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Abstract: The traditional power grid is inadequate to overcome modern day challenges. As the
modern era demands the traditional power grid to be more reliable, resilient, and cost-effective,
the concept of smart grid evolves and various methods have been developed to overcome these
demands which make the smart grid superior over the traditional power grid. One of the essential
components of the smart grid, home energy management system (HEMS) enhances the energy
efficiency of electricity infrastructure in a residential area. In this aspect, we propose an efficient
home energy management controller (EHEMC) based on genetic harmony search algorithm (GHSA)
to reduce electricity expense, peak to average ratio (PAR), and maximize user comfort. We consider
EHEMC for a single home and multiple homes with real-time electricity pricing (RTEP) and critical
peak pricing (CPP) tariffs. In particular, for multiple homes, we classify modes of operation for the
appliances according to their energy consumption with varying operation time slots. The constrained
optimization problem is solved using heuristic algorithms: wind-driven optimization (WDO),
harmony search algorithm (HSA), genetic algorithm (GA), and proposed algorithm GHSA. The
proposed algorithm GHSA shows higher search efficiency and dynamic capability to attain optimal
solutions as compared to existing algorithms. Simulation results also show that the proposed
algorithm GHSA outperforms the existing algorithms in terms of reduction in electricity cost, PAR,
and maximize user comfort.

Keywords: smart grid; demand side management; embedded systems; home energy management
system; real time electricity pricing

1. Introduction

The traditional grid is facing numerous challenges, including old infrastructure, lack of
communication, increasing demand for energy, and security issues. To address these issues, the concept
of smart grid has emerged which comprises of information and communication technologies that allow
bidirectional communication between the utility and energy consumers. Broadly speaking, smart grid
appears as a next generation grid and incorporates advanced technologies in communication,
distributed generation, cyber security, and advanced metering infrastructure [1]. These features
of the smart grid ultimately enhance the efficiency, reliability, and flexibility of the power grid. The key
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objective of the smart grid is the transformation of the traditional grid to a cost effective and energy
efficient power grid.

Demand side management (DSM) is an essential component in energy management of the
smart grid. Generally, DSM refers to manage the consumer’s energy usage in such a way to yield
desired changes in load profile and facilitates the consumers by providing them incentives [2].
For this purpose, various DSM techniques have been proposed in literature, including peak clipping,
valley filling, load shifting, strategic conservation, strategic load growth, and flexible load shape [3].
Furthermore, DSM is capable of handling the communication infrastructure between end user
and utility and also enables the integration of distributed energy resources to optimize energy
consumption profile.

Recently, one of the crucial DSM activities is demand response (DR), it is presumed that DR
is the subset of DSM in a broader aspect. DR is defined as the tariffs or programs established to
influence the end users to reshape their energy consumption profile in response to electricity price [4].
DR program is further categorized into two types: an incentive-based program and price-based
program. An incentive-based program provides monetary incentive to the end user on the base of
load curtailment. Various incentive programs are discussed in the literature, including direct load
control (DLC), curtailable load, demand bidding and buy back, emergency and demand. On the
other hand, a price-based program provides the price of electricity during different time intervals.
The purpose of the price-based program is to reduce electricity usage when the electricity price is
high and thus, reduce demand during peak periods. Price-based programs are: time of use (ToU),
RTEP, inclined block rate, CPP, and day ahead pricing. DR is considered as a key feature in smart grid
to improve the sustainability and reliability of power grid. However, it is examined in the literature
that researchers considered the DSM and DR are interchangeable [5,6].

With the emergence of the smart grid, the consumer and the utility can exchange real-time
information based on electricity pricing tariffs and energy demand of the consumer. The two way
communication benefits not only the consumers, but also improve stability of the power grid. With this
motivation, various models are designed to schedule energy consumption usage. Authors in [7],
comparatively evaluate the performance of home energy management controller (HEMC) which is
designed to schedule energy consumption on the basis of heuristic algorithms: GA, binary particle
swarm optimization (BPSO), and ant colony optimization (ACO). In [8], authors aim to reduce
electricity cost while incorporating renewable energy sources (RESs). The appliances are classified into
five groups on bases of power ratings and time factor. Multiple knapsack problem (MKP) is used for
the problem formulation and an optimization algorithm GA is employed to schedule the load profile.
Jon et al. [9], propose HEMS model for energy optimization and categorize the household appliances.
The major objective of the proposed model is to tackle the uncertainties related to different kind of
loads and reduce the electricity cost. The proposed algorithms are tested with the scrutiny of required
home appliances and day-ahead pricing scheme.

Authors in [10], present an improved model for the energy consumption of residential appliances.
The desired objective is to minimize the cost by managing energy consumption of the appliances.
Fractional programming (FP) is used for scheduling energy consumption by considering RTEP tariff
and distributed energy resources. The work in [11] presents HEMS model for energy optimization
model at residential sector. The DSM techniques take into account in the presence of distributed
generation, time-differentiated prices, and preference of loads. The minimization problem is solved
using a constructive algorithm with GA while considering energy cost. Authors in [12], provide a
detailed study of HSA algorithm, the primary steps, its adaptation, and its specialty in different fields.
Also, authors comparatively discuss the searching criteria of different optimization techniques and
HSA. At the end, authors are elaborated the application of HSA in a complex scenarios and various
fields. Authors in [13], design day ahead scheduling model for microgrid systems with the integration
RESs in order to minimize the start up cost and generation cost of the RESs. A hybrid algorithm is
proposed using steps of enhance differential evolution (EDE) algorithm and HSA to achieve desired
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objective. The improvement in the tuning parameters of EDE and HSA are also carried out which
enhances the search diversity. The work in [14], demonstrates the residential load scheduling with
the day ahead pricing scheme. A hybrid technique teacher learning genetic optimization (TLGO) is
proposed to solve the optimization problem. The major objective of the work is to reduce electricity
cost at minimum user discomfort.

Danish et al. in [15], present HEMS model based on heuristic algorithm BSPO. The aim of the
authors is to minimize the electricity cost while considering user comfort. Authors in [16], present a
generic model of DSM in order to optimize energy consumption in the residential sector. In a home
environment, energy management controller (EMC) is used to control energy consumption of the
appliances during peak hours. In [17], authors propose a comprehensive model for energy management
in homes with multiple appliances. The proposed model consists of six layered architecture and each
layer is connected with other in order to achieve better results in terms of cost reduction and PAR.

The work in [18] provides a comprehensive study of WDO technique, the basic concepts,
structure its variants, and its application in electromagnetics. A numerical study is presented using
uni-modal and multi-modal test functions and results of WDO and other optimization techniques,
including GA, BPSO, and differential algorithm (DE). A recent work in [19] proposes a novel approach
of DSM with the integration of RESs. The energy provider inspects the load profile and the price of
the electricity. Authors aim to reduce the deviation of average load energy demand by scheduling the
energy consumption and storage devices. To solve scheduling problem, authors model the energy
consumption and storage as a non-cooperative game.

In [20], authors demonstrate the electricity load scheduling problem for multi-resident and
multi-class appliances using problem ladson generalized bender algorithm while considering energy
consumption constraint. The main objective of the study is to protect the private information i.e.,
energy consumption profile of the residences and maximize the users satisfaction.

Authors in [21] give an insight of scheduling the energy management in the residential sector
and propose two horizon algorithms. The proposed algorithms are efficient to reduce electricity
cost with less computational time. Moreover, authors also discuss the implementation of proposed
algorithms and challenges related to its implementation. Di Somma et al. in [22], present stochastic
programming model for the optimal scheduling of distributed energy resources system. The main aim
of the study is to reduce energy cost and CO2 emission while, satisfying time-varying user demand.
In [23], authors propose a model based on optimal economic choices for the management of the
microgrid. The economic model is applied based on GA to the microgrid with traditional power
plants and RESs. The work in [24], provides an improved HEMS architecture considering various
categories of appliances in the home. Multi- time scale optimization is formulated in order to schedule
energy consumption of appliances. A predictive model-based-heuristic solution is proposed and its
performance is compared with benchmark algorithms. Table 1 lists the summary of the research work
based on heuristic techniques.
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Table 1. Heuristic techniques.

