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Abstract: In machine learning-based transient stability assessment (TSA) problems, the characteristics
of the selected features have a significant impact on the performance of classifiers. Due to the high
dimensionality of TSA problems, redundancies usually exist in the original feature space, which
will deteriorate the performance of classification. To effectively eliminate redundancies and obtain
the optimal feature set, a new feature reduction method based on neighborhood rough set and
discernibility matrix is proposed in this paper. First, 32 features are selected to structure the initial
feature set based on system principle. An evaluation index based on neighborhood rough set theory
is used to characterize the separability of classification problems in the specified feature space.
By constructing the discernibility matrix of input features, a feature selection strategy is designed
to find the optimal feature set. Finally, comparative experiments based on the proposed feature
reduction method and several common feature reduction techniques used in TSA are applied to
the New England 39 bus system and Australian simplified 14 generators system. The experimental
results illustrate the effectiveness of the proposed feature reduction method.

Keywords: feature selection; transient stability assessment (TSA); neighborhood rough set; power
system security; discernibility matrix

1. Introduction

With the increasing demand of society and economic development, power systems tend to be
interconnected and large-scale. However, the disturbance may cause more serious accident such as
stability crisis and large-scale blackout in this case, which brings huge economic losses [1]. Therefore,
it’s essential to analyze the dynamic security behavior of power system by transient stability assessment
(TSA). The main purpose of TSA is to judge if the power system is stable or not while a large disturbance
occurs [2]. There are mainly two traditional methods for TSA, including the time domain simulation
method [3], and the transient energy function method (direct method) [4]. Based on that, many
improved methods and strategies are proposed to handle transient stability contingencies [5–7].
The methods mentioned above are based on mathematical models, which are quite precise and reliable
to obtain the results. Unfortunately, it takes too much time to simulate for the TSA problem, while the
scale of power system is large, which is less appropriate for the requirements of real-time online TSA.
Nowadays, with the development of phasor measurement units (PMU) and wide area monitoring
systems (WAMS), collecting massive synchronized power system data has become a reality [8–10].
Moreover, sample and pattern recognition based machine learning methods provide researchers
another feasible path. Owing to the advantages of fast real-time response and high precision, many
machine learning-based methods are proposed to solve TSA problems [11–20], such as probabilistic
neural networks [11], core vector machine [12], decision trees [13], extreme learning machine [14], etc.
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Machine learning-based methods mainly include three steps: (1) constructing the original feature
set and selecting the optimal feature set, (2) structuring and training the classifiers offline and (3)
evaluating the classifiers online. A general framework of machine learning-based TSA is shown in
Figure 1. In terms of classifiers, there are generally two aspects determining their performance. One is
the structure and training mechanism of classifiers; the other is the selection of input features and
correlation of feature space. Up to now, most related researches are mainly focus on the construction
and structure design of classifiers for higher classification accuracy and there is relatively less attention
paid to the feature reduction methods for TSA problems. During the running process of power system,
there exists massive state data with little difference, which would generate similar feature samples
with high correlation. This may cause reuse of similar data and redundancy of features. In addition,
too many superfluous features will not only increase the burden on computation but also have an
impact on precision of classifiers. Thus, it’s extremely necessary to study the feature reduction problem
of TSA.
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Figure 1. Framework of TSA based on machine learning techniques. Figure 1. Framework of TSA based on machine learning techniques.

There are mainly two aspects to be considered in such problems, including the evaluation index
of feature set and the designed feature selection strategy. At present, some valuable work on feature
reduction of TSA has been done by the previous scholars; we briefly review as follows. In [16], three
methods were designed to obtain a feature reduction: sensitivity index and sensitivity analysis were
used to construct an original feature set without redundant features and principle component analysis
(PCA) was applied to reduce the input feature dimensions. However, the number of features will
increase rapidly as the scale of power systems expands. In [11], correlation analysis (CA) and PCA
were used for feature selection, but this method can only measure correlations between features and
fails to reflect the relevance between features and classes, which means that there may exist features
irrelevant to classification. Moreover, the feature space obtained by PCA may not be as complete as the
original one. In [17], a bread-first searching technique based on the separability index was proposed
to find an optimal feature set which considers correlation between features and classes, but it can’t
avoid redundancy. From the above analysis, we can see that an optimal feature set should have no
redundancy and be closely related to the classification. Thus, it’s necessary to adopt a comprehensive
feature evaluation index that can fully reflect the above two points.
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In recent years, rough set theory [20] has been proven to be an effective granular computing
technique for data mining and pattern recognition [21–23]. By using rough set techniques, the relevance
between features and decision labels will be clear and the redundancy can be eliminated. There have
been some valuable and pioneering studies using rough set theory to evaluate features and handle TSA
problems, owing to its mathematical ability to characterize the separability of feature space [24–27].
In [25], rough set was developed to reduce the original feature set. In [26], rough set and entropy
method were applied to seek an optimal feature set. However, both above methods should discretize
the input space first, which ignores differences between data and will cause information loss. In [27],
fuzzy rough set and a memetic algorithm were used to select the optimal input features, which have
better performance, but the result is critically dependent on control parameters setting and the design
of objective function. Moreover, the existing feature selection strategies such as the forward heuristic
search, backward heuristic search and the bread-first search are time-consuming, which have the
weakness of poor efficiency.

