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Abstract: This paper mainly investigates the sensitive characteristics of lithium-ion batteries so as
to provide scientific basises for simplifying the design of the state estimator that adapt to various
environments. Three lithium-ion batteries are chosen as the experimental samples. The samples
were tested at various temperatures (−20 ◦C, −10 ◦C, 0 ◦C , 10 ◦C , 25 ◦C) and various current rates
(0.5C, 1C, 1.5C) using a battery test bench. A physical equivalent circuit model is developed to
capture the dynamic characteristics of the batteries. The experimental results show that all battery
parameters are time-varying and have different sensitivity to temperature, current rate and state of
charge (SOC). The sensitivity of battery to temperature, current rate and SOC increases the difficulty
in battery modeling because of the change of parameters. The further simulation experiments show
that the model output has a higher sensitivity to the change of ohmic resistance than that of other
parameters. Based on the experimental and simulation results obtained here, it is expected that the
adaptive parameter state estimator design could be simplified in the near future.

Keywords: sensitive characteristics; lithium-ion batteries; time-varying parameters; electric vehicles

1. Introduction

Nowadays, fossil fuel resources are running out and environmental pollution is serious [1,2].
In response to the energy crisis and the increasing pollution problems, interests in electric vehicles
(EVs) have grown in recent years [3]. The battery technology is the key component to achieve these
electrical systems [4–6]. Owing to the high-energy density, high-power density, low self-discharge
rate and other merits compared with other batteries, lithium-ion batteries have been the first-choice
candidate as a power source for EVs [7–10]. However, lithium-ion batteries are less tolerant of abuse.
The safety issues of lithium-ion have been an important factor restricting the rapid development of
EVs [11]. Accurate estimates for state of charge (SOC), state of health (SOH) and other states are needed
over the lifetime of the battery pack in order to lengthen the useful lifetime of batteries. A variety of
research has investigated the estimation of SOC and SOH [7,12–18]. However, few studies can obtain
good estimate results in various actual conditions. The main reason is that lithium-ion batteries have
different performances in different environments in view of its sensitivity to temperature, current
rate and other physical-chemical factors. Therefore, precise modeling and accurate state estimation at
various actual conditions for such systems have always been big challenges for researchers [19].

We considered time-varying parameters when the state estimator was designed in [7], but the
detailed parameter sensitivity analysis was not given. Effective lithium-ion battery models appropriate
for electric vehicle thermal management were proposed in [20,21]. However, the models are not suitable
for the state estimation applications. In [22], the characteristics of battery packs with parallel-connected
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lithium-ion battery cells were studied. The information provided by the research results make us have
a better understanding of the power battery from different perspectives. However, to the authors’
best knowledge, almost no model can be suitable for all kinds of operating ranges of currents and
temperatures due to all the parameters being time-varying. Then, the accuracy of battery states is
estimated based on the equivalent circuit model will degrade when the operating conditions change.
Many studies [14,16,23–28] are based on Kalman filter (KF) and its derivatives to deal with the
time-varying parameter and system nonlinear problems. The KF is an optimal recursive estimation
method for linear systems under the condition that the noises are Gaussian white noises. Failing to
satisfy the conditions, filter divergence will occur [24,28]. The extended KF (EKF) uses a first-order
Taylor expansion at each time step to approximate the nonlinear observer function, which will increase
the estimation errors due to the local linearization when the battery model has significant nonlinearity
(for example, the relationship between open circuit voltage and SOC) [29]. The computation cost of
EKF is also tremendous. To be able to accurately estimate the battery states, it is necessary to maintain
the nonlinear characterization of the system dynamic [4] and design a new nonlinear adaptive observer
instead of EKF for the time-varying parameter system. However, there is no uniform method for
nonlinear system observer design. It is a big challenge to design an observer for the battery system
because all of the parameters are time-varying. To this end, the sensitive properties of lithium-ion
batteries are investigated here by the offline data. Then, we can only consider the parameters whose
changes have great influence on the model output when the adaptive nonlinear observer is designed.