Techniques Aims Distinctive Attributes Limitations

Hybrid technique
(GA and PSO) [25]

Minimization of cost
and PAR

HEMS model is considered
with distributed energy

resources and energy
storage system

User comfort is ignored

EA [26] Cost reduction
Energy optimization in
residential, commercial,

and industrial area

System complexity is
enhanced

ILP [27] Cost and PAR
minimization

Classification of appliances
using day ahead pricing

model
PAR is not addressed

DP [28] Cost and PAR
minimization

Optimizes energy
consumption behavior with

high penetration of RESs

System complexity is
increased and user
comfort is ignored

GA [29] Cost reduction and user
comfort

Cost reduction by
optimizing energy

consumption and time slots
are divided

System deals with large
number of appliances in

multiple sector which
increases system

complexity

GA, BPSO, ACO [7]
Cost and PAR reduction

by satisfying user
comfort

HEMC schedules the
appliances by considering
user satisfaction and RESs

integration

System complexity and
computational time are

increased

GA [8] Cost reduction and user
comfor

Optimizes energy
consumption behavior with

RESs incorporation

Challenges related to
RESs are not addressed

and PAR is ignored

Hybrid technique
(LP and BPSO) [9]

Cost reduction and user
comfort maximization

Thermostatically and
interruptible appliances are
considered with day ahead

pricing model

PAR is not considered

FP [10] Electricity cost
reduction

Cost efficient model with
distributed energy

resources and practical
implementation of the

model proposed

PAR and user comfort are
not taken into account

GA [11] Cost and PAR reduction
Proposed model is tested
using radial residential

electrical network

System complexity and
computational time are

enhanced

HSA [12]
Basic concepts of HSA,

its structure, and
applications

Improved and hybrid HSA
with application

Real time implementation
is not considered

Hybrid technique
(EDE and HSA) [13]

Startup and generation
cost of RESs

Verification is done using
IEEE standard bus system

Computational time is
increased

BPSO [15]

Electricity cost
minimization

considering user
preference

Simplicity and robustness
of BPSO

Computational time is
increased as time slot is
divided into sub time

slots

GA [16]
Minimization of

electricity cost, PAR,
and waiting time

Generic model of DSM
with EMC using RTEP

User comfort is not
addressed efficiently

Single knapsack [17]

Energy consumption
optimization

considering six layer
architecture

Comprehensive model for
energy management
addressing six layer

architecture

Complicated architecture
in terms of modeling in

practical scenario
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HEMS is considered as an integral part for the successful DSM of the smart grid [30].
HEMS provides an opportunity for the residential sector consumers to communicate with the
household appliances and the utility to improve the energy efficiency regarding electricity tariff
and consumer’s comfort. A wide range of research has been made to study scheduling problems in
HEMS. A hybrid genetic particle swarm optimization (HGPO) is proposed to schedule the energy
consumption of appliances in HEMS with the integration of RESs [25]. However, it is impractical to
schedule energy consumption without addressing user comfort. A heuristic optimization algorithm,
such as GA is used to schedule appliances for the residential, commercial, and industrial sectors in [26].
However, authors have not addressed the user comfort and also computational time of the algorithm
is high. Similarly, in [27,28], integer linear programming (ILP) and dynamic programming (DP) are
used to schedule the appliances and reduce electricity cost and PAR. However, these algorithms are
inefficient in terms of computational time. In [29], authors propose a general architecture of HEMS
based on GA in the presence of RTEP and inclined block rate to reduce electricity cost and PAR. As GA
is easy to implement, however, system deals with large number of appliances in multiple sector which
increases the computational complexity.

Motivated from aforementioned literature work, we have proposed EHEMC, based on heuristic
algorithms. The major contribution of this paper is summarized as follows:

• We have proposed EHEMC with an objective to minimize electricity cost and average waiting time.
• Initially, appliances are classified into three categories: regularly operated appliances,

shiftable appliances, and elastic appliances-based upon their energy usage and time of
operation. Furthermore, electricity cost and energy usage for each category are calculated using
Equations (2)–(7).

• To address our objective efficiently a hybrid optimization algorithm GHSA is proposed, which is
later on compared with the existing algorithms, including WDO, HSA, and GA (Section 3).

• We implement the proposed GHSA algorithm for single home (SH) and multiple homes (MHs)
and analyze its performance in the presence of pricing tariffs: RTEP and CPP. We observe that as
the number of homes is increased computational time of the system also increases. However, our
proposed algorithm GHSA effectively address the problem with less computation time.

• In order to flexibly adjust the energy consumption profile different power ratings and operational
time slots are assigned in MHs. Specifically, we consider fifty homes in MHs case.

• The effect of electricity cost, energy consumption, and average waiting time is demonstrated by
feasible regions (Section 2.10).

• The PAR is minimized to avoid peak power plants.
• Finally, extensive simulations are conducted to validate the effectiveness of proposed algorithm

GHSA in terms of electricity cost, PAR, and average waiting of the appliances.

The rest of the paper is structured as follows. Section 2 presents a comprehensive study of the
system model. Section 3 describes the simulation results along with the discussion. At the end,
we present the conclusion of the paper in Section 4.

Nomenclature

This subsection presents the nomenclature as given in Table 2. The table contains abbreviations,
initialism, and pseudo-blends.



Energies 2018, 11, 190 6 of 28

Table 2. Nomenclature.

Symbols Description
Ec,TL Total energy consumption in a day
ςRa ,TL Energy consumption of regularly operated appliances
ςSa ,TL Energy consumption of shift-able operated appliances
ςEa ,TL Energy consumption of elastic operated appliances
$TL
Ra

Cost per day of regularly operated appliances
$TL
Sa

Cost per day of shift-able appliances
$TL
Ea

Cost per day of elastic appliances
ε Electricity pricing signal
ζ ON-OFF states of appliances
aα Starting time of appliance
bβ Ending time of appliance
W Waiting time of appliance
Ot Operation time interval

Vcur Velocity of air parcel in current iteration
Vnew Velocity of air parcel in new iteration
ςai Energy consumed by appliance i
Pcur Pressure of air parcel in a current location
xnew Position of air parcel in the new location
xcur Position of air parcel in the current location
xold Position of air parcel in the previous location

Xnew Updated value of harmony
τr Request time of the appliances
Tmax Maximum time of the appliance operation
Tmini Minimum time of the appliance operation
ΥTL Total electricity cost for fifty homes
Ω Rotation of the earth
∇ Pressure gradient
ρ Air parcel density
µ velocity of the wind

δV Infinite mass and volume
g Earth’s gravity

2. System Modeling

As mentioned before, for the effective deployment of smart grid, HEMS is crucial. HEMS can
manage, control, and optimize energy consumption in home environment. While an essential element
of HEMS, EHEMC is used to schedule energy consumption based on heuristic techniques to effectively
reduce electricity cost while considering user preference.

The system model comprises of HEMS architecture, energy consumption model,
load categorization, energy cost and unit price, and problem formulation.

2.1. HEMS Architecture

HEMS effectively visualizes the load consumption information in home and contributes towards
the energy balancing between the supply and demand side. The primary aim of the HEMS
implementation is to reduce electricity expense and PAR. According to utility perspective, its aim is
twofold: first, it manages the energy consumption usage of residential sector consumers and secondly,
it reduces PAR. While in consumers perspective, it reduces electricity expense. The proposed HEMS
architecture comprised of advanced metering infrastructure (AMI), smart meter, EHEMC, In-home
display, market pricing, utility, and bulk generation as shown in Figure 1.
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Bulk

Generation

Smart Meter

Re

Market

Pricing

Figure 1. HEMS architecture.

In general, AMI refers to measurement and collection of systems that include smart metering,
advanced communications, and data management systems. AMI is also responsible to manage data
collection and transmission of energy usage data from the smart meter to the utility. While smart meter
acts as a communication gateway between the utility and smart home. The smart meter is associated
with processing and sending of energy usage data from EHEMC to the utility via AMI and also
processes electricity pricing signal from market pricing and utility. In HEMS architecture, it is assumed
that each home is equipped with EHEMC. EHEMC consist of embedded system which schedules the
energy consumption profile of the appliances in response to pricing signal and user comfort.