To overcome the above problems and explore a high-efficiency method to find the optimal feature
set for the classifiers, this paper proposes a new feature reduction method for TSA problem using
neighborhood rough set (NRS) [28–30] and discernibility matrix. By utilizing neighborhood rough
set, the discretization of input data can be avoided and the positive region of decision attribute to
features are computed to serve as the evaluation index of feature set. Based on that, the discernibility
matrix, which reflects the discernibility relations between samples is constructed to compute the feature
reduction with minimum redundancy and maximum classification ability. Moreover, compared with
other feature selection methods, the structure of feature reduction may be unraveled and clear by
using the proposed method.

The remainder of this paper is structured as follows. The constructive principle and approach
of original feature set for TSA problems are introduced in the next section. Section 3 reviews some
basic knowledge of neighborhood rough set. In Section 4, the discernibility matrix for neighborhood
rough set is defined. Moreover, the importance of features is defined from the point of discernibility
matrix. Based on that, a reduction algorithm using discernibility matrix is designed to compute the
optimal feature set. Then, the proposed approach is applied to the New England 39 bus system and the
Australian simplified 14 generators system with some comparative experiments in Section 5. Finally,
we conclude this paper in Section 6.

2. Construction Principles of the Initial Input Features for Transient Stability Assessment

The construction of initial input features is foundation of machine learning-based TSA methods,
which has a significant impact on the precision of classifiers. The initial features can be established
from different perspectives. For example, according to time order, features at fault-free, fault-occurring
and fault-clearing time can be selected. By collecting feature data at different running statuses, the
impact of fault on the system can be reflected more sufficiently and accurately. In terms of variation
of feature size, there are two kinds of features, including system-level features and single-machine
features [19,27]. The system-level features are combination indices which are computed by state data
of multiple components in system. Thus, the feature dimension will not change with the variation of
system size. The single-machine features are state data of single component in system, such as the
rotor angle, rotor angular velocity and rotor kinetic energy of each generator. The larger the size of
system is, the greater the number of single-machine features is. From the view of sample learning,
the features may be closely or indirectly related to classification.

A reasonable initial feature set should follow the system principle, mainstream principle
and real-time principle [19,26,27]. System principle refers to that the initial feature set should be
system-level to keep its size fixed while the system scale increases. In such cases, the initial features
are combination indices of different state data in power system. The mainstream principle means that
there should exist high relevance between the selected features and transient stability of power system.
The real-time principle requires that the selected features can fully reflect the running state of power
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system after a fault occurs. Based on the existing researches [11–19,25–27], 32 features following the
above principles are chosen to form the initial feature set after a great deal of time domain simulations,
where t0 , t1 and t2 represent the fault-free time, fault-occurring time and fault-clearing time respectively.
The details are shown in Table 1.

Table 1. The initial feature set.

Feature Feature Description

1 Mean value of all the mechanical power at t0
2 Total energy adjustment of system
3 Maximum value of active power impact on generator at t1
4 Minimum value of active power impact on generator at t1
5 Mean value of generator accelerating power at t1
6 Rotor angle relative to center of inertia of generator with the maximum acceleration at t1
7 Generator rotor angle with the maximum difference relative to center of inertia at t1
8 Mean value of all generator angular acceleration at t1
9 Generator angular acceleration with the maximum difference relative to center of inertia at t1

