wind turbine can be divided into separate 

sub regions, where the model parameters and the control mode can be fixed in each region. In this 

section, the Markov Transition Matrix of the Wind Speed is introduced first, and then the modeling 

process of the WECS is given. 

2.1. Markov Transition Matrix of the Wind Speed 

Given a set of continuous wind speed data, as shown in Figure 1a, the relationship between 

wind speed and generator power is given in Figure 1b. In Figure 1b, 𝑣𝑐𝑢𝑡−𝑖𝑛 = 3.5 m/s is the cut-in 

wind speed, 𝑣𝑟𝑎𝑡𝑒𝑑 = 12 m/s is the rated wind speed, and 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡 = 20 m/s is the cut-out wind 

speed. When 𝑣 < 𝑣𝑐𝑢𝑡−𝑖𝑛, the WECS does not start, and its generated power 𝑃𝑔 = 0 W. When 𝑣 >

𝑣𝑐𝑢𝑡−𝑜𝑢𝑡, WECS should adjust its pitch angle to minimize the wind energy capture, brake the system, 

and disconnect it from the grid. When 𝑣𝑐𝑢𝑡−𝑖𝑛 < 𝑣 < 𝑣𝑟𝑎𝑡𝑒𝑑, the WECS is working in the partial load 

region, and the control objective is to maximize the harvested wind power. During 𝑣𝑐𝑢𝑡−𝑖𝑛 < 𝑣 <

𝑣𝑐𝑢𝑡−𝑜𝑢𝑡, the wind speed is divided into three sections, corresponding to the three working states of 

WECS 𝑆𝑖 , 𝑖 = {1,2,3}. 
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Figure 1. (a) Wind speed; (b) Wind speed and the corresponding working point. 

To illustrate the switching characteristics of the wind speed, we define the wind speed status 

intervals as follows: 

{𝑆|𝑆1: 3.5 ≤ 𝑣 < 8 m/s, 𝑆2: 8 ≤ 𝑣 < 12 m/s, 𝑆3: 12 ≤ 𝑣 < 20 m/𝑠} (1) 

and the working state points are 𝑣1 = 7.5 m/s, 𝑣2 = 10 m/s, 𝑣3 = 16 m/s. 

To make the Markov Transition Matrix of the wind speed more accurate, it can take multiple 

wind speed intervals ∆𝑣 (i.e., ∆𝑣 = 1, 𝑆1: 𝑣𝑐𝑢𝑡−𝑖𝑛 < 𝑣 < 𝑣𝑐𝑢𝑡−𝑖𝑛 + 1, etc.). However, adding intervals 
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will increase the computational burden, therefore, this paper only chooses three working state 

points to calculate the Markov Transition Matrix. 

The one-step probability transition matrix P of the wind speed contains the probability 

information of the wind speed time series [33]. This paper uses statistical method to calculate the 

one-step Markov Transition Matrix. To take the advantages of Markov chain theory, the wind speed 

is discretized into 𝑣𝑡,𝑡 ∈ (0,1,2, … , 𝑇). The state transition probability 𝑝𝑖𝑗  of the wind speed is the 

probability that the state of wind speed is 𝑆𝑖 (i.e.,𝑣𝑡 = 𝑆𝑖) in period t, and is 𝑆𝑗 (i. e. , 𝑣𝑡+1 = 𝑆𝑗) in 

period t + 1, 𝑡 ∈ (0, 𝑇 − 1): 

𝑝𝑖𝑗 = 𝑃𝑟{𝑣𝑡+1 = 𝑆𝑗|𝑣𝑡 = 𝑆𝑖} (2) 

Let 𝑛𝑖𝑗 denote the number of wind speeds that were in state 𝑆𝑖 at time t and are in state 𝑆𝑗 at 

time 𝑡 + 1, then: 

𝑝𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
3
𝑗=1

 (3) 

The one-step transition matrix 𝑃 (𝑃 ∈ 𝑅3×3) could be expressed as: 

𝑃 = [

𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23
𝑝31 𝑝32 𝑝33

] (4) 

where 𝑝𝑖𝑗 ≥ 0,∑ 𝑝𝑖𝑗 = 1
3
𝑗=1 , 𝑖, 𝑗 = 1,⋯ ,3 [34]. 

The Strength Pareto Evolutionary Algorithm (SPEA) is an effective algorithm to calculate the 

wind speed time series Markov transition matrix [35,36]. 

2.2. Modeling of Wind Energy Conversion System 

The inputs of the Wind Energy Conversion System (WECS) (Figure 2) are the wind speed  𝑣(𝑡), 

generator torque reference  𝑇𝑔𝑟𝑒𝑓(𝑡) and pitch angle reference  𝛽𝑟𝑒𝑓(𝑡). The outputs of the system 

are generator speed 𝜔𝑔(𝑡) and generator power 𝑃𝑔(𝑡). 
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Generator 

and 

Converter

 ref t

 v t
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 grefT t
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 g t

 

Figure 2.The structure of wind energy conversion system. 

2.2.1. Aerodynamics Model 

The power captured by the rotor 𝑃𝑎 is: 

𝑃𝑎 =
1

2
𝐶𝑝(𝜆, 𝛽)𝜌𝐴𝑣

3 (5) 

where  𝐴  is the rotor swept area,  𝑣  is the rotor effective wind speed,  𝜌  is the air density, 

and 𝐶𝑝(𝜆, 𝛽) is the power coefficient. 

The tip-speed ratio 𝜆 is defined as the ratio between the tip speed of the blades and the rotor 

effective wind speed: 

𝜆 =
𝑅𝜔𝑟
𝑣

 (6) 
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where 𝜔𝑟 is the rotor speed, and 𝑅 is the blade length. 