Therefore, this paper focuses on the study of the sensitive characteristics for lithium-ion
batteries. The main objective of these sensitive characteristics analysis is to find the dominant
parameters that influence the battery model accuracy so as to simplify the adaptive parameter
state estimator design. A number of experiments and simulations are conducted in order to
investigate the sensitive characteristics based on the experimental and simulation results. An accurate
electrochemical-polarization model is put forward for the lithium-ion batteries. The model output at
25 ◦C is used as a reference. Then, the values of model parameters are changed one by one and the
model output is recorded at the same time when the same current is applied to the proposed model.
Finally, the dominant parameters that influence the model output are found based on the previous
data, which provides scientific bases for simplifying the adaptive parameter state estimator.

The remainder of this paper is organized as follows. Section 2 gives the equivalent circuit model for
lithium-ion batteries along with its dynamics and model parameters identification method. In Section 3,
test bench and experiment procedure are reported. Section 4 presents a sensitive characteristics analysis
of battery. This paper ends with some conclusions and suggestions for further studies pertaining to
lithium-ion batteries applied in EVs.

2. Battery Modeling and Parameter Identification Method

The principle of selecting a battery model is as simple as possible but precise enough for the
investigated problem. The model chosen here is the first-order Thevenin model (see Figure 1), which is
simple yet accurate enough for the control-oriented purpose in EVs [30]. The parallel RC-branch,
comprising Rp and Cp, is utilized to model the battery polarization effect. R denotes the ohmic
resistance and is responsible for the instantaneous voltage drop of the step response. uoc denotes the
open circuit voltage and it changes with different capacity levels. ut denotes the terminal voltage.
I denotes the terminal current (current flowing into the battery is considered positive).

Based on Kirchhoff’s law, the electrical behavior of the circuit can be characterized as:{
u̇p = − 1

CpRp
up +

1
Cp

I,

ut = uoc − RI − up,
(1)

where up is the voltage of capacitor Cp. In reality, all parameters of battery systems are multivariable
functions of SOC, rate, temperature, etc. Some parameters can maybe be simplified to be independent
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of some variables, but the others can’t be simplified. The study in this paper is unique in that it not
only provides the characteristics of battery performance sensitive to the ambient condition, but it also
provides the characteristics of battery model output sensitive to the change of parameters.

ocu

R

pC

pR

tu
I

Figure 1. Thevenin equivalent model for lithium-ion batteries.

The parameters R, Rp and Cp can be calculated from the hybrid pulse power characterization
(HPPC) test data. The pulsed-discharge experiments are carried out at different SOCs, and the
terminal voltage is monitored simultaneously (see Figure 2). The battery parameters can be extracted
through the transient response. The terminal voltage response at different SOCs can be fitted as in the
following form:

ut(t) = V2 + c1(1− e−c2t), (2)

where c1 and c2 are the least-squares curve fitting coefficients. Then, the parameters value of battery
model (see Figure 1) can be derived from:

R =
V2 −V1

I
, Rp =

c1

I
, Cp =

1
c2Rp

. (3)
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Figure 2. Terminal voltage response under step–current discharge.
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3. Experiment

3.1. Test Bench

The Meikai Lin (MKL) battery tester shown in Figure 3a is designed to charge and discharge
the batteries (see Figure 3b). The batteries are placed in the temperature chamber for environment
control. Current and voltage data are collected from the high precision current and voltage transducers
through I-Solution, a built-in software of MKL.

Temperature chamber Tester

(a)

Temperature chamber Tester

(b)

Figure 3. Test bench: (a) MKL battery tester and (b) 32 Ah battery.

3.2. Test Samples and Experiment Procedure

Three LiFePO4 18650 batteries (twenty cells wired in parallel) with 32 Ah rated capacity and
3.2 V nominal voltage are used for all cycling tests. The charging strategy is the constant-current
and constant-voltage strategy. The constant current is 1