10 Variance of all generator angular acceleration at t1
11 Variance of all generator accelerating power at t1
12 Mean value of all generator accelerating power at t2
13 Maximum generator rotor kinetic energy at t2
14 Mean value of generator rotor kinetic energy at t2
15 Rotor kinetic energy of generator with the maximum angular acceleration at t2
16 Active power impact on system at t2
17 Rotor angle relative to center of inertia of generator with the maximum rotor kinetic energy at t2
18 Difference of generator rotor angle relative to center of inertia at t1 and t2
19 Generator rotor angle with the maximum difference relative to center of inertia at t2
20 Difference of generator rotor angular velocity relative to center of inertia at t1 and t2
21 Generator rotor angular velocity with the maximum difference relative to center of inertia at t2
22 Difference of maximum and minimum generator rotor angular velocity at t2
23 Difference of generator rotor acceleration relative to center of inertia at t1 and t2
24 Generator rotor acceleration with the maximum difference relative to center of inertia at t2
25 Difference of maximum and minimum generator rotor acceleration at t2
26 Difference of maximum and minimum generator rotor kinetic energy at t2
27 Difference of maximum and minimum variation of generator rotor kinetic energy at t2
28 Sum of generator active power at t2
29 Difference of maximum and minimum generator rotor angle at t2
30 Variance of all generator accelerating power at t2
31 Mean value of all generator rotor angular velocity at t2
32 Mean value of all the mechanical power at t2

From Table 1, it’s easy to see that all initial features are independent of system size, which reflect
the system principle. From the perspective of real-time principle, features at three different running
statuses of system are considered, where features 1,2 are selected to reflect the impact of operation
status on system. Features 3–11 reflect the break of power balance at the moment when fault happens.
Features 12–32 reflect the impact of unbalanced energy during the fault on power balance. From the
point of mainstream principle, features correlated with rotor statuses and operation conditions may
reveal the stable tendency and operation status of system. More specially, features 6,7,17–19,29 are
related to rotor angle, which can reflect the synchronization conditions between generators. Features
5,8–15,20–27,30,31 are correlated with rotor speed and acceleration, which can reflect the impact of
disturbance on rotor movement. Features 1–4,16,28,32 are associated with operation conditions, which
reflect the impact of fault on power balance.

3. Fundamentals on Neighborhood Rough Set

From the view of NRS, a classification task is treated as an information system IS = 〈U, C, D〉, where
U is a finite set of sample data, C = {c1, c2, . . . , cn} is the set of conditional attributes (features) and D
is the decision attribute (transient stability state). IND(D) = {(x, y) ∈ U×U| f (x, D) = f (y, D)} is used
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here to denote the equivalence relation induced by D and the equivalence class of IND(D) including xi is
denoted by [xi]D, Moreover, IS is also referred to as a decision system.

Definition 1 [29]. Let IS = 〈U, C, D〉 be an information system, where U = {x1, x2, . . . , xm} is the set of
samples, C = {c1, c2, . . . , cn} is the set of conditional attributes, B ⊆ C and D is the decision attribute. Then,
the neighborhood of xi(i = 1, 2, . . . , m) in B is defined as follows:

ηB(xi) =
{

xj
∣∣xj ∈ U, ∆B(xi, xj) ≤ η

}
(1)

where ηB(xi) denotes the neighborhood of xi, η is the threshold ranges in [0, 1] which controls the size of
neighborhood, ∆B is a distance function, usually defined by the following P-norm.

∆B(xi, xj) =

(
N

∑
k=1

∣∣ f (xi, ck)− f (xj, ck)
p∣∣)1/p

(2)

It’s noted that the neighborhood defined in Equation (1) is uniform, which ignores the difference
of data distribution. However, the distributions of data in different attributes are usually quite different
in practice. It’s evident that the attribute where data is more scattered carries greater weight in
Equation (1). In other words, the higher the standard deviation of the deleted feature is, the more
samples may be added in the neighborhoods. In [30], different neighborhood thresholds are used for
different types of features to solve the heterogeneous feature selection problem. Inspired by this, in this
paper, different neighborhood thresholds are employed according to the data distribution. Based on
the above analysis, the definition of neighborhood in NRS is rewritten as follows.

Definition 2. Let IS = 〈U, C, D〉 be an information system, where U = {x1, x2, . . . , xm} is the set of
samples, C = {c1, c2, . . . , cn} is the set of conditional attributes, B ⊆ C and D is the decision attribute. Then,
the neighborhood of xi(i = 1, 2, . . . , m) in B is defined as follows:

ηB(xi) =
{

xj ∈ U
∣∣∧n

k=1
∣∣ f (xi, ck)− f (xj, ck)

∣∣ ≤ η(k)
}

(3)

where η(k) = λ · std(ck), λ ∈ [0, 1], std(ck) denotes the standard deviation of data in feature space ck and λ is
a control parameter ranges in [0, 1], which determines the size of neighborhood in the specified feature space.
Take a 2-dimensional feature space as example, the neighborhoods defined by Equations (2) and (3) are shown in
Figure 2. It can be seen that as to Equation (3), the higher the standard deviation, the larger the neighborhood
is; Thus, when we delete one feature, the number of added samples in neighborhoods would not be influenced
by its data distribution. In such case, the information system is also called a neighborhood information system
NIS = 〈U, C, D, η〉.