2.2. Energy Consumption Model

We consider a home with a set of appliances A , {a1, a2, a3, . . . , aN}, such that a1, a2, a3, . . . , aN
represents each appliance over the time horizon t ε T , {1, 2, 3, . . . , T}. Each time slot represents one
hour and the total time interval is 24 h (T = 24), in accordance with the single day. The total energy
consumption of the appliances in a day can be mathematically represented as:

Ec,TL =
T

∑
t=1

(
N

∑
j=1

E(aj ,t)

)
∀ t ε T , a ε A (1)

In smart grid, each home is equipped with EHEMC to optimize energy consumption and reduce
electricity cost. Therefore, we categorize the appliances into three groups which are presented in the
following subsection.

2.3. Load Categorization

We have categorized each appliance on the bases of energy consumption, operating time, and user
preference. Suppose An = {Ra

⋃ Sa
⋃ Ea} represents a set of appliances, where Ra is regularly

operated appliances, Sa shiftable appliances, and Ea elastic appliances. Table 3 shows power ratings
and time of operation of the appliances.

(1) Regularly operated appliances
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These are also called fixed appliances because their energy consumption profile cannot be modified
by EHEMC. They are vacuum pump, water pump, dishwasher, and oven. Regularly operated
appliances are represented as (Ra) and their energy consumptions are represented by ςRa .
While power rating ofRa is expressed as ξRa and the total energy consumption in a day is given as:

ςRa ,TL =
T

∑
t=1

(
∑
RaεAn

ξt
Ra
× ζ(t)

)
(2)

Similarly, the total cost per day of theRa is given as:

$TL
Ra

=
T

∑
t=1

(
∑
RaεAn

ξt
Ra
× ε(t)× ζ(t)

)
(3)

where ζ(t) ε [0, 1] is the operation state of appliances in time interval t εT and ε represents the
pricing signal.

(2) Shift-able appliances

These are controllable appliances and their operation time can be shifted to any time slot without
performance degradation, however, once they turn ON their length of operation must be completed.
They are also named as burst load for example, washing machine and cloth dryer. Shift-able appliances
are denoted by (Sa) and power rating of Sa is νSa . The total energy is computed as:

ςSa ,TL =
T

∑
t=1

(
∑
SaεAn

νt
Sa
× ζ(t)

)
(4)

The total cost calculated of Sa in a day is calculated as:

$TL
Sa

=
T

∑
t=1

(
∑
SaεAn

νt
Sa
× ε(t)× ζ(t)

)
(5)

(3) Elastic appliances

These are considered as a flexible appliances i.e., their time period and energy consumption
profile are flexibly adjusted. They are also named thermostatically-controlled appliances, such as water
heater, air condition, water dispenser, and refrigerator. Let us consider µEa is the power rating of elastic
appliances (Ea) and the total energy of Ea is computed as:

ςEa ,TL =
T

∑
t=1

(
∑
EaεAn

µt
Sa
× ζ(t)

)
(6)

The total cost per day of Ea is given as:

$TL
Ea

=
T

∑
t=1

(
∑
EaεAn

µt
Ea
× ε(t)× ζ(t)

)
(7)

Let us assume that the total energy consumed (ςT) by appliances in total time interval 24 h
is given:

ςTL = ςRa ,TL + ςSa ,TL + ςEa ,TL (8)

Similarly, total cost per day ofRa, Sa, and Ea appliances is calculated:

$TL = $TL
Ra

+ $TL
Sa

+ $TL
Ea

(9)
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The energy consumption of each appliance in given time period can be mathematically shown in
matrix form as:

Ec =


ςt1
Ra

. . . ςt1
Sa

. . . ςt1
Ea

ςt2
Ra

. . . ςt2
Sa

. . . ςt2
Ea

...
...

...
ςT
Ra

. . . ςT
Sa

. . . ςT
Ea

 (10)

2.4. Energy Cost and Unit Price

Various electricity tariffs are proposed to define electricity cost for a day or for a short time period.
In our model, we consider RTEP and CPP tariffs.

The RTEP tariff is typically updated for each hour during a day and is capable of contributing
better approximation of real time power generation cost. RTEP implementation requires two way of
communication in order to interact with the consumer in a real time. Therefore, the aim of RTEP is to
reduce demand of consumer during peak demand times. RTEP is also referred as dynamic pricing.

The CPP tariff has resemblance with ToU pricing regarding fix prices in different time intervals.
The implementation of CPP during critical event imparts profitable response to the utility [5].
However, due to stress on the power grid, the prices are replaced by the predefined higher rate
in order to reduce energy demand. Thus, the aim of the CPP tariff is to assure the reliability and
sustainability of the power grid.

In our research work, we consider RTEP and CPP tariffs because in normal operation of power
grid, the RTEP behaves more flexibly as compared to other pricing signals. During critical conditions
(high electricity demand and low generation) of the power grid consumers have to pay high electricity
prices in the respective days or hours. Thus, both pricing signals are considered and electricity cost is
reduced by scheduling energy consumption in off-peak hours.

Table 3. Load description.

Appliances Group Appliances Power Ratings (kW) Time of Operation (h)

Regularly operated appliances

Vacuum pump 0.6 6

Water pump 1.18 8

Dish washer 0.78 10

Oven 1.44 18

Shift-able appliances
Washing machine [3.60 0.5 0.38 ] [5 4 3]

Cloth dryer [4.4 2 0.8] [4 3 2]

Elastic appliances

Refrigerator [1 0.75 0.5] [18 16 15]

AC [1.5 1.44 1] [15 13 14]

Water heater [4.45 1.2 1] [7 5 4]

Water dispenser [1.5 1 0.5] [11 10 9]

2.5. Problem Formulation

In this research work, we considered SH and MHs with household appliances and our desired
objectives are: to reduce electricity cost by scheduling energy consumption in low price hours (off-peak
hours), to maintain grid stability by minimizing PAR, and to maximize user comfort level. We formulate
our objective function using MKP approach which is based on the following assumptions:

• Assuming An as number of items (N).
• Each of the items comprises of two attributes i.e., weight and the value. The weight of the items

expresses the energy usage of the appliances in time interval (t). In addition, the value of the items
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denotes the energy cost of the appliances. However, the weight of the appliances is independent
of the time interval.

• We consider N number of knapsacks in order to limit power consumption of each category of the
appliances and also to limit the total power capacity (Cg).

By considering aforementioned assumptions, the utility and consumers can actively cooperate
in energy demand management in order to reduce electricity cost and PAR. To achieve the grid
sustainability, total energy consumption of the appliances in each time interval t εT should not exceed
Cg. For this reason, we limit the total energy consumption as:

0 ≤ ςTL ≤ Cg (11)

If the constraint in Equation (11) is satisfied the inadequacy of power and stresses on the grid can
be eliminated.

2.6. PAR

PAR is the ratio of the maximum aggregated load consumed in a certain time frame and the
average of the aggregated load. PAR informs about the energy consumption behavior of the consumers
and the operation of the power grid. The high PAR jeopardizes the grid stability and increases the
electricity cost. While reduction in PAR simultaneously enhances the stability and reliability of the
power grids and reduces the electricity bill of the consumers. Mathematically, it is expressed as:

Lpeak = max
tεT

ςT(t) (12)

Lavg =
∑T

t=1 ςT(t)
T

(13)

Lpeak and Lavg show the maximum aggregated load and average load in a time frame (t). While ς(t)
represents the total energy consumption of the appliances in an hour.

PAR =
Lpeak

Lavg
=

Tmax
tεT

ςT(t)

∑T
t=1 ςT(t)

(14)

2.7. User Comfort

In energy optimization, the load is shifted from peak hours to off-peak hours in order to reduce
electricity cost. In this context, Ra consumption patterns are not changed and they must run with
first preference, whereas Sa and Ea operation time interval (Ot) are flexibly shifted. Sa and Ea can be
delayed to operate during peak hours to reduce electricity cost, however, it incurs discomfort to the
consumer. To evaluate waiting time of appliances, we assume starting and ending time instant of
appliances aαεT and bβεT , such that (aα < bβ) and τr is the request time of an appliance. WhileW is
expressed as waiting time of the appliances.