2.2.2. Drive Train Model 

The drive train dynamics function is given: 

{
 
 

 
 �̇�𝑟 =

1

3𝐽𝑟

𝜕𝑇𝑎
𝜕𝛽

𝛽 +
𝐵𝑑𝑡
𝑁𝑔𝐽𝑟

𝜔𝑔 + (−
𝐵𝑑𝑡 + 𝐵𝑟

𝐽𝑟
+
1

𝐽𝑟

𝜕𝑇𝑎
𝜕𝜔𝑟

)𝜔𝑟 +
1

3𝐽𝑟

𝜕𝑇𝑎(𝑡)

𝜕𝑣𝑟
𝑣(𝑡)

�̇�𝑔 = −
1

𝐽𝑔
𝑇𝑔 − (

𝜂𝑑𝑡𝐵𝑑𝑡
𝐽𝑔𝑁𝑔

2
+
𝐵𝑔

𝐽𝑔
)𝜔𝑔 +

𝐵𝑑𝑡
𝑁𝑔𝐽𝑔

𝜔𝑟

 (7) 

where 𝐽𝑟 and 𝐽𝑔 are the moments of inertia of the low-speed and high-speed shaft; 𝑁𝑔 is the gear 

ratio; 𝐷𝑠  is the torsion damping coefficient of the drive train; 𝐾𝑠 is the torsion stiffness of the drive 

train; 𝛿 is the twist of the flexible drive train with �̇� = 𝜔𝑟 −
𝜔𝑔

𝑁𝑔
. 𝐵𝑔  and 𝐵𝑟  are the viscous friction 

of the high and low speed shaft, respectively. 𝑇𝑎 is the aerodynamic torque applied to the rotor. 

2.2.3. Pitch System Model 

The hydraulic pitch system can be modeled by a second order transfer function [37], described as: 

{
�̇� = �̇�

�̈� = −𝜔𝑛
2𝛽 − 2𝜉𝜔𝑛�̇� + 𝜔𝑛

2𝛽𝑟𝑒𝑓
 (8) 

where 𝜉 is the damping ratio of the pitch actuator model. 

2.2.4. Generator and Converter Model 

The generator and converter dynamics can be approximated by a first-order system: 

�̇�𝑔 = −
1

𝜏𝑔
𝑇𝑔 +

1

𝜏𝑔
𝑇𝑔𝑟𝑒𝑓  (9) 

where  𝜏𝑔  is the time constant. 

The real-time power is described by: 

𝑃𝑔 = 𝜂𝑔𝜔𝑔𝑇𝑔 (10) 

2.2.5. The Dynamics of the Wind Energy Conversion System 

Combining Equations (5)–(10), the dynamics of the WECS can be obtained: 

[
 
 
 
 
 
�̇�𝑟
�̇�𝑔

�̇�

�̈�

�̇�𝑔 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑇𝑎
𝐽𝑟
−
𝜔𝑟𝐷𝑠
𝐽𝑟

+
𝜔𝑔𝐷𝑠

𝐽𝑟𝑁𝑔
−
𝛿𝐾𝑠
𝐽𝑟

𝜔𝑟𝐷𝑠
𝐽𝑔𝑁𝑔

−
𝜔𝑔𝐷𝑠

𝐽𝑔𝑁𝑔
2 +

𝛿𝐾𝑠
𝐽𝑔

−
𝑇𝑔

𝐽𝑔

�̇�

−𝜔𝑛
2𝛽 − 2𝜉𝜔𝑛�̇�

−
1

𝜏𝑔
𝑇𝑔

]
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
0      0
0      0
0      0
𝜔𝑛
2   0

0     
1

𝜏𝑔]
 
 
 
 
 

[
𝛽𝑟𝑒𝑓
𝑇𝑔𝑟𝑒𝑓

] (11) 

Let 𝑥(𝑘) = [𝑇𝑔 𝛽 �̇�   𝜔𝑔 𝜔𝑟]
𝑇
 be the state,  𝑢(𝑘) = [𝑇𝑔𝑟𝑒𝑓 𝛽𝑟𝑒𝑓]𝑇 be the input, 𝑤(𝑘) = 𝑣(𝑡) 

be the disturbance. Then a linearized overall state space model describing the dynamics of the WECS 

can be given: 
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(12) 

where 𝐴11 = −
1

𝜏𝑔
, 𝐴54 = −𝜔𝑛

2, 𝐴55 = −2𝜉𝜔𝑛 , 𝑎71 = −
1

𝐽𝑔
, 𝑎77 = −(

𝜂𝑑𝑡𝐵𝑑𝑡

𝐽𝑔𝑁𝑔
2 +

𝐵𝑔

𝐽𝑔
) , 𝑎84 =

1

3𝐽𝑟

𝜕𝑇𝑎

𝜕𝛽
, 𝑎88 =

−
𝐵𝑑𝑡+𝐵𝑟

𝐽𝑟
+

1

𝐽𝑟

𝜕𝑇𝑎

𝜕𝜔𝑟
 , 𝐵11 =

1

𝜏𝑔
, 𝐵42 = 𝜔𝑛

2, 𝑒81 =
1

3𝐽𝑟

𝜕𝑇𝑎(𝑡)

𝜕𝑣𝑟
. 
𝜕𝑇𝑎

𝜕𝛽
 ,
𝜕𝑇𝑎

𝜕𝜔𝑟
 and 

𝜕𝑇𝑎(𝑡)

𝜕𝑣𝑟
 are the linearized parameters 

in different wind speed state working points (see Table 1). 

Table 1. Parameters of linearized model in different working points. 

𝒗 (𝐦/𝐬) 
Parameters 

a84 a88 e81 a1 a2 a3 

𝒗𝟏 = 𝟕. 𝟓 0.409 0.50 1.90 0.3125 2.92 0.9375 

𝒗𝟐 = 𝟏𝟎 0.479 0.53 2.31 0.33 3.65 2.3 

𝒗𝟑 = 𝟏𝟔 0.833 0.53 2.50 0.625 5 5 

In Equation (12), the wind speed  𝑣(𝑡) can be considered as a combination of the mean wind 

speed 𝑣𝑚(𝑡) and a stochastic component 𝑣𝑠(𝑡): 

𝑣(𝑡) = 𝑣𝑠(𝑡) + 𝑣𝑚(𝑡) (13) 

where 𝑣𝑚(𝑡) is the average wind speed, corresponding to low-frequency variation; and 𝑣𝑠(𝑡) is the 

fast, high-frequency variation. 

Following [37–39], the stochastic component 𝑣𝑠(𝑡) can be approximated by a linear second 

order transfer function driven by a white noise process: 

{
�̇�1 = 𝜔2
�̇�2 = −𝑎1𝜔1 + 𝑎2𝜔2 + 𝑎3𝑒

 (14) 

where 𝜔1 = 𝑣𝑠, 𝑒 ∈ 𝒩(0,1), and 𝑎1, 𝑎2, 𝑎3  are parameters depending on the mean wind speed. 