Differing from the equivalent relation of rough set, the similarity relation of sample pairs induced
by the neighborhood granules ηB(xi) and feature space B is referred to as a neighborhood similarity
relation, denoted by NB = {

〈
(xi, xj), rij

〉∣∣(xi, xj) ∈ (U ×U)}, where:

rij =

{
1, ∧n

k=1

∣∣ f (xi, ck)− f (xj, ck)
∣∣ ≤ η(k)

0, otherwise
(4)

NB reflects neighborhood information of each sample. xj belongs to neighborhood of xi and we
say that xj is similar to xi, if rij = 1. It’s evident that NB is symmetric and reflexive.
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Definition 3. [29]. Let NIS = 〈U, C, D, η〉 be a neighborhood information system, where U = {x1, x2, . . . , xm}
is the set of samples, C = {c1, c2, . . . , cn} is the set of conditional attributes, B ⊆ C and D is the decision attribute.
d1, d2, . . . , dN are equivalence classes obtained by D. Then, the upper and lower rough approximations of D with
respect to B is defined as follows:

NBD = ∪N
i=1NBdi; NBD = ∪N

i=1NBdi (5)

where
NBdi =

{
xj
∣∣ηB(xj) ⊆ di, xj ∈ U

}
, NBdi =

{
xj
∣∣ηB(xj) ∩ di 6= ∅, xj ∈ U

}
The lower rough approximation is also referred to as the positive region of decision attribute,

denoted by POSB(D), which reflects the capability of conditional attributes to approximate the
decisions. By Definition 3, we could see that the neighborhoods of samples in positive region can be
certainly divided into the same class. Namely, all samples similar to the one in positive region have the
same class label. Thus, samples in the positive region can be definitely classified into one decision class,
which are beneficial to the classification. Furthermore, the complementary set of lower approximation
in upper approximation is called the boundary region, which reflects the inconsistency between
conditional attributes (features) and decision class. Unlike the positive region, the neighborhoods in
boundary region are inconsistent on the decision labels, which means that the similar samples may
belong to different classes. Thus, it’s easy to misclassify the samples in boundary region. From the
above analysis, we can find that by dividing the input space into positive region and boundary
region, the separability of the feature space is distinct, which can well reflect the classification ability
of input data. Thus, we adopt the positive region to act as the evaluation index of feature space.
To better illustrate the rationale of the above definitions, we take example of two-pattern classification
in a two-dimensional feature space, namely, C = {c1, c2}. The samples are divided into two classes
d1 and d2, where samples in d1 are labeled by red rhombus and samples in d2 are labeled by blue
dot. The demonstration of positive and boundary region is shown in Figure 3. Suppose that the
neighborhoods of samples x1, x2, x3 computed by Equation (3) are the rectangular regions shown in
Figure 3. Since η(x1) ⊆ d1 and η(x3) ⊆ d2, we can obtain that x1, x3 ⊆ POSC(D). Similarly, since
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η(x2)d1 and η(x2)d2, we can conclude that x2 belongs to the boundary region. In general, the positive
region includes region A and region C, while the region B belongs to the boundary region.
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Theorem 1. Let NIS = 〈U, C, D, η〉 be a neighborhood information system, where U = {x1, x2, . . . , xm} is
the set of samples, B1 ⊆ C, B2 ⊆ B1, D is the decision attribute and d1, d2, . . . , dN are equivalence classes
obtained by D, then we have:

NB2 D ⊆ NB1 D; NB1 D ⊆ NB2 D

Proof. Suppose B2 = {c1, c2, . . . , ck} and B1 = {c1, c2, . . . , ck, ck+1, . . . , ck+n}. According to Definition 2, we can
obtain that ηB1(xi) =

{
xj ∈ U

∣∣∣(∧k
l=1

∣∣ f (xi, cl)− f (xj, cl)
∣∣ ≤ η(l))∧ (∧k+n

l=k+1

∣∣ f (xi, cl)− f (xj, cl)
∣∣ ≤ η(l))

}
and ηB2(xi) =

{
xj ∈ U

∣∣∣∧k
l=1

∣∣ f (xi, cl)− f (xj, cl)
∣∣ ≤ η(l)

}
. Hence, there exists ηB1(xi) ⊆ ηB2(xi).