W = |(aα − τr)| (15)

Wavg =
∑An

a=1 |(aα − τr)|
An

(16)

WT =
∑T

t=1Wavg(t)(
∑T

t=1Wavg(t)
)

max

(17)
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Equation (16) shows the average waiting time of the appliances and Equation (17) represents the
normalized value of average waiting time.

2.8. Objective Function

The objective is to minimize electricity cost and the average waiting time. The electricity cost is
calculated using electricity pricing tariff and energy consumption. The total electricity cost per day is
given by:

Cost =
T

∑
t=1

An

∑
ai

ε(t)× ςai (t)× ζ(t) (18)

In Equation (18) ςai (t) shows the energy consumption of appliances in time slot t and ε(t) indicates
the electricity pricing tariff in time interval t. Equation (18) is normalized and is given as:

CostT =
∑T

t=1 ∑An
ai

ε(t)× ςai (t)× ζ(t)(
∑T

t=1 ∑An
ai

ςai (t)× ε(t)× ζ(t)
)

max

(19)

Now, we introduce objective function as:

Minimize w1(CostT) + w2(WT) (20)

subjected to:
ςTL ≤ Cg (21a)

PAR =
T max

tεT
ςT(t)

∑T
t=1 ςT(t)

≤ Tmax (21b)

T min ≤ t ≤ T max (21c)

bβ

∑
t=aα

νt
Sa

= ςSa ,TL , νt
Sa

= 0, ∀ t εT \ Ta (21d)

bβ

∑
t=aα

µt
Ea
≤ ςEa ,TL , µt

Ea
= 0, ∀ t εT \ Ta (21e)

0 ≤ νt
Sa
≤ ςt

Ea ,TL
, ∀ t εT (21f)

ςmini
Ea ,TL

≤ µt
Ea
≤ ςmax

Ea ,TL
, ∀ t εT (21g)

Wavg ≤ 5 (21h)

T

∑
t=1

ςTL(t)
unsche =

T

∑
t=1

ςTL(t)
sche, ∀ t εT (21i)

In Equation (20) both parts of the objective function i.e., minimization of total cost per day and
average waiting time (Wavg) of the appliances are first normalized using Equations (17) and (19) and
then simultaneously solved using linear weighted sum method. Equal weights w1 and w2 are assigned
to the both parts of the objective function i.e., w1 = w2 = 0.5 [29]. Equations (21a)–(21i) are constraints
of the objective function. Equation (21a) shows the total power consumption of appliances should not
overreach the power grid capacity. Equation (21b) limits the PAR less than Tmax, and the ideal value
of Tmax is equal to 1. Equation (21c) guarantees that time scheduled by appliances should not exceed
the restriction. Equations (21d) and (21e) are constraints representing the energy load balance of Sa

and Ea in any time slot (t). While Equations (21f) and (21g) indicate the maximum and minimum
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energy consumption of Sa and Ea appliances in each hour of the operation. Equation (21h) shows the
maximum time that user postpone the operation of Sa and Ea. For our proposed model, we consider
Wavg of Sa and Ea is equal to or less than 5 h. Whereas, constraint (21i) clearly demonstrates the total
energy consumption of the appliances in scheduled case and unscheduled case are always equal i.e.,
the EHEMC schedules the appliances by taking into account that appliances must complete their
length of operation.

2.9. Optimization Techniques

Generally, mathematical techniques provide accurate solutions to the problem which is either
feasible or infeasible. However, they are incapable of addressing the complex problems due to the
curse of dimensionality, slow convergence rate, and complex calculations. While heuristic optimization
algorithms do not guarantee the exact solution and provide approximate solutions, however, they are
capable of handling complex calculations. In spite of approximate solutions, optimization algorithms
are fair enough to converge faster, reach the desired solution, and applicable in all fields of engineering
and computer science [31]. For this purpose, we computed our problem as an optimization problem
and four heuristic optimization techniques: WDO, HSA, GA, and GHSA are employed. Each heuristic
optimization technique is explained as follows:

2.9.1. GA

GA is an adaptive algorithm based on the biological process [26]. Initially, a set of random
solutions is generated called chromosomes and the set of the chromosome is considered as a population.
Each chromosome comprises of genes and the value of gene is either binary or numerical value.
We consider the value of gene as 1 or 0 which actually shows ON and OFF states of the appliances. The
fitness of each chromosome is evaluated using Equation (20) and the stochastic operators crossover
and mutation are used to generate new populations. Two point crossover with crossover rate Pc = 0.9
is used and the obtained chromosome is further mutated through mutation process which diversifies
the search space of the algorithm, the mutation rate is considered Pm = 0.1. The process of crossover
and mutation enables to reach at global optimal results. At the end, binary array [0 0 1 0 0 0 0 0 1 1]
is obtained which shows the appliance is ON at 3, 9 and 10 location of the array. We then find out
electricity cost and energy consumption to achieve our desired objective. The optimal results are
obtained by considering the parameters in Table 4.

Table 4. GA parameters.

Parameters Values

Maximum iteration 200

Population size 30

Pc 0.9

Pm 0.1

The process is continued until the best optimal vector is achieved. Additionally, in comparison to
other existing optimization techniques, GA is more robust and solves the complex non-linear problem
with high convergence rate. GA also exhibits the property of independence of problem domain and
imparts divergent solution in a single iteration.

2.9.2. WDO

WDO is the meta-heuristic algorithm which is inspired by the atmospheric motion of wind.
In WDO, infinitely small air parcels move in a search space and wind blows to equalize pressure
on air parcels using four different forces. These forces are cariols forces, pressure gradient forces,
gravitational forces, and the frictional forces. Coriolis force tends to move the wind horizontally i.e.,
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rotate the wind around the earth, while pressure gradient force is defined as; a change in wind pressure
over distance covered by the wind. When both coriolis force and pressure gradient force are equal they
balance the wind pressure horizontally. Furthermore, the gravitational force pulls the wind towards
its center and it is in the vertical direction, while the friction force lowers the speed of the wind which
in turn slow down the speed of coriolis force. All of these forces are expressed mathematically as [15]:

CF = −2Ω× µ, (22)

PGF = −∇PδV, (23)

Fg = ρδVg, (24)

Ff = ραµ, (25)

At first, the random solution (vi) is generated using Equation (26).

vi = Vmax × 2× (rand(populationsize, n)− 0.5). (26)

Each of the random solution is evaluated using fitness function and relatively good solutions
are reproduced, while bad solutions are neglected. In each step, position and the velocity of the air
parcel is evaluated and the new value of velocity is assigned to each air parcel. Equation (27) shows
the updated velocity (Vnew) of air parcels

Vnew = (1− α)Vcur −Vcur × g(R× T | 1
j
− 1 | (xnew − xold)) +

cVcur

Pcur
, (27)

Vnew = Vmax i f Vnew > Vmax (28)

Vnew = Vmin i f Vnew < Vmax (29)

xnew = xcur + ( Vnew ×4t) , (30)

After updating the velocity of the particle. New generation is obtained using Equation (30) and the
process will continue until stopping criteria is reached i.e., optimal scheduling of energy consumption
and minimization of electricity cost. The optimal results are obtained by considering the parameters in
Table 5.

Table 5. WDO parameters.

Parameters Values

Maximum iteration 200

Population size 30

Vmin 0.9

Vmax 0.1

RT 3

α 0.4

DimMax 5

DimMin −5

g 0.2

2.9.3. HSA

HSA is the music inspired technique proposed by Zong Woo [12]. In HSA, each musician plays
note repeatedly to improve its harmony and generates new random variable according to Equation (28).
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Tuning parameters are also adjusted to achieve best harmony. The initial population is generated
randomly as:

Xij = Li + rand(Ui − Li) (31)

where Ui, Li shows upper and lower bound, respectively. Equation (32) shows randomly generated
population in matrix form:

HM =


X1

1 X2
1 X3

1 . . . Xm
n

X1
2 X2

2 X3
2 . . . Xm

n
...