Finally, the dynamics of WECS can be obtained: 
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 (15) 

It can get the corresponding model parameters according to the different working points of 

system parameters. With the method in [40], the parameters are calculated and shown in Table 1. 

2.2.6. Discrete Markov Jump Linear Model of Wind Energy Conversion System 

This paper adopts the tracking control algorithm with augmented state variables [41]. 

Discretize and linearize model (15) at three operating points where wind speed is 7.5, 10 and 16 m/s, 

respectively. Then it can get the WECS discrete-time linear system: 

𝑥(𝑘 + 1) = 𝐴(𝜔(𝑘))𝑥(𝑘) + 𝐵(𝜔(𝑘))𝑢(𝑘) + 𝐷(𝜔(𝑘)) + 𝐷1(𝜔(𝑘))𝑒(𝑘) + 𝐼𝑤 ∗ 𝑦𝑟(𝑘) (16) 
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where 𝐼𝑤 = [
0 0 0
0 0 0

    
0 0 0
0 0 0

   
0
0
    
1 0
0 1

]
𝑇

, 𝑘 ∈ 𝑁 is the time index, 𝑦𝑟(𝑘) = [𝑤𝑔𝑟𝑒𝑓 𝑃𝑟𝑒𝑓]𝑇  is the 

output reference, 𝑥(𝑘) ∈ 𝑅𝑛𝑥  is the state, 𝑢(𝑘) ∈ 𝑅𝑛𝑢 is the input, 𝑤(𝑘) ∈ 𝑊 is the disturbance, and 

𝑊 = {1,2,3}R is a finite set. 𝐴(𝑤(𝑘)), 𝐵(𝑤(𝑘)), 𝐷(𝑤(𝑘)) and 𝐷1(𝑤(𝑘)) are the system model 

matrixes corresponding to the three working states of WECS 𝑆𝑖 , 𝑖 = {1,2,3}. Model (16) jumps 

stochastically from state 𝑆𝑖 to state 𝑆𝑗  with wind speed Markov transition probability 𝑝𝑖𝑗(𝑖, 𝑗 =

{1,2,3}) introduced in Section 2.1. 

3. Design of Scenario-Based Stochastic Model Predictive Controller 

3.1. Scenario Tree Design 

According to the Markov Transition Matrix described in the Section 2.1, we can build a scenario 

tree to describe the possible disturbance realization at every time step in the future. Let us make the 

following definition [42]: 

(1) 𝑇 = {𝑇1, 𝑇2, … . . , 𝑇𝑛}: the set of the tree nodes. (i.e., 𝑇1 is the root node and 𝑇𝑛 is the leaf node); 

(2) 𝑝𝑟𝑒(𝑁𝑖) ∈ 𝑇: the predecessor of node 𝑁𝑖; 

(3) 𝑠𝑢𝑐𝑐(𝑁𝑖 , 𝑤) ∈ 𝑇: the successor of node 𝑁𝑖; 

(4) 𝑥𝑁𝑖 ∈ 𝑅
𝑛𝑥, 𝑢𝑁𝑖 ∈ 𝑅

𝑛𝑢, 𝑤𝑁𝑖 ∈ 𝑊: the state, input and disturbance of node 𝑁𝑖, respectively. Where 

𝑥𝑁1 = 𝑥(𝑘), 𝑤𝑁1 = 𝑤(𝑘); 

(5) 𝑆 = {𝑁𝑖 ∈ 𝑇|𝑠𝑢𝑐𝑐(𝑁𝑖 , 𝑤𝑗) ∉ 𝑇, ∀𝑗 ∈ {1, … , 𝑠}}: the set of leaf nodes. 

The scenario tree is shown in Figure 3. In Figure 3, each node represents a system state in the 

prediction horizon. Red, yellow and gray represent three different states ( 𝑤(𝑘) = {1,2,3} ), 

respectively. The abscissa axis represents the predicted horizon, which starts from time  𝑘 and end 

at time 𝑘 + 𝑁. The scenarios number 𝑠 is equal to the leaf nodes number 𝑛𝑁 at the termination 

moment 𝑘 + 𝑁. 
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Figure 3. Scenario tree with root node𝑤 (𝑘)  =  2. 

The numbering method of the scenario node is numbered from the root node to the leaf node 

sequentially when they are added to the scenario tree. Each path of the scenarios represents a 

disturbance realization of the optimization problem. However, the number of nodes in the scenario 

tree generated in this way will increase exponentially with the prediction horizon. From an 

engineering point of view, it makes no sense to consider far-reaching disturbances in the prediction 

horizon, as the MPC controller runs in a receding horizon manner [43]. After a certain layer 𝑛𝑚𝑎𝑥 of 

the scenario tree, we assume that the disturbances are the same as the nodes corresponding to the 

layers 𝑛𝑚𝑎𝑥, and extend to the prediction horizon 𝑁𝑛(𝑛𝑚𝑎𝑥 ≤ 𝑁𝑛). In this way, the complexity of the 

problem will be reduced to linear 𝑂(𝑛) from the exponential order 𝑂(2𝑛). 
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Here, it only shows the case root node 𝑤 (𝑘)  =  2, and 𝑤 (𝑘)  =  1,3 are similar. At every time 

step online, the prediction is the scenario tree with the root node  𝑤 (𝑘)  =  𝑖. Therefore, it can 

generate three scenario trees based on different root nodes  𝑤 (𝑘)  =  𝑖 , and calculate the 

corresponding controller 𝐶𝑖(𝑖 ∈ 𝑤(𝑘) = {1,2,3}) . When implementing receding horizon 

optimization, call the controller 𝐶𝑖 according to the current state 𝑤 (𝑘)  =  𝑖 of the system. 

In Figure 3, each scenario has its own evolution. For the sake of simplicity, it uses 𝑥𝑖, 𝑢𝑖, 𝑤𝑖 , 𝜋𝑖 

and 𝑝𝑟𝑒(𝑖) to denote 𝑥𝑁𝑖, 𝑢𝑁𝑖 , 𝑤𝑁𝑖 , 𝜋𝑁𝑖  and 𝑝𝑟𝑒(𝑁𝑖), respectively. The state equation of a scenario 

transferred from the previous node 𝑝𝑟𝑒(𝑁𝑖) to the current node 𝑁𝑖 is: 

𝑥𝑖 = 𝐴(𝑤(𝑘))𝑥𝑝𝑟𝑒(𝑖) + 𝐵(𝑤(𝑘))𝑢𝑝𝑟𝑒(𝑖) + 𝐷(𝑤(𝑘)) + 𝐷1(𝜔(𝑘))𝑒(𝑘) + 𝐼𝑤 ∗ 𝑦𝑟(𝑘) (17) 

and the transition probability of (16) is: 

𝑝𝑖𝑗 = 𝑃𝑟{𝑁𝑖 ∈ 𝑆𝑗|𝑝𝑟𝑒(𝑁𝑖) ∈ 𝑆𝑖} (𝑖, 𝑗 = {1,2,3}) (18) 

where 𝑝𝑖𝑗 is calculated in Section 2.1. 