3 C (namely 1
3 × 32 ≈10.67 A) and the

constant-voltage is 3.65 V. The charging current cutoff point is set to be 0.02C for the constant-voltage
charging stage. The discharge procedure is as follows: the batteries are fully charged firstly, they are left
in the open-circuit condition for a long enough period and then the hybrid pulse power characterization
(HPPC) experiment is carried out. The discharge current Id is 1C and the charge current Ic is 0.75C.
Afterwards, they are discharged at a constant current of 0.5C (see Figure 4a) from the fully charged state
to 95% of the nominal capacity. The foregoing procedure is repeatedly performed until the batteries
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are fully discharged. The cutoff voltage point of the cell module is set to be 2 V. The same experimental
procedure were carried out with a current of Figure 4c,e at different temperatures (−20 ◦C , −10 ◦C,
0 ◦C, 10 ◦C, 25 ◦C). When applying the current to the battery, the terminal voltage is monitored
simultaneously (see Figure 5a,c,e).
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Figure 4. Testing cycle currents: (a) pulse and 0.5C constant current; (c) pulse and 1C constant current
and (e) pulse and 1.5C constant current; (b), (d) and (f) are the zoom of (a), (c) and (e), respectively.
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4. Sensitivity Characteristics Analysis

4.1. Battery Sensitivity Analysis

4.1.1. The Sensitivity of Battery Output Voltages to Temperature and Current Rate

Figure 5a,c,e are the battery output voltage curves obtained when the currents of Figure 4a,c,e
were applied to the batteries. It can be seen that no more than 50% of the battery energy is available at
−20 ◦C. Generally speaking, higher internal resistance at low temperature, creating a high opposing
fore while operating the battery, and which will limit the amount of energy extracted and reduce cell
energy and power capability [4,5]. The output voltages of batteries will drop with the temperature
drop, and this phenomenon will be more obvious with the current rate increasing. The voltage rate of
change (ROC) is used to measure the percentage change in battery output voltage and calculated by
(battery25− battery10)/battery25× 100% are depicted in Figure 5b,d,f (battery10 and battery25 represent
battery output voltage at 10 ◦C and 25 ◦C, respectively). The ROCs are approximately within 2%
(see Figure 5b), 3% (see Figure 5d), and 6% (see Figure 5f) throughout the whole SOC. The battery
output voltage ROC will increase as the temperature ROC becomes larger and the other ROC curves
of battery output voltage are omitted for brevity. The experimental results show that battery output
voltages will be different with the same current applied to them at different temperature. Under the
same temperature ROC conditions, the larger the “same current” becomes, the larger the battery
output difference will be.
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Figure 5. Experimental pulse discharge curves at various temperatures with a discharge current of:
(a) Figure 4a; (c) Figure 4c and (e) Figure 4e and the ROC curves (b); (d) and (f).

4.1.2. The Sensitivity of Battery Parameters to SOC, Temperature and Current Rate

The parameter values identified for battery model at different SOCs, different temperatures and
different current rates are depicted in Figure 6a–i. From Figure 6a,d,g, it can be seen that ohmic
resistance R is sensitive to temperature and current rate. Small parameter differences among the curves
for different SOCs indicate that parameter R is approximately independent of SOC, especially within
the range of 10–90% SOC. The curves of Figure 6b,e,h show that Rp are sensitive to temperature and
SOC but less sensitive to current rate. The parameter Cp is sensitive to temperature but less sensitive to
current rate and SOC can be seen from the curves of Figure 6c,f,i. From the above analysis, we can see
that all of the extracted RC parameters are sensitive to temperature, and partial parameters are sensitive
to SOC and current rate. From −10 ◦C to 25 ◦C, a range within the main operating temperature range
of −10 ◦C to 50 ◦C of lithium-ion batteries [31], R reduces approximately three times, Rp reduces
approximately six times and Cp increases approximately six times throughout the whole SOC range.
Since the parameters change so much during battery operation, it is necessary to thoroughly analyze
the effect of parameter changes on the accuracy of battery model. Especially in the applications
of EVs, the parameters change will be larger than other applications because the current rate and
temperature change are relatively large [32]. However, some research results do not consider the
change of parameters [21,33] when modeling, and which will further lead to the accuracy decline of
model-based state estimation .
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Figure 6. Experimental results for R-SOC, Rp-SOC, Cp-SOC at various temperatures. (a–c) applied the
current of Figure 4a to the battery; (d–f) applied the current of Figure 4c to the battery; (g–i) applied
the current of Figure 4e to the battery.
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4.1.3. The Sensitivity of the Relationship uoc-SOC to Temperature and Current Rate