...
...

...
Xn

1 Xn
2 Xn

3 . . . Xm
n

 (32)

The initial population generated harmony memory (HM) by Equation (32) is compared with the
harmony memory consideration rate (HMCR). The HMCR specifies the probability of employing the
value of randomly generated matrix. However, suitable HMCR rate is considered as 70% to 90% of the
value from the entire pool of HM. The condition for HMCR is:

Xnew =

{
Xε{x1i, x2i, x3i . . . xHM}, With P(HMCR)

Xε{x1, x2, x3 . . . xN}, With P(1− HMCR).
(33)

The values are selected from HM and their pitch are adjusted using pitch adjustment ratio.
The pitch adjustment ratio can adjust the frequency of the new harmony and diversify the search space.
Par can be adjusted as:

Xnew =

{
YES, With P(Par)

NO, With P(1− Par).
(34)

After achieving new harmony vector fitness function is evaluated using Equation (20). If new
harmony vector is better than worst harmony replace the worst harmony in the HM. The new harmony
is binary coded string and shows the appliances ON/OFF states. The optimal results are obtained by
considering the parameters in Table 6.

Table 6. HSA parameters.

Parameters Values

Maximum iteration 100

Population size 30

HMCR 0.9

PAmin 0.4

PAmax 0.9

Bwmin 0.0001

Bwmax 0.1

2.9.4. GHSA

We propose heuristic optimization algorithm by combining the attributes of GA and HSA in order
to achieve better results as compared to existing algorithms. It is noticed in [12], that HSA has quality
to perform searching with high speed i.e., converges at faster rate, while GA has capability to search
for global optimal solution. For this reason, we combine the attributes of GA and HSA to achieve
global optimal solutions with faster convergence rate.

Initially, GHSA has followed the same steps as the steps of HSA. Equation (31) generates the
random values using parameters given in Table 6. The newly generated values are stored and named as
harmony memory (HM). HM is binary coded string showing the ON and OFF status of the appliance.
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After defining HM using Equation (32) the improvisation of HM is done by generating a new harmony
vectors based on HMCR using Equation (33). The selected candidate is further modified according to
Par. Par calculates the probability of the candidate from HM to be modified and (1-Par) probability of
doing else as in Equation (34). However, up to this step, the results achieved by HSA are restricted to
only a particular region and the dynamic capability in search of global optimal solution is also confined.
In order to overcome this issue, the stochastic operators of GA are introduced i.e., crossover and
mutation. These operators not only improve the diversity of the solution but also help to provide
higher efficiency towards an optimal solution. As a result, the modified hybrid algorithm GHSA
effectively achieve the optimum solution with the faster convergence rate and hence give better results
than other algorithms. Therefore, the stochastic operators are employed and the fitness function
is evaluated using Equation (20). This new value of the harmony is compared with existing worst
harmony in HM and the worst harmony is excluded. The process continues until the termination
criteria is met.

The computational time of proposed and existing algorithms for SH and MHs is given in Table 7
and the Algorithm 1 shows working steps of the proposed algorithm GHSA.

Table 7. Computational time of heuristic techniques.

Schemes Techniques Computational Time (s)

WDO 2.61

HSA 2.01

SH GA 1.5

GHSA 1.43

WDO 100.21

HSA 96.1

MHs GA 70.46

GHSA 60.33

2.10. Feasible Region

Feasible region is defined as the set of optimal points which satisfies all the constraints given in
a scenario, including inequalities, equalities, and integer constraints. We consider feasible region of
electricity cost versus energy consumption and electricity cost versusWavg for a SH and MHs using
RTEP and CPP tariffs.

2.10.1. Feasible Region for SH

In this segment, we figure out the feasible region for electricity cost and energy consumption of
SH by considering RTEP and CPP tariffs. Firstly, we consider a SH with RTEP tariff and the electricity
cost per hour is given:

ξTL(t) =

(
An

∑
ai

ς(ai ,t) × ε(t)× ζ(t)

)
. t ε T (35)

Similarly, the total electricity cost is calculated as:

ξTL =
T

∑
t=1

(
An

∑
ai

ς(ai ,t) × ε(t)× ζ(t)

)
. t ε T (36)
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Algorithm 1: GHSA

1 Initialization of parameters;
2 Randomly generate population using Eq. (31);
3 for i=1:HMS do
4 for j=1:Nc do
5 Randomly generated Xi

j in HM ;

6 end for
7 end for
8 End of initialization step;
9 while Maximum number of iteration reached do

10 Construction and assessment of new candidate;
11 if (rand(0, 1) ≤ HMCR) then
12 Choose randomly from existing harmony
13 if (rand(0, 1) ≤ par) then
14 Adjust the tone randomly using par
15 end if
16 else
17 Select pair x, y randomly from existing harmony
18 if rand(0, 1) ≤ Pc then
19 crossover (x,y)
20 end if
21 if rand ≤ Pm then
22 mutate (x,y)
23 end if
24 end if
25 Evaluate fitness function using Eq. (20) ;
26 End of the construction and assessment step;
27 Construction and assessment of new candidate: a ;
28 if F(a) has best value than the worst member of HM then
29 Replace the worst HM member with new candidate: a
30 else
31 Discard a
32 end if
33 End of HM update;
34 Until a preset termination criterion is met
35 end while

To minimize Equation (36), we introduce constraints regarding RTEP tariff and energy
consumption of the appliances are:

R1 : 1.215 ≤ ξTL(t) ≤ 3.7

R2 : ξTL ≤ 21.6

R3 : 1.5 ≤ ς(t) ≤ 13.84

In Figure 2a points P1, P2, P3, P5, and P6 show the feasible region of electricity cost and energy
consumption. The electricity cost is calculated using RTEP tariff and the unscheduled cost per hour is
3.71 cents. The total cost per day is 21.6 cents and based on the parameters electricity cost and energy
consumption the constraints are defined. The constraint R1 shows that the electricity cost in hour
should not exceed 3.71 cents including peak hours and off-peak hours. Constraints R2 shows total cost
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per day should not increase than the 21.5 cents as total cost shown here is in the unscheduled case,
therefore, the scheduling algorithms must schedule the cost in such way that it should not exceed the
limit as in R2. While the constraint R3 shows the total energy consumption of the appliances must be
with in limits i.e., between 1.5 and 13.84 kWh to reduce electricity cost. Similarly, Figure 2b shows
feasible region for SH considering CPP tariff and the constraints are given as:

C1 : 1.215 ≤ ξTL(t) ≤ 6.37

C2 : ξTL ≤ 37.5

C3 : 1.5 ≤ ς(t) ≤ 13.84
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Figure 2. (a) Feasible region of energy consumption for SH using RTEP; (b) Feasible region of energy
consumption for SH using CPP.

Constraints associated with CPP show that the electricity cost of an hour should not exceed
6.37 cents. Constraint C2 shows the cost for a single day should be less than 37.5 cents. While the
constraint C3 shows for the optimal scheduling of the energy consumption, energy consumed in an
hour should be with in limits of 1.5 kWh and 13.84 kWh.

We also computed feasible region for electricity cost and Wavg of the appliances in order to
determine the user comfort. User comfort is inversely related with theWavg of the appliances and
electricity cost. We consider maximum value ofWavg is 5 h for the appliances i.e., allowable delay
for the operation of the appliances. In Figure 3a points P1, P2, and P3 show the feasible region for
electricity cost andWavg using RTEP tariff. The point P1 shows that theWavg of the Sa and Ea are
restricted to zero, then the electricity cost is reached to a maximum value i.e., 21.5 cents whereas, point
P2 shows theWavg of Sa is 5 h then the cost is reduced to 18.6 cents. While point P3 shows thatWavg

of all the appliances, including Sa andRa is 5 h then the cost is reduced to 10 cents, however, in this
case consumers have to pay less cost, but compromise its comfort level. Similarly, in Figure 3b point P1

shows that the consumers have to pay maximum cost 37.7 cents whenWavg is zero. Whereas, point P2

shows that the cost is reduced to 18.6 cents when theWavg of the Sa is 5 h. While point P3 presents that
the cost is decreased to 15 cents as theWavg of the appliances is increased to 5 h. The feasible region
of Figure 3a,b depicts the trade-off between the electricity cost andWavg of the appliances. In order
to minimizes the trade-off optimal scheduling of the energy consumption profile is essential in peak
hours and off-peak hours.
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Figure 3. (a) Feasible region of average waiting time for SH using RTEP; (b) Feasible region of average
waiting time for SH using CPP.