3.2. Control Problem Formulation 

In a general point of view, the optimization object of the stochastic model predictive control is 

the following equation: 

𝑚𝑖𝑛
𝑢
𝐸𝑤 [ ∑ (𝑥𝑖 − 𝑥𝑟)

𝑇𝑄(𝑥𝑖 − 𝑥𝑟)

𝑖∈𝑇\(𝑁1∪𝑠)

+ ∑ 𝑢𝑖
𝑇

𝑖∈𝑇\𝑆

𝑅𝑢𝑖] (19) 

where 𝐸𝑤 is expectation, 𝑥𝑟  is the state reference, 𝑢𝑖 is the input at prediction time step 𝑘 + 𝑖 in 

the scenario tree (Figure 3). 

To solve problem (19), this paper considers the realization and the probability of the 

disturbance to minimize the quadratic function performance index of state and input. In other 

words, the common quadratic performance index of scenario 𝑗, multiplied by the probability of its 

realization, is the expectation 𝐸𝑤𝑗  of scenario 𝑗, (𝑗 ∈ {1, … , 𝑠}). With this procedure, the expectation 

𝐸𝑤 is transformed into a simple sum of all the 𝐸𝑤𝑗 , which makes an easy way to solve problem (19). 

In this way, the uncertain SMPC problem can be transformed into a deterministic MPC problem. At 

time k, based on the scenario trees, the following stochastic MPC problem is formulated: 

𝑚𝑖𝑛
𝑢

∑ 𝜋𝑖(𝑥𝑖 − 𝑥𝑟)
𝑇𝑄(𝑥𝑖 − 𝑥𝑟)

𝑖∈𝑇\(𝑇1∪𝑆)

+ ∑ 𝜋𝑖𝑢𝑖
𝑇

𝑖∈𝑇\𝑆

𝑅𝑢𝑖           

𝑠. 𝑡. {

𝑥1 = 𝑥(𝑘)                                                                      

𝑥𝑖 = 𝐴(𝑤(𝑘))𝑥𝑝𝑟𝑒(𝑖) + 𝐵(𝑤(𝑘))𝑢𝑝𝑟𝑒(𝑖) + 𝐷(𝑤(𝑘)) + 𝐷1(𝜔(𝑘))𝑒(𝑘) + 𝐼𝑤 ∗ 𝑦𝑟(𝑘), 𝑖 ∈ 𝑇\{𝑇1}

𝐺𝑥𝑥(𝑘) + 𝐺𝑢𝑢(𝑘) ≤ 𝑔, 𝑘 = 0,… , 𝑁, ∀𝑤(𝑘) ∈ 𝑊           

 (20) 

where 𝜋𝑖 is the realization probability of scenario 𝑖. 𝑄 and 𝑅 are the weight matrixes. 𝑥(𝑘) is the 

current state of the system. 𝐺𝑥 ∈ 𝑅
𝑛𝑥+𝑛𝑢 and 𝐺𝑢 ∈ 𝑅

𝑛𝑥+𝑛𝑢 are coefficient matrixes in state and input 

constrains. Problem (20) is a quadratic constrained quadratic programming (QCQP) problem. The 

input 𝑢1 of the root node 𝑁1 is the first element of the solution to the problem (20). Problem (20) is 

an open-loop optimization problem, and the real-time control law is obtained by receding horizon 

optimization. 

4. Design of Stochastic Model Predictive Fault Tolerant Controller 

For a stochastic system with fault risk, system performance and system risk are two independent 

system events, and there are two kinds of classic control methods: (1) When increasing the proportion 

of system performance in the control target, the average system loss is reduced and the system risk is 

increased; (2) When increasing the proportion of system risk in the control target, the average system 

loss is increased and the system risk is decreased. The relationship of the system performance and 

system risk is represented in Figure 4. To achieve the first control method, the expectation 

performance index is introduced into the standard SMPC optimal control algorithm [10] as shown in 
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Figure 4 (point A). Expectation optimization algorithm can get better system performance, but it will 

increase the risk of system failure. In some extreme cases, it may bring irreparable damage to the 

system. To achieve the second control method, the Min-Max optimization control algorithm is 

introduced to minimize the risk of the system [32], as shown in Figure 4 (point C). Although the 

Min-Max optimization algorithm ensures the system security and has better fault-tolerant 

performance, its control law is too conservative, which seriously reduces the system performance. 

risk

Average loss

A

B

C

Exp

CVaR

Min-Max

0
 

Figure 4. The relationship of the system performance and risk. 

To address the issues of the two control methods mentioned above, the CVaR is introduced in 

this paper. The CVaR makes a balance between system performance and failure risk so that it can 

make a trade-off according to the specific control problem. By introducing CVaR to SMPC 

framework, this paper proposes a new fault-tolerant control optimization algorithm. Its relationship 

between the performance and the risk is shown in Figure 4 (point B). 

4.1.Actuator Failure of Wind Energy Conversion System 

This article only considers actuator failure, and the proposed method is also suitable for the 

sensor failure. Consider the discrete random model of a WECS with actuator gain loss: 

𝑥(𝑘 + 1) = 𝐴(𝜔(𝑘))𝑥(𝑘) + 𝐵(𝜔(𝑘))𝛤𝑢(𝑘) + 𝐷(𝜔(𝑘)) + 𝐷1(𝜔(𝑘))𝑒(𝑘) + 𝐼𝑤 ∗ 𝑦𝑟(𝑘) (21) 

where 𝛤 = 1 − 𝑎 is the loss of gain under risk, 𝑎 ∈ [0,1] is the partial loss of the actuator fault. The 

relationship between the gain loss under risk and the degree of system failure is shown in Table 2, 

where 𝛤 is a second order diagonal matrix. 

Table 2. Gain loss. 