By Definition 3, we have NB2 D ⊆ NB1 D and NB1 ⊆ NB2. �

By Theorem 1, we can see that deleting features will cause the expansion of neighborhoods and
the neighborhood granules will coarsen. Moreover, with the expansion of neighborhood, the decisions
of samples in neighborhood may be inconsistent, which leads to the diminution of positive region.
This implies that the increase of features can enlarge the positive region and strengthen the classification
ability of input data.

Definition 4. Let NIS = 〈U, C, D, η〉 be a neighborhood information system, where U = {x1, x2, . . . , xm} is
the set of samples, C = {c1, c2, . . . , cn} is the set of conditional attributes, B ⊆ C, a ∈ B and D is the decision
attribute. d1, d2, . . . , dN are equivalence classes obtained by D. Then, the dependency of D to B is defined
as follows:

γB(D) = Card(POSB(D))/Card(U) (6)
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The significance of a to B is defined as:

sigB(a) = γB(D)− γB−{a}(D) (7)

where Card(X) is the cardinality of a set X. The dependency γB(D) indicates the proportion that the
samples characterized by the feature set B necessarily belong to their classes. Namely, γB(D) reflects
the ability of B to approximate the decision. In special, the information system is called consistent if
γB(D) = 1. In this case, all samples certainly belong to their classes. We say that ai is indispensable in
B, if sigB(ai) > 0 , otherwise, ai is dispensable in B. The collection of all indispensable attributes or
features in B is called core set of B to D, denoted by CORED(B). By Definitions 3 and 4, we can see
that for any B ⊆ C, there exist POSB(D) ⊆ POSC(D) and γB(D) ≤ γC(D). B ⊆ C is referred to as
a reduction of C to D if γB(D) = γC(D) (or equivalently POSB(D) = POSC(D)) and ∀B′ ⊆ B, there
exists γB′(D) < γB(D). That is, feature reduction is to make the number of features least and keep the
positive region invariable.

4. Feature Reduction Using Neighborhood Rough Set and Discernibility Matrix

From the previous discussion in Section 3, we know that the positive region reflects the
classification ability of input data. Thus, from the view of NRS, feature reduction is to find a feature
subset which contains the least number of features and keeps the same positive region as the original
feature set. To discern the conditions whereby a feature subset can keep the same positive region as
the original feature set, we defined the discernibility matrix for neighborhood rough set, which is an
important method in granular computing [31–33]. Based on that, a feature selection strategy by using
discernibility matrix is designed to find the feature reduction. To better illustrate it, we first take the
neighborhood information system defined in Theorem 1 as an example and illustrate that in what
conditions does B2 keep the same positive region as B1.

By Theorem 1, we know that deleting attributes will diminish the positive region of decision attribute.
This is caused by the expansion of neighborhoods of samples, which increases the inconsistency of decisions
of individuals in neighborhoods. Thus, if we hope that POSB2(D) = POSB1(D) holds, neighborhoods
induced by B2 should keep consistent with neighborhoods induced by B1. In other words, if B1 can separate
from xi ∈ NB1dl and xj /∈ NB1dl, then so can B2. Hence, for any xi ∈ POSB1(D), neighborhood of xi
induced by B2 should not contain any individual with different decision classes. According to Definition 2,
we can obtain that for any individual xj possessing different decision classes, there should exist cl′ satisfying∣∣ f (xi, cl′)− f (xj, cl′)

∣∣ > η(l′) to ensure xj /∈ ηB1(xi), where cl′ ∈ B2. To better demonstrate the rationale,
we still take the two-pattern classification problem in Section 3 as an example and present it in Figure 4.
As we can see, samples x1 and x2 belong to the positive region since their neighborhoods have consistent
class labels. However, if we delete feature c1, these two samples will be no longer belong to the positive
region, since they are similar in terms of feature c2, while they have different class labels. Thus, if we
want to keep the positive region invariable, c1 is needed to distinguish samples x1 and x2. Similarly,
feature c2 is needed to distinguish samples x3 and x4, otherwise, x3 will belong to the neighborhood of
x4 in terms of feature c1 and the positive region will diminish. Namely, as to the discussed problem in
Figure 4, both features c1 and c2 should be reserved to maintain the classification ability. Based on the
above analysis, we define the discernibility matrix for neighborhood rough set as follows.
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Definition 5. Let NIS = 〈U, C, D, η〉 be a neighborhood information system, where U = {x1, x2, . . . , xm}
is the set of samples, C = {c1, c2, . . . , cn} is the set of features and D is the decision attribute. d1, d2, . . . , dN
are equivalence classes obtained by D. Then, the discernibility matrix of NIS is denoted by a m×m matrix
MD(C) = (mij)m×m as follows:

mij =

{ {
ck ∈ C

∣∣∣∣ f (xi, ck)− f (xj, ck)
∣∣ > η(k) ∧ con(xi, xj)