2.10.2. Feasible Region for MHs

The feasible region of electricity cost and energy consumption for MHs is determined using RTEP
and CPP tariffs. Similar to previous segment, we consider MHs using RTEP and CPP tariffs and the
total cost is calculated as:

ΥTL =
50

∑
N=1

(
T

∑
t=1

An

∑
ai

ς(ai ,t) × ε(t)× ζ(t)

)
. t ε T (37)

Constraints associated with electricity cost and energy consumption for MHs using RTEP are given as:

S1 : 50.6 ≤ ξTL(t) ≤ 94.4

S2 : ΥTL ≤ 648.43

S3 : 75 ≤ ς(t) ≤ 351

In Figure 4a the shaded region shows the feasible region of electricity cost and energy consumption
of MHs using RTEP tariff. Constraint S1 indicates the cost per hour must be restricted with in limits of
50.6 and 94.4 cents. While the cost per day is restricted to 648.43 cents by the constraint S2. Constraint S3

presents that the energy consumption should not exceed upper and lower bound i.e., 75 and 351 kWh
respectively. Figure 4b shows the feasible region of the electricity cost and energy consumption for
MHs using CPP tariff. The constraints related to electricity cost and energy consumption for MHs
using CPP are:

W1 : 58.7 ≤ ξTL(t) ≤ 156.8

W2 : ΥTL ≤ 1087

W3 : 75 ≤ ς(t) ≤ 351
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Figure 4. (a) Feasible region of energy consumption for MHs using RTEP; (b) Feasible region of energy
consumption for MHs using CPP.

Similar to prior constraints, the constraint W1 indicates that electricity cost in an hour should
be restricted by upper and lower bound i.e., 58.7 and 156.8 cents, respectively. Constraint W2 shows
that heuristic algorithm should schedule the cost such that it should not increase 1087 cents. While
constraint W3 simply means that for minimization of electricity cost energy consumption of the
appliance should not exceed the given values as in W3.

In Figure 5a points P1, P2, and P3 illustrate the feasible region of electricity cost andWavg of MHs
using RTEP tariff. The point P1 shows that the electricity cost is maximum whenWavg is zero, while
point P3 represents that at the maximum value of theWavg of the appliances the total cost is minimum
i.e., 150 cents. However, at this stage user comfort is decreased. P2 shows the cost is reduced to
580 cents when the operation time of Sa is delayed to its maximum value i.e., 5 h. Similarly, Figure 5b
shows the feasible region bounded by the points P1, P2, and P3 with CPP tariff. The maximum cost
in case of CPP is raised to 1087 cents at zeroWavg. Whereas, P2 shows the cost when the operation
time of Sa is delayed only. While P3 shows thatWavg is maximum for all the appliances the cost is
minimum i.e., 150 cents. Moreover, to address the trad-off in a better way, it is important to consider
electricity cost and user comfort equally and appropriately.
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Figure 5. (a) Feasible region of average waiting time for MHs using RTEP; (b) Feasible region of
average waiting time for MHs using CPP.
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3. Simulation and Discussion

In this section, we inspect the numerical simulation of four heuristic algorithms and their
performances are evaluated in terms of electricity cost, PAR, and user comfort. A hybrid algorithm is
proposed and simulation results are compared with existing algorithms using software tool MATLAB
Ver. 2014b using a processor installed with Intel (R) Core (TM) i5-2450M CPU @ 2.50 GHz and 6 GB of
memory on Windows platform.

We assume SH and MHs with household appliances which are categorized into three groups:
Ra, Sa, and Ea. While arbitrary operational time and power ratings are assigned to Sa and Ra

appliances in the case of MHs. Our objectives are to minimize electricity cost, PAR, andWavg of the
appliances. In this regard, heuristic algorithms are incorporated like: WDO, HSA, GA, and proposed
algorithm GHSA. Comparative analysis is made among heuristic algorithms and unscheduled case by
adopting RTEP and CPP tariffs (as shown in Figure 6a,b) and results are demonstrated the proposed
algorithm efficiently addressed the aforementioned objectives. The performance parameters comprise
of load profile, cost per hour, electricity cost per day, PAR, and user comfort. The detail of each
parameter is provided as follows:
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Figure 6. (a) RTEP tariff; (b) CPP tariff.

3.1. Load Profile

The energy consumption of appliances for SH and MHs using RTEP and CPP tariffs is shown in
Figure 7a–d. It can be seen that during peak hours i.e., 7 to 15 h each heuristic algorithm performs better
than unscheduled case. In Figure 7a maximum unscheduled load during peak hours is 13.84 kWh,
and among other heuristic algorithms GA schedules the peak load competently to 5.01 kWh. While
in Figure 7b GHSA schedules the peak load to 3.73 kWh which is comparatively less than existing
heuristic algorithms and unscheduled load (13.84 kWh). Similarly, Figure 7c,d illustrate the load profile
for MHs using RTEP and CPP tariffs and the energy consumed by unscheduled load during peak
hours is 351 kWh, however, compared with the existing algorithms GHSA has scheduled the load to
60.29 kWh and 136.09 kWh for MHs using RTEP and CPP tariffs, respectively. The overall results show
that proposed algorithm performs better to schedule the load profile for SH and MHs compared to
existing algorithms and unscheduled case. Table 8 presents load profile in peak hours of the prices in
unscheduled case, scheduled case, percentage decrement, and improvement of heuristic algorithms.
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Figure 7. (a) Load profile of SH with RTEP; (b) Load profile of SH with CPP; (c) Load profile of MHs
with RTEP; (d) Load profile of MHs with CPP.

3.2. Cost Per Hour

The electricity cost per hour is calculated using Equation (32). The results in Figure 8a–d depict
electricity cost per hour with the comparison of heuristic algorithms. It is observed that each algorithm
tends to schedule the cost in low pricing hours i.e., off-peak hours. In Figure 8a results show that
the cost is reduced to 2.61, 1.72, 1.12, and 1.34 cents by WDO, HSA, GA, and GHSA, respectively.
Similarly, Figure 8b shows maximum unscheduled cost is 6.83 cents and it is reduced to 2.25, 2.04,
2.02, and 1.60 cents using WDO, HSA, GA, and GHSA, respectively. Figure 8c,d represent results for
MHs using RTEP and CPP tariffs. All heuristic algorithms are compared with each other and also with
unscheduled case. The unscheduled cost per hour during peak hours for MHs using RTEP and CPP is
94.38 and 156.78 cents while proposed algorithm is reduced it to 20.28 and 58.46 cents, respectively,
which represents maximum reduction compared to other existing algorithms.
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Figure 8. (a) Cost per hour of SH with RTEP; (b) Cost per hour of SH with CPP; (c) Cost per hour of
MHs with RTEP; (d) Cost per hour of MHs with CPP.

Table 8. Cost profile comparison.