Loss of Gain 𝜞 
Fault Degree 

1 (𝟎, 𝟏) 0 

actuator normal partial loss complete failure 

4.2. Design of CVaR Fault Tolerant Controller 

Conditional value at risk is a new stochastic calculation method to solve the optimization 

problem of WECS. This algorithm can figure out the optimal control law under different probability 

levels 𝛽,0 ≤ 𝛽 ≤ 1, and it can effectively deal with the impact of extreme conditions beyond the 

level 𝛽. Conditional value at risk is defined as following. 

Let 𝑓(𝑢, 𝑤): 𝑅𝑛+𝑘 → 𝑅 be a loss function associated with the decision vector 𝑢𝜖𝑅𝑛 and random 

disturbances 𝑤𝜖𝑅𝑘. 𝑝(𝑤) is the probability density of 𝑤. For a given probability  𝛽, the 𝛽 − 𝑉𝑎𝑅 

(value at risk) is defined as the lowest risk value 𝛼. 𝛽 is a fixed value, usually 𝛽 = 90%, 95% or 

99% . The main drawback of  𝛽 − 𝑉𝑎𝑅  is that the information of extreme loss occurring with 

probability ( 1 − 𝛽) is not considered directly. To avoid this, Rockafellar [29] introduced the concept 

of Conditional Value at Risk (CVaR). CVaR can quantify the average value that the loss 

function 𝑓(𝑢, 𝑤) exceed 𝛼, with probability  1 − 𝛽. Therefore, it can calculate  𝛽 − 𝑉𝑎𝑅, and then 

solve the 𝛽 − 𝐶𝑉𝑎𝑅 performance index. 
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4.2.1. Evaluate 𝛽 − 𝑉𝑎𝑅 

There are many ways to calculate VaR, such as historical simulation, Monte Carlo simulation 

and variance-covariance method. Among them, the historical simulation method is a widely used 

approach [44,45]. 

The probability of 𝑓(𝑢, 𝑤) which is not exceeding the threshold 𝛼 is: 

𝜓(𝑢, 𝛼) = ∫ 𝑝(𝑤)𝑑𝑤
𝑓(𝑢,𝑤)≤𝛼

 (22) 

where 𝑓(𝑢, 𝑤) = |𝑦 − 𝑟| is the prediction error, 𝑦 is the output and 𝑟 is the output reference. 

Assuming its distribution is shown as Figure 5 

p(w)

β=95%

OK

Things go wrong

|y-r|≥α

5%

|y-r|

VaR

α0

 

Figure 5. |𝑦 − 𝑟| probability density. 

In Figure 5, 𝛽 − 𝑉𝑎𝑅 is defined as: 

𝛼𝛽(𝑢) = 𝑚𝑖𝑛{𝛼 ∈ ℝ:𝜓(𝑢, 𝛼) ≥ 𝛽} (22) 

If the probability density of 𝑓(𝑢, 𝑤) is calculated, then the value of 𝛼 (𝛼 = 𝛽 − 𝑉𝑎𝑅) can be 

found. The probability density of 𝑓(𝑢, 𝑤) can be statistically derived from the operational data of 

WECS, as shown in Figure 6. 

 

Figure 6. Power error probability density. 

The probability density curve of the output error 𝑤𝑔 is similar to Figure 6. While 𝛽 = 95%, by 

statistics, the value of 𝛽 − 𝑉𝑎𝑅 are 𝛼(𝑃) = 3867.8577 𝑊, 𝛼(𝑤𝑔) = 5.3235 𝑟𝑎𝑑/𝑠. 

4.2.2. Minimization of Conditional Value at Risk (LP-CVaR) 

𝛽 − 𝐶𝑉𝑎𝑅 is defined as: 

∅𝛽(𝑢) = (1 − 𝛽)
−1∫ 𝑓(𝑢, 𝑠)𝑝(𝑤)𝑑𝑤

𝑓(𝑢,𝑤)≥𝛼𝛽(𝑢)

 (23) 

The loss function of 𝛽 − 𝐶𝑉𝑎𝑅  is related to the decision vector 𝑢ϵ𝑅𝑛 , and it is could be 

determined by the formula: 
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∅𝛽(𝑢) = 𝐹𝛽(𝑢,𝛼)𝛼∈ℝ
𝑚𝑖𝑛  (25) 

where: 

𝐹𝛽(𝑢, 𝛼) = 𝛼 + (1 − 𝛽)−1∫ 𝑚𝑎𝑥{|𝑓(𝑢,𝑤)| − 𝛼, 0}𝑝(𝑤)𝑑𝑤
𝑤∈ℝ𝑚

 (26) 

It is hard to get an explicit expression of (26). Therefore, CVaR is usually calculated through 

discretization. 𝑤  is sampled in its probability density 𝑝(𝑤) . If there are 𝑠  trajectories of 

disturbance realization in SMPC, the probability of scenario 𝑗(𝑗 = 1,2,⋯ 𝑠)  is 𝜋𝑗 . Then the 

approximate value of (26) can be expressed as: 

�̌�𝛽(𝑢, 𝛼) = 𝛼 +
1

(1 − 𝛽)
∑𝜋𝑗 ∗ 𝑚𝑎𝑥{|𝑓(𝑢, 𝑤)| − 𝛼, 0}

𝑀

𝑗=1

 (27) 

Let 𝑣𝑗 = 𝑚𝑎𝑥{|𝑦𝑗 − 𝑟| − 𝛼, 0}, the scenario-based SMPC problem can be redefined using the 

CVaR performance index [46]: 

𝑚𝑖𝑛

𝑢, {𝑣𝑗}𝑗=1
𝑠    𝛼 +

1

1 − 𝛽
∑𝜋𝑗𝑣𝑗

𝑠

𝑗=1

𝑠. 𝑡.   𝑣𝑗 ≥ 𝑦𝑗 − 𝑟 − 𝛼      

𝑣𝑗 ≥ −𝑦𝑗 + 𝑟 − 𝛼  

𝑣𝑗 ≥ 0, 𝑗 = 1,… , 𝑠 

 (28) 

where 𝑦𝑗 is the prediction of path 𝑗, 𝑣𝑗 represents excess loss over VaR. The fault-tolerant control 

of CVaR is to penalize the excess losses: 

𝑦𝑗(𝑘 + 1) = 𝐺𝑥𝑗𝑥(𝑘) + 𝐺𝑣𝑗𝑈(𝑘) + 𝐺𝑑𝑗𝐼𝑤1 + 𝐺𝑑1𝑗(𝐼𝑤1 ∗ 𝑒(𝑘)) + 𝐺𝑑3𝑗 ∗ (𝐼𝑤3 ∗ 𝑦𝑟(𝑘)) (29) 

𝑈(𝑘) = [𝑢(𝑘) 𝑢(𝑘 + 1)  ⋯  𝑢(𝑘 + 𝑁 − 1)  ]𝑇  (30) 

where 𝐺𝑥𝑗, 𝐺𝑣𝑗, 𝐺𝑑𝑗 , 𝐺𝑑1𝑗 and 𝐺𝑑3𝑗  contain the jumping information of prediction trajectory 𝑗. 