Open-circuit voltage (uoc) is one of the most important parameters of a battery due to the
relationship between SOC and open-circuit voltage (uoc) [12,23,34–39], which is defined as the
measured terminal voltage when battery reaches steady-state. Figure 7a–c show the relationships
between open circuit voltage (uoc) and SOC at different temperatures and different current rates.
Figure 7a–c show that the curves at various temperatures are basically consistent except for the curve
at the extreme temperature−20 ◦C. The average value curves at−10 ◦C, 0 ◦C, 10 ◦C and 25 ◦C with the
discharge rates 0.5C, 1C and 1.5C are depicted in Figure 7d. It can be seen that the three average value
curves are also basically consistent. The curve fitting for the three average value curves is depicted in
Figure 7e. Therefore, it can be obtained that the relationship between open circuit voltage (uoc) and
SOC has a better consistency and low sensitivity to temperature and rate except for the extreme low
temperature condition −20 ◦C (the diffusivity of Li+ions inside the cell will decrease at an extreme
low temperature [40]). Then, the single-variable function used to represent the fitting curve (the blue
line dotted by ∇ in Figure 7e) can be obtained by utilizing the nonlinear least-squares fitting method:

uoc = 3.2341 + 0.1173SOC + 0.003SOC2 − 0.5376e−20.4447SOC. (4)
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Figure 7. Uoc against SOC for the lithium-ion batteries. (a) discharging current of Figure 4a;
(b) discharging current of Figure 4c; (c) discharging current of Figure 4e; (d) the average value curves
for uoc-SOC at temperature −10 ◦C, 0 ◦C, 10 ◦C and 25 ◦C; (e) the fitting curve for the three average
value curves of (d).

4.2. The Sensitivity of Battery Model Output to Change of Parameters

4.2.1. Model Validation

To validate the extracted model of the lithium-ion battery, we choose battery output voltage at
25 ◦C with the discharge of Figure 4a as a reference and compare the battery output with the model
output. The parameters that were extracted from the corresponding experimental data were applied
to the model. The simulation results against experimental data is shown in Figure 8a. SOC defined
in Equation (5) changes from 1 to 0 throughout the whole procedure (see Figure 4b):

SOC = SOCini −
∫ t

0 I(t)dt
CN

. (5)
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Figure 8. Comparison between voltage response of the battery and the battery model throughout the
whole range of SOC with the discharge current of Figure 4a. (a) Measured and modeled battery voltage;
(b) SOC with experiment.

The maximum modeling error is 1.23% and the average error is 0.29% within the range over
15–95% SOC (lithium-ion battery mostly operated over 20–80% SOC to protect the battery from
irreversible damage). How does model output change when operating conditions change? In other
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words, how do the changes of battery parameters affect the model output? The detailed analysis based
on this model will be given in the next section.

4.2.2. The Effect of Parameters Change on Model Output Analysis

In Figure 9, the voltages ut25, ut10 and ut−10 denote the model outputs when the parameters
extracted from the experimental data at 25 ◦C, 10 ◦C or −10 ◦C are applied to the proposed model,
respectively. Voltages utCp10, utRp10, utR10, utCp−10, utRp−10 and utR−10 denote model outputs when
the value of the parameter Cp, Rp or R extracted from the experimental data at 25 ◦C are replaced with
the value extracted from the experimental data at 10 ◦C or −10 ◦C, respectively. The model output
voltage ut25 is selected as a reference and the model output voltage ROC (for example ROCut10

ut25 defined
in (6)) is depicted in Figure 9a,c,e:

ROCut10

ut25 (%) =
ut10 − ut25

ut25 ∗ 100%. (6)

From the simulation results, it can be seen that the change of ohmic resistance R has the
greatest influence on the model output regardless of constant current ( Figure 9a) or alternate current
(Figure 9c,e) applied to batteries. The changes of Cp and Rp have little effect on the model output.
From −10 ◦C to 25 ◦C, although ROCut−10

ut25 reaches 10%, ROCutCp−10

ut25 only is 0.1% and ROCutRp−10

ut25 is no
more than 0.6%. The change of model output is mainly affected by the change of parameter R.
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Figure 9. The model output voltage rate of change when the model parameters change: (a) with
the current of Figure 4a; (c) and (e) with the alternative current; (b); (d) and (f) are the zoom of (a);
(c) and (e), respectively.