Schemes
Techniques

Unscheduled WDO HSA GA GHSA

SH with RTEP
Load profile (kWh) 13.84 8.66 6.01 5.01 5.80

Percentage decrement — 37.42% 56% 63.80% 63.29%

Improvement — 5.18 7.83 8.83 8.76

SH with CPP
Load profile (kWh) 13.84 5.12 6.37 5.10 4.95

Percentage decrement — 63.21% 53.97% 63.15% 65.12%

Improvement — 9.27 7.47 8.74 10.12

MHs with RTEP
Load profile (kWh) 351 128.88 125.28 241.46 124.29

Percentage decrement — 63.28% 65.92% 31.20% 65.72%

Improvement — 222.12 290.72 109.54 290.71

MHs with CPP
Load profile (kWh) 351 114.49 140.38 134.68 136.01

Percentage decrement — 67.38% 60% 61.6% 61.25%

Improvement — 236.51 210.62 216.32 214.99
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3.3. Electricity Cost Per Day

The primary objective of our work is the minimization of electricity cost. The electricity cost
is reduced using heuristic algorithms to schedule the energy consumption profile and also with the
constraints mentioned in Section 2.8. Figure 9 illustrates the electricity cost per day (total cost) for SH
and MHs using RTEP and CPP tariffs. In detail, total cost for SH using RTEP tariff in unscheduled case
is 21.53 cents and using heuristic algorithms: WDO, HSA, GA, and GHSA the total cost is reduced
to 18.65, 17.04, 16.01, and 15.10 cents, respectively. Likewise, SH with CPP tariff the total cost for
unscheduled case is 38.23 cents and the heuristic algorithms: WDO, HSA, GA, and GHSA are reduced
the total cost to 25.68, 23.98, 22.63, and 20.21 cents, respectively. In the case of MHs, using RTEP
tariff the total cost is reduced from unscheduled case i.e., 648.83 cents to 320.74, 480.36, 445.36, and
284.39 cents by WDO, HSA, GA, and GHSA, respectively as shown in Figure 9. Accordingly, for MHs
the total cost associated with CPP tariff is 631.02, 643.18, 608.18, 500.01 cents using WDO, HSA, GA,
and GHSA, respectively. The overall effects of the total cost associated with RTEP and CPP rates in the
case of SH and MHs are analyzed which show that the proposed algorithm GHSA outperforms the
other existing algorithms. Table 9 shows the total cost, percentage decrement, and improvement of
heuristic algorithms. Moreover, in order to ensure fairness among heuristic algorithms, electricity cost
is also compared in terms of maximum, minimum, and average cost as shown in Table 10. It is worth
mentioning that maximum electricity cost of heuristic algorithms is always less than the unscheduled
cost (given in Table 9) which shows each heuristic algorithm effectively addresses the objective function
and its constraints discussed in Section 2.8.
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T
ot

al
 c

os
t (

ce
nt

s)

0

200

400

600

800

1000

1200

Unscheduled
WDO
HSA
GA
GHSA

Figure 9. Electricity cost per day.
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Table 9. Total electricity cost per day.

Schemes
Techniques

Unscheduled WDO HSA GA GHSA

SH with RTEP
Total cost (cents) 21.53 18.65 17.04 16.01 15.01

Percentage decrement — 13.37% 20.58% 25.63% 29.86%

Improvement — 2.88 4.49 5.52 6.43

SH with CPP
Total cost (cents) 37.5 25.68 23.98 22.63 20.21

Percentage decrement — 31.52% 36.05% 39.65% 46.19%

Improvement — 11.82 13.52 14.87 17.21

MHs with RTEP
Total cost (cents) 648.43 320.74 480.36 445.36 284.39

Percentage decrement — 50.54% 25.91% 31.31% 56.06%

Improvement — 327.69 168.07 303.7 364.04

MHs with CPP
Total cost (cents) 1087 631.02 643.18 608.18 500.21

Percentage decrement — 41.94% 40.82% 44.04% 54.04%

Improvement — 445.98 443.82 478.82 587

Table 10. Total cost comparison.

Schemes Cost (cents)
Techniques

WDO HSA GA GHSA

SH with RTEP
Maximum cost 20.26 19.78 17.39 17.02

Average cost 19.24 18.41 16.70 16.02

Minimum cost 18.65 17.04 16.01 15.01

SH with CPP
Maximum cost 33.46 35.76 34.54 31.21

Average cost 29.57 29.87 28.60 25.71

Minimum cost 25.68 23.98 22.63 20.21

MHs with RTEP
Maximum cost 446.38 520.63 535.71 408.99

Average cost 383.56 500.49 490.53 346.66

Minimum cost 320.74 480.36 445.36 284.39

MHs with CPP
Maximum cost 810.87 904.41 800.70 780.08

Average cost 720.94 773.79 704.44 640.14

Minimum cost 631.02 643.18 608.18 500.21

3.4. PAR

PAR describes the behaviour of the consumer’s load profile and directly affects the operation
of the power grids. Figure 10 illustrates PAR of scheduled and unscheduled case for SH and MHs
with RTEP and CPP tariffs and results show that each heuristic algorithm is competent to reduce PAR
compared to unscheduled case. However, it is evident from Figure 10 that GHSA exhibits maximum
reduction in PAR compared to the existing algorithms. Moreover, in order to reduce PAR, load profile
of the consumer should schedule effectively which ensures the reliability and stability of the power
grids. Table 11 represents PAR, percentage reduction of PAR, and improvement of heuristic algorithms.
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Figure 10. PAR of SH and MHs with RTEP and CPP.

Table 11. PAR comparison.

Schemes
Techniques

Unscheduled WDO HSA GA GHSA

SH with RTEP
PAR 5.01 4.31 3.24 3.73 3.09

Percentage decrement — 13.97% 35.32% 25.54% 38.32%

Improvement — 0.7 1.77 1.28 1.92

SH with CPP
PAR 5.01 4.68 3.48 3.64 3.13

Percentage decrement — 6.58% 30.53% 27.34% 37.52%

Improvement — 0.33 1.53 1.37 1.88

MHs with RTEP
PAR 22.46 12.78 14.70 12.70 11.73

Percentage decrement — 43.09% 34.55% 43.45% 47.77%

Improvement — 11.78 9.84 11.48 12.78

MHs with CPP
PAR 24.54 13.92 12.98 14.01 12.01

Percentage decrement — 43.27% 47.01% 42.66% 50.08%

Improvement — 10.62 11.56 10.53 12.53

3.5. User Comfort

TheWavg of the appliances is calculated which refers to user comfort. User comfort is disturbed
when the user faces minimum amount of delay in order to operate the appliance. However, ifWavg of
the appliances increases eventually cost of electricity reduces. In this vein, there is sort of trade-off
between waiting time of appliances and electricity cost. Figure 11 shows Wavg for SH and MHs
using RTEP and CPP tariffs with heuristic algorithms: WDO, HSA, GA, and GHSA. The maximum
allowable delay i.e.,Wavg of the appliance is 5 h, however, the proposed algorithm GHSA is achieved
minimumWavg of the appliances compared with the existing algorithms i.e., 4.3 and 2.4 h, respectively.
Similarly, for MHs the proposed algorithm GHSA has achieved minimum delay compared with other
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heuristic algorithms i.e., 3.7 and 3.5 h , respectively. Among other existing techniques GHSA is capable
of minimizing the Wavg which in turn increases user comfort. Although it is stated that there is
trade-off between electricity cost andWavg, however, proposed algorithm GHSA performs efficiently
to minimize the trade-off compared to other existing optimization algorithms.
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Figure 11. Average waiting time of SH and MHs using RTEP and CPP.

4. Conclusions and Future Work

In this paper, we have proposed a heuristic algorithm GHSA for SH and MHs to reduce electricity
expense, PAR, and maximize user comfort. The proposed algorithm is tested in the presence of RTEP
and CPP tariffs for SH and MHs. In case of MHs, arbitrary power ratings and time of operations
are assigned to the appliances. Extensive simulations are conducted which show the performance of
proposed algorithm GHSA is efficient as compared to existing algorithms: WDO, HSA, and GA in
terms of electricity cost, PAR, and user comfort. In particular, GHSA reduces the electricity cost to
46.19% in case of SH. While for MHs the electricity cost is reduced to 56.04%. In terms of PAR, GHSA
reduces PAR to 38.32% and 50.08% for SH and MHs, respectively. The minimization in electricity cost
and PAR reveal benefits to the consumers as well as improve the stability and reliability of the power
grid. Moreover, feasible regions are computed to validate the effectiveness of our proposed algorithm
GHSA. Thus, it is concluded from above discussion that the proposed EHEMC based on GHSA yields
significantly improved performance as compared to existing heuristic algorithms in terms of electricity
cost, PAR and user comfort.