When 𝛽 is given, 𝛼 is a constant, and (28) can be rewritten as: 

 
𝑚𝑖𝑛

𝑢, {𝑣𝑗}𝑗=1
𝑠 [𝜋1 𝜋2  … 𝜋𝑠]𝜇                                           

𝑠. 𝑡.   𝜇 ≥ 𝐺𝑥𝑥(𝑘) + 𝐺𝑣𝑈(𝑘) + 𝐺𝑑𝐼𝑤1 + 𝐺𝑑1(𝐼𝑤1 ∗ 𝑒(𝑘)) + 𝐺𝑑3 ∗ (𝐼𝑤3 ∗ 𝑦𝑟(𝑘)) − 𝐿(𝑟 + 𝛼)    

              𝜇 ≥ −𝐺𝑥𝑥(𝑘) − 𝐺𝑣𝑈(𝑘) − 𝐺𝑑𝐼𝑤1 − 𝐺𝑑1(𝐼𝑤1 ∗ 𝑒(𝑘)) − 𝐺𝑑3 ∗ (𝐼𝑤3 ∗ 𝑦𝑟(𝑘)) + 𝐿(𝑟 − 𝛼)

  𝜇 ≥ 0, 𝑗 = 1,… , 𝑠                                                                      

𝑈(𝑘) ≤ �̅�                                                                           

𝑈(𝑘) ≥ 𝑢                                                                           

 (31) 

where: 

𝜇 = [𝑣1𝑣2  … 𝑣𝑠]
𝑇 (32) 

𝐺𝑥 = [𝐺𝑥1𝐺𝑥2  … 𝐺𝑥𝑠]
𝑇
 (33) 

𝐺𝑣 = [𝐺𝑣1𝐺𝑣2  … 𝐺𝑣𝑠]
𝑇

 (34) 

𝐺𝑑 = [𝐺𝑑1𝐺𝑑2  … 𝐺𝑑𝑠]
𝑇

 (35) 

𝐺𝑑1 = [𝐺𝑑11𝐺𝑑12  … 𝐺𝑑1𝑠]
𝑇

 (36) 

𝐺𝑑3 = [𝐺𝑑31𝐺𝑑32  … 𝐺𝑑3𝑠]
𝑇

 (37) 

𝐿 = [𝐼  𝐼 …   𝐼]1∗𝑠
𝑇  (38) 

Let 𝑥 = [𝑈(𝑘) − 𝑢 𝜇]𝑇 , Equation (31) is transformed into a standard linear programming 

problem (LP) [47]. This description could have all the scenario information. The input 𝑢1 of the root 

node 𝑁1  is the first element of the solution to Problem (31). Problem (31) is an open-loop 
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optimization problem, and the SMPC control law is obtained in a receding horizon manner. The 

Algorithm 1 is as follow: 

Algorithm 1: SMPC algorithm of CVaR objective function 

1.Prepare the controller 𝑪𝒊 

1.1. Generate 𝑚  scenario trees according to different root node 𝑤 (𝑘) =  𝑖 ( 𝑖 ∈ 𝑤(𝑘) =

          {1,2,⋯𝑚} ) 

1.2. Calculate corresponding controllers 𝐶𝑖 

2.Calculate VaR 

set 𝛽 = 95%; 

solve SMPC problem (20); 

The VaR is given by (22), (23); 

3.Calculate SMPC of CVaR 

for i = 1:3 

𝐶𝑆{𝑖}. 𝑓 = [𝑜𝑛𝑒𝑠(1, 𝑠 ∗ 𝑛𝑢), 𝜋1 𝜋2  … 𝜋𝑠]; % decision vectors weights 

Calculate other parameters; 

end for 

set 𝑇; %Simulation time 

for k = 1:T 

measure (or estimate) 𝑥(𝑘); 

solve CVaR SMPC problem (31) and obtain 𝑢1; 

apply 𝑢(𝑘) = 𝑢1; 

end for 

4.3. Design of Min-Max Fault Tolerant Controller 

In 1996, Kothare [32] proposed LMI-based robust predictive control for polytopic uncertain 

systems. When the model parameters change arbitrarily in the polytopic, this algorithm gives the 

optimal infinite horizon quadratic performance index under the worst case. 

Considering the discrete-time linear system (16), let 𝑥𝑟  be the system state reference and 𝑢𝑟 be 

the input reference, the: 

𝑥𝑟(𝑘 + 1) = 𝐴(𝜔(𝑘))𝑥𝑟(𝑘) + 𝐵(𝜔(𝑘))𝑢𝑟(𝑘) + 𝐷(𝜔(𝑘)) + 𝐷1(𝜔(𝑘))𝑒(𝑘) + 𝐼𝑤 ∗ 𝑦𝑟(𝑘) (39) 

According to the method of dealing with the unnominal system in [48], the model (16) is 

processed as follows. According to the (16)–(39), it derives: 

𝑥(𝑘 + 1) − 𝑥𝑟(𝑘 + 1) = 𝐴(𝜔(𝑘))(𝑥(𝑘) − 𝑥𝑟(𝑘)) +  𝐵(𝜔(𝑘))(𝑢(𝑘) − 𝑢𝑟(𝑘)) (40) 

Then (40) becomes a regulation problem of a nominal system. According to the solution of 

Min-Max MPC optimization problem, we have: 

𝑢(𝑘) − 𝑢𝑟(𝑘) = 𝐹(𝑥(𝑘) − 𝑥𝑟(𝑘)) (41) 

where F is the state feedback control law. 