4.3. Discussion

The output characteristics of lithium-ion batteries are sensitive to temperature and current
rate because of physical and chemical reactions coexisting in batteries. An accurate, intuitive and
comprehensive electrical model, which includes R, Rp, Cp and uoc, has been selected to capture the
dynamic characteristics of a battery. The modeling accuracy will degrade when operate conditions
change due to the fact that model parameters are time-varying. Parameters R, Rp and Cp will have
several times change from −10 ◦C to 25 ◦C throughout the whole SOC. However, only the change of
parameter R has an obvious effect on the model output. Then, we can simplify the design procedure
of model-based adaptive parameter state estimators. The parameters and SOC are both estimated
in [27,28]. In [27], the SOC is estimated based on an EKF and the obtained results are satisfactory under
various laboratory conditions. However, obtaining good estimates of the results not only need voltage
and current signals, but also the temperature signal. The computational complexity of the robust and
accurate estimation strategies proposed in [28] is high. In order to ensure the accuracy of estimation
under actual operating conditions, it is necessary to design a nonlinear observer that does not need
such model local linearization as EKF needs. The nonlinear observer to be designed only needs voltage
and current signals.

In much literature, (see [2,13–16,27]), the ohmic resistance R or the sum of the ohmic resistance R
and the polarization resistance Rp is used as an indicator for the SOH of batteries, but they are not
the best choice of estimating the SOH on board due to the sensitivity of parameters to battery states,
temperature and other factors [41]. To find more effective assessment indicators of SOH is also an
important research direction.

5. Conclusions

This paper has mainly investigated the sensitivity of the lithium-ion battery to temperature
and current rate. Through various experimental tests and simulations, the sensitive characteristics
of batteries have been analyzed and discussed. The experimental and simulation results reveal
the following findings: (1) from −10 ◦C to 25 ◦C, the ohmic resistance R decreases approximately
three times, the polarization resistance Rp decreases approximately six times and the polarization Cp

increases approximately six times; (2) from −10 ◦C to 25 ◦C, the relationship of uoc-SOC is basically
stable; (3) the ROC of model output reaches 10% when applied the parameters values obtained from
the experiment data at −10 ◦C and 25 ◦C to the model, respectively, but ROCs of model output caused
by the changes of parameters Rp and Cp only are 0.6% and 0.1%; and (4) developing the adaptive
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nonlinear observer design theory and method specifically for battery systems with strong time-varying
and nonlinear characteristics can promote the development of battery management technology more
effectively. The conclusions obtained here offer battery management system researchers the possibility
to understand the sensitive characteristics of the lithium-ion batteries more profoundly. Our next work
is to find more effective assessment indicators of SOH and design a nonlinear adaptive observer for
battery state estimates.
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Nomenclature: battery10, battery output voltage at 10 ◦C; battery25, battery output voltage at 25 ◦C; C, capacity
[Ah]; c1, c2, fitted parameter; I, current [A]; R, resistance [Ω]; Rp, resistance [Ω]; t, time[s]; uoc, open circuit voltage;
ut, terminal voltage; ut−10, ut10, ut25, model output voltage when the parameters extracted from the experimental
data at −10 ◦C, 10 ◦C, or 25 ◦C are applied to the proposed model; utCp−10, utRp−10 , utR−10, utCp10, utRp10, utR10,
model output voltage when the value of the parameter Cp, Rp or R extracted from the experimental data at 25 ◦C
is replaced with the value extracted from the experimental data at −10 ◦C or 10 ◦C; V, voltage [V]
Subscripts: c, charge; d, discharge; ini, initial; N, nominal; oc, open circuit; p, polarization; t, terminal
Acronyms: A, Ampere; EVs, Electric Vehicles; EKF, Extended Kalman Filter; HPPC, Hybrid Pulse Power
Characterization; KF, Kalman Filter; LiFePO4 18650, LiFePO4 means Lithium Iron Phosphate, 18650 means
18-mm diameter, and 650 means 65-mm height; MKL, Meikai Lin; ROC, Rate of change; SOC, State of charge;
SOH, State of health
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