In future, we are interested to implement the integration of RESs for both cases i.e., SH and MHs.
We are also interested to incorporate distributive algorithms and multi objective problems with convex
optimization methods.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at King Saud
University for funding this work through research group NO (RG-1438-034).

Author Contributions: Hafiz Majid Hussain, Nadeem Javaid, Sohail Iqbal, and Qadeer Ul Hasan have proposed
and validated the main idea. Khursheed Aurangzeb and Musaed Alhussein have written the remaining
manuscript. All authors together organized and refined the manuscript in the present form.



Energies 2018, 11, 190 27 of 28

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fadlullah, Z.M.; Quan, D.M.; Kato, N.; Stojmenovic, I. GTES: An optimized game-theoretic demand-side
management scheme for smart grid. IEEE Syst. J. 2014, 8, 588–597.

2. Gellings, C.W. The concept of demand-side management for electric utilities. Proc. IEEE 1985, 73, 1468–1470.
3. Bozchalui, M.C.; Hashmi, S.A.; Hassen, H.; Cañizares, C.A.; Bhattacharya, K. Optimal operation of residential

energy hubs in smart grids. IEEE Trans. Smart Grid 2012, 3, 1755–1766.
4. Roselund, C.; Bernhardt, J. Lessons learned along europe’s road to renewables. IEEE Spectr. 2015.
5. Vardakas, J.S.; Zorba, N.; Verikoukis, C.V. A survey on demand response programs in smart grids:

Pricing methods and optimization algorithms. IEEE Commun. Surv. Tutor. 2015, 17, 152–178.
6. Ma, R.; Chen, H.H.; Huang, Y.R.; Meng, W. Smart grid communication: Its challenges and opportunities.

IEEE Trans. Smart Grid 2013, 4, 36–46.
7. Rahim, S.; Javaid, N.; Ahmad, A.; Khan, S.A.; Khan, Z.A.; Alrajeh, N.; Qasim, U. Exploiting heuristic

algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build.
2016, 129, 452–470.

8. Rasheed, M.B.; Javaid, N.; Awais, M.; Khan, Z.A.; Qasim, U.; Alrajeh, N.; Iqbal, Z.; Javaid, Q. Real time
information based energy management using customer preferences and dynamic pricing in smart homes.
Energies 2016, 9, 542, doi:10.3390/en9070542.

9. Ma, J.; Chen, H.H.; Song, L.; Li, Y. Residential load scheduling in smart grid: A cost efficiency perspective.
IEEE Trans. Smart Grid 2016, 7, 771–784.

10. Nguyen, H.K.; Song, J.B.; Han, Z. Distributed demand side management with energy storage in smart grid.
IEEE Trans. Parallel Distrib. Syst. 2015, 26, 3346–3357.

11. Flores, J.T.; Celeste, W.C.; Coura, D.J.C.; das Dores Rissino, S.; Rocha, H.R.O.; Moraes, R.E.N. Demand
Planning in Smart Homes. IEEE Lat. Am. Trans. 2016, 14, 3247–3255.

12. Gao, X.Z.; Govindasamy, V.; Xu, H.; Wang, X.; Zenger, K. Harmony search method: Theory and applications.
Comput. Intell. Neurosci. 2015, 2015, 39, doi:10.1155/2015/258491.

13. Zhang, J.; Wu, Y.; Guo, Y.; Wang, B.; Wang, H.; Liu, H. A hybrid harmony search algorithm with differential
evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints.
Appl. Energy 2016, 183, 791–804.

14. Manzoor, A.; Javaid, N.; Ullah, I.; Abdul, W.; Almogren, A.; Alamri, A. An intelligent hybrid heuristic
scheme for smart metering based demand side management in smart homes. Energies 2017, 10, 1258,
doi:10.3390/en10091258.

15. Mahmood, D.; Javaid, N.; Alrajeh, N.; Khan, Z.A.; Qasim, U.; Ahmed, I.; Ilahi, M. Realistic scheduling
mechanism for smart homes. Energies 2016, 9, 202, doi:10.3390/en9030202.

16. Khan, M.A.; Javaid, N.; Mahmood, A.; Khan, Z.A.; Alrajeh, N. A generic demand-side management model
for smart grid. Int. J. Energy Res. 2015, 39, 954–964.

17. Mahmood, A.; Baig, F.; Alrajeh, N.; Qasim, U.; Khan, Z.A.; Javaid, N. An Enhanced System Architecture for
Optimized Demand Side Management Smart Grid. Appl. Sci. 2016, 6, 122, doi:10.3390/app6050122.

18. Bayraktar, Z.; Komurcu, M.; Bossard, J.A.; Werner, D.H. The wind driven optimization technique and its
application in electromagnetics. IEEE Trans. Antennas Propag. 2013, 61, 2745–2757.

19. Wang, J.; Li, Y.; Zhou, Y. Interval number optimization for household load scheduling with uncertainty.
Energy Build. 2016, 130, 613–624.

20. Moon, S.; Lee, J.W. Multi-Residential Demand Response Scheduling with Multi-Class Appliances in Smart
Grid. IEEE Trans. Smart Grid 2016, PP, 1, doi:10.1109/TSG.2016.2614546.

21. Beaudin, M.; Zareipour, H.; Bejestani, A.K.; Schellenberg, A. Residential energy management using a
two-horizon algorithm. IEEE Trans. Smart Grid 2014, 5, 1712–1723.

22. Di Somma, M.; Graditi, G.; Heydarian-Forushani, E.; Shafie-khah, M.; Siano, P. Stochastic optimal
scheduling of distributed energy resources with renewables considering economic and environmental
aspects. Renew. Energy 2018, 116, 272–287.

23. Ferruzzi, G.; Cervone, G.; Delle Monache, L.; Graditi, G.; Jacobone, F. Optimal bidding in a Day-Ahead
energy market for Micro Grid under uncertainty in renewable energy production. Energy 2016, 106, 194–202.



Energies 2018, 11, 190 28 of 28

24. Yu, Z.; Jia, L.; Murphy-Hoye, M.C.; Pratt, A.; Tong, L. Modeling and stochastic control for home energy
management. IEEE Trans. Smart Grid 2013, 4, 2244–2255.

25. Ahmad, A.; Khan, A.; Javaid, N.; Hussain, H.M.; Abdul, W.; Almogren, A.; Alamri, A.; Azim Niaz, I. An
Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources.
Energies 2017, 10, 549; doi:10.3390/en10040549.

26. Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand side management in smart grid using heuristic
optimization. IEEE Trans. Smart Grid 2012, 3, 1244–1252.

27. Ma, K.; Yao, T.; Yang, J.; Guan, X. Residential power scheduling for demand response in smart grid. Int. J.
Electr. Power Energy Syst. 2016, 78, 320–325.

28. Samadi, P.; Wong, V.W.; Schober, R. Load scheduling and power trading in systems with high penetration of
renewable energy resources. IEEE Trans. Smart Grid 2016, 7, 1802–1812.

29. Zhao, Z.; Lee, W.C.; Shin, Y.; Song, K.B. An optimal power scheduling method for demand response in home
energy management system. IEEE Trans. Smart Grid 2013, 4, 1391–1400.

30. Rosselló-Busquet, A.; Soler, J. Towards efficient energy management: Defining HEMS and smart grid
objectives. Int. J. Adv. Telecommun. 2011, 4, 249–263.

31. Fei, H.; Li, Q.; Sun, D. A Survey of Recent Research on Optimization Models and Algorithms for Operations
Management from the Process View. Sci. Program. 2017, 2017, doi:10.1155/2017/7219656.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Modeling 
	HEMS Architecture
	Energy Consumption Model 
	Load Categorization
	Energy Cost and Unit Price 
	Problem Formulation
	PAR
	User Comfort
	Objective Function
	Optimization Techniques
	GA
	WDO
	HSA
	GHSA

	Feasible Region
	Feasible Region for SH
	Feasible Region for MHs


	Simulation and Discussion
	Load Profile
	Cost Per Hour
	Electricity Cost Per Day
	PAR
	User Comfort

	Conclusions and Future Work