From (39): 

𝑢𝑟(𝑘) = 𝐵−1(𝜔(𝑘)) [(𝐼 − 𝐴(𝜔(𝑘))) 𝑥𝑟(𝑘) − 𝐷(𝜔(𝑘)) − 𝐷1(𝜔(𝑘))𝑒(𝑘) − 𝐼𝑤 ∗ 𝑦𝑟(𝑘)] (42) 

Substituting (42) into (41) yields: 

𝑢(𝑘) = 𝐹(𝑥(𝑘) − 𝑥𝑟(𝑘)) + 𝐵
−1(𝜔(𝑘))[(𝐼 − 𝐴(𝜔(𝑘))) 𝑥𝑟(𝑘)  − 𝐷(𝜔(𝑘))

− 𝐷1(𝜔(𝑘))𝑒(𝑘) − 𝐼𝑤 ∗ 𝑦𝑟(𝑘)] 
(43) 

Then the receding horizon control law 𝑢(𝑘) is obtained by solving Equation (43) online. 
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5. Simulation Result and Analysis 

To verify the effectiveness of scenario-based SMPC in WECS control under normal operating 

conditions and good fault tolerance performance of CVaR performance indicator, the WECS model 

(15) is discretized and linearized to model (16) at three operating points where wind speed is 7.5, 10 

and 16 m/s, respectively. Then we use the algorithm mentioned above to track the constant value 

and dynamic set points generated by WECS under real-time wind. 

The following WECS stochastic model of (16) can be obtained according to the modeling 

process in Section 2.2. The input and state constraints 𝑇𝑔 ∈ (−6000 Nm, 0 Nm) , 𝛽 ∈ (0°, 90°) , 

prediction horizon 𝑁 = 4 , scenario tree layer 𝑛𝑚𝑎𝑥 = 3 , the Markov transition matrix 𝑃 =

[
0.7230 0.2770 0
0.1554 0.8383 0.0063
0 0.4138 0.5862

], weight matrix 𝑄 =

[
 
 
 
 
0 ⋯
⋮ ⋱

0 0 0
⋮ ⋮ ⋮

0 ⋯
0 ⋯
0 ⋯

0 0 0
0 1 0
0 0 1]

 
 
 
 

9∗9

, 𝑅 = [
1 0
0 1

]. 

Here, the method of LMI-based RMPC mentioned in [32] is used by the Min-Max performance 

index. For the model (16), the feedback control law is: 

𝐹 = [
−0.1111 −0.0102 −0.6441 0.0013 0.1671 0 0 4.1614 −0.0247
−2.5753 −0.1797 −0.0128 0.0107 2.7752 0 0 −0.0466 1.8137

] (44) 

The simulation runs on an environment equipped with an Intel(R) Core(TM) i7-4770 CPU 

3.40GHz RAM 8GB, using Matlab R2015a. The major computation burden is solving an instance of 

the QCQP (20) and of the LP (31), which costs 2.0 and 1.6 ms, respectively. 

5.1. Wind Energy Conversion SystemTracking Constant Value When Normal 

The simulation is adopted to verify the control performance of the SMPC controller with three 

different objective functions (Exp, CVaR, Min-Max). The control purpose is making the generator 

speed 𝜔𝑔(𝑡) and generator power 𝑃𝑔(𝑡) track constant values under random wind speed (the 

generator power 𝑃𝑔(𝑡)’s reference is 114,974 W. The fluctuations of 𝑃𝑔(𝑡) are small, and we do not 

show them here). As shown in Figure 7a, the reference of generator speed 𝜔𝑔(𝑡) is 100 rad/s, and 

the simulation results suggest that the proposed SMPC controller with each kind of performance 

index could have good control performance of WECS. Furthermore, it can be seen that the tracking 

performance of the SMPC controller with expectation and CVaR objective functions are better than 

the Min-Max strategy (Min-Max has the most performance loss since it has the most conservative 

control law). Figure 7b,c are the corresponding control input of the WECS. In Figure 7b, the 

fluctuation range of pitch angle 𝛽 is about 0‒ 20°. In Figure 7c, the calculated generator torque 

reference 𝑇𝑔𝑟𝑒𝑓  is about −2554 Nm. (negative values indicate that the WECS is working in generating 

status). It can be seen that the input pitch angle reference  𝛽𝑟𝑒𝑓 fluctuation range of expectation and 

CVaR performance indexes are (9‒ 12°)  and (6‒ 15°) , which is smaller than Min-Max 

performance index (4‒ 17°) (Figure 7b). The calculated generator torque reference  𝑇𝑔𝑟𝑒𝑓  also has 

the similar circumstance (Figure 7c). The proposed SMPC controller has the ability to make 

prediction of the WECS with the probability information of wind speed. Therefore, its control law is 

less conservative than the Min-Max strategy, and its control output is more stable so that the WECS 

could have less mechanical loss in real situations. 

  
(a) (b) 
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(c) 

Figure 7. This figure shows the WECS output and input of constant power tracking with three 

objective function (Exp, CVaR, Min-Max): (a) Output generator speed  𝜔𝑔 tracking set points; (b) 

input pitch angle reference 𝛽𝑟𝑒𝑓; (c) input generator torque reference  𝑇𝑔𝑟𝑒𝑓. 

5.2. Wind Energy Conversion System Dynamic Value Tracking under Real-Time Wind 

The maximum power reference 𝑃𝑟𝑒𝑓  can be obtained through look-up the table [49]. Given the 

best tip speed ratio 𝜆 = 6 , the generator speed reference 𝜔𝑔𝑟𝑒𝑓  can be calculated. With the 

expectation performance index (or CVaR, Min-Max), the proposed controller can calculate the 

real-time predictive control law. 

Figure 8 shows the WECS maximum wind energy capture performance under real-time wind 

speed. All blue dotted lines are the outputs of WECS, and the red solid lines are references. When 

there is no system failure, the control performance of the proposed controller with CVaR and 

Min-Max are almost the same. And the tip speed ratio 𝜆 generally surrounds its optimal working 

point 𝜆𝑜𝑝𝑡 = 6. The pitch angle 𝛽 and its fluctuation range are very small (within 7.5‒ 15°), which 

is a reasonable range in the practical situations. The simulation results in Figure 8 suggest that the 

proposed scenario-based SMPC controller can track the maximum power set points well when the 

system is in the normal status. 

 
 

(a) (b) 

  

(c) (d) 
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(e) 

Figure 8. WECS maximum wind energy capture under real-time wind: (a) Maximum power 

tracking; (b) Generator speed tracking; (c) Generator torque tracking; (d) Pitch angle tracking; (e) Tip 

speed ratio tracking. 

5.3.Wind Energy Conversion SystemTracking Constant Value When Actuator Failure Probability is 5%, Gain 

Loss Γ = 0.8 

The purpose of this simulation is comparing the control performance of the SMPC controller 

with different objective functions with actuator fault. In this simulation, WECS actuator failure 

probability is set to 5% and gain loss is set to 𝛤 = 0.8. Figure 9 gives the result of the proposed 

controller with expectation objective function. Figure 10 gives the result of the controller with the 

CVaR and the Min-Max objective function. 

  
(a) (b) 

Figure 9. The output and input when WECS under the control of expectation performance index, 

actuator failure probability is 5%, gain loss is 𝛤 = 0.8: (a) Output generator speed 𝜔𝑔; (b) input 

generator torque reference  𝑇𝑔𝑟𝑒𝑓 and pitch angle reference  𝛽𝑟𝑒𝑓. 

  
   (a)    (b) 
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    (c) 

Figure 10. The output and input when WECS under the control of CVaR, Min-Max objective 

functions, actuator failure probability is 5%, gain loss is 𝛤 = 0.8: (a) Output generator speed 𝜔𝑔; (b) 

pitch angle reference  𝛽𝑟𝑒𝑓; (c) input generator torque reference  𝑇𝑔𝑟𝑒𝑓. 

It can be observed from Figure 9 that the generator speed 𝜔𝑔 and the 𝛽𝑟𝑒𝑓  have been suffered 

in a bad situation under the control effort of the SMPC controller with the expectation objective 

function (some negative values even occurred during the control process). The input and output of 

the controller have obvious fluctuations, and the control performance is much worse than the 

proposed controller with the CVaR and Min-Max objective function (as shown in Figure 10). The 

simulation result indicates that the proposed controller with the expectation objective function has 

poor fault-tolerant control performance. 

Figure 10 shows that the proposed controller with the CVaR or the Min-Max objective functions 

all have a good ability to address the actuator fault in the WECS. Meanwhile, the proposed 

controller with the CVaR objective function exhibits the best fault-tolerant control performance. It 

can maintain good fault-tolerant control performance when a probability 5% fault occurs in the 

WECS actuator. In Figure 10a, the fluctuation range of output generator speed 𝜔𝑔  is 

(92.5‒ 106.8 rad/s), which is smaller than the controller with the Min-Max objective function. This 

suggests that the controller with the CVaR objective function can track the power set points more 

precisely. In Figure 10b, the fluctuation range of pitch angle 𝛽 is in a reasonable range (about 

4~16°); its fluctuations are not intense, which can reduce the loss of pitch systems. In Figure 10c, the 

generator torque reference  𝑇𝑔𝑟𝑒𝑓  under the controller with the CVaR objective function has 

minimum fluctuation amplitude, which can ensure the generator operates stably. 

The simulation results above suggest that the CVaR is a good index of the SMPC fault-tolerant 

controller because this index can balance between the system risk and the control performance loss. 

Expectation objective functions are not suitable for fault-tolerant control problems, and the Min-Max 

control performance index suffers from heavy control performance loss, although its system risk is 

small. From the fluctuation range of the simulation results, the controller with the CVaR objective 

function is 40% less conservative than the one with the Min-Max objective function. 

5.4.Wind Energy Conversion System Dynamic Value Tracking under Real-Time Wind When Actuator Failure 

Probability is 5%, Gain Loss Γ = 0.8 

Figure 11 shows the control result of expectation and CVaR performance indexes when WECS 

actuator fails with probability 5%. In Figure 11, the CVaR has good dynamic fault-tolerant control 

performance and the expectation performance index behaves abnormally when the actuator fails 

with a probability of 5%. In Figure 11a, the controller with expectation performance index leads a 

large oscillation amplitude of the generator speed 𝜔𝑔 (about ±20 rad/s) and very high oscillation 

frequency. These issues will increase the mechanical losses of the pitch system. Notably, the CVaR 

tracks the dynamic references of generator speed 𝜔𝑔 very well. Its performance is slightly worse 

than the WECS under normal situation. In Figure 11b, the input pitch angle references 𝛽𝑟𝑒𝑓  under 

the controller with CVaR are in the normal range. However, the expectation objective function leads 

the input pitch angle reference 𝛽𝑟𝑒𝑓 ∈ (20‒ 65°) deviating greatly from the normal range (0‒ 20°). 

These results suggest that the proposed controller with CVaR has better fault-tolerant control 

performance than the controller with expectation index. 
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   (a)     (b) 

Figure 11. The control result of expectation and CVaR performance indexes when WECS actuator 

fails with probability 5%, gain loss 𝛤 = 0.8: (a) Output generator speed 𝜔𝑔; (b) Input pitch angle 

reference  𝛽𝑟𝑒𝑓. 

6. Conclusions 

WECSs are widely adopted to utilize wind energy. However, due to the randomness of the 

wind and the many nonlinear factors affecting the WECS, it is always necessary to guarantee the 

security and performance of the WECS under actuator faults. To solve the fault tolerance control 

problem of WECS with actuator probability faults, this paper proposes a scenario-based SMPC 

controller with the CVaR objective function. First, the Markov jump linear model of the wind turbine 

can be formulated with the help of the probability information of the wind. With this model, the 

randomness of the wind can be properly described. Notably, if the MPC controller is directly 

constructed with the Markov jump model, it will obtain an uncertain SMPC problem. For this 

reason, the proposed method uses scenario trees to formulate the probable states of the WECS under 

the wind. With the scenario trees, the uncertain SMPC problem is transformed into a deterministic 

MPC problem and the deterministic MPC problem can be more easily solved. Finally, the 

fault-tolerant controller is implemented using the CVaR performance index to punish excessive loss, 

which can provide a better balance between the system performance and failure risk. The simulation 

results show that the proposed SMPC with the CVaR objective function can solve the modeling and 

fault tolerance control problems of WECSs under actuator faults. Its control performance is 40% 

higher than the common Min-Max performance index. However, the proposed method has to solve 

the SMPC problem with the CVaR performance index in two steps. This is not the best solution. In 

the future, we’ll try to solve the SMPC problem with the CVaR objective function in one step, which 

will have a higher practical value. 
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