}
∅, otherwise

(8)

where con(xi, xj) satisfies xi, xj ∈ POSC(D) ∧ f (xi, D) 6= f (xj, D), xi ∈ POSC(D) ∧ xj /∈ POSC(D) or
xi /∈ POSC(D)∧ xJ ∈ POSC(D). Samples (xi, xj) satisfying con(xi, xj) have different decision labels and mij
is the collection of features, where distance between xi and xj exceeds the corresponding neighborhood threshold.
This implies that if all relevant features in mij are deleted, xi and xj will not be distinguished and both the
samples will be contained in the boundary region. In other words, at least one feature in mij should be reserved
to distinguish xi and xj. By Equation (8), we can see that the discernibility matrix is symmetric and mii = ∅.
Thus, we can only compute the upper or lower triangular matrix in practice.

Theorem 2. Let NIS = 〈U, C, D, η〉 be a neighborhood information system, where U = {x1, x2, . . . , xm} is the
set of samples, C = {c1, c2, . . . , cn} is the set of features and D is the decision attribute. MD(C) = (mij)m×m
is the discernibility matrix defined in Definition 5, then there exists:

CORED(B) =
{

cl
∣∣mij = {cl}

}
(9)

Moreover, if B ⊆ C is a reduction of C to D, then for any mij 6= ∅, there exists B ∩mij 6= ∅.

Proof. (1) According to Definition 4, if cl ∈ CORED(B), there exists sigC(cl) = γC(D)− γC−{cl}(D) >

0. ⇔ POSC(D) 6= POSC−{cl}(D)⇔ There exists xi ∈ U, such that ηC(xi) ⊆ [xi]D and ηC−{cl}(xi)[xi]D
⇔ There exists xj /∈ [xi]D, such that

∣∣ f (xi, ck)− f (xj, ck)
∣∣ ≤ η(k) (k = 1, 2, . . . , l − 1, l + 1, . . . , n) and∣∣ f (xi, cl)− f (xj, cl)

∣∣ > η(l). ⇔ MD(C)(i, j) ∩MD(C− {cl})(i, j) = cl and MD(C− {cl})(i, j) = ∅⇔
MD(C)(i, j) = {cl} ⇔ mij = {cl}.

(2) B is a reduction of C to D ⇔ for any xi ∈ POSC(D) satisfying ηC(xi) ⊆ [xi]D, there exists
ηB(xi) ⊆ [xi]D ⇔ For any xj /∈ ηB(xi), there exist xj /∈ ηC(xi). ⇔ There exists cl ∈ B such that∣∣ f (xi, cl)− f (xj, cl)

∣∣> η(l) ⇔ According to Definition 5, we can obtain that mij 6= ∅ and cl ∈ mij ⇔
B ∩mij 6= ∅. �
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From Theorem 2, we can see that features in the core set are used to distinguish a few specific
samples and the core set could be empty. Features in reduction can distinguish all sample pairs (xi, xj)

satisfying con(xi, xj), which means that a reduction has the same separability as the original feature
space. The remaining features are eliminated since the sample pairs which can be distinguished by
them can also be distinguished by features in reduction. From the above analysis, we can add features
into the reduction set one by one until the intersection of reduction set and each nonempty unit in
discernibility matrix is nonempty. However, this method is inefficient and the obtained reduction set is
usually redundant since there isn’t any effective guideline. To find the most important feature in each
round, we introduce the following definition. Based on that, we design a feature selection strategy to
find the optimal feature set.

Definition 6. Let NIS = 〈U, C, D, η〉 be a neighborhood information system, where U = {x1, x2, . . . , xm}
is the set of samples, C = {c1, c2, . . . , cn} is the set of features and D is the decision attribute. MD(C) =

(mij)m×m is the discernibility matrix of NIS, then the discernibility set of C with respect to MD(C) is defined
as DIS(C) =

{
mij
∣∣mij 6= ∅

}
. The discernibility set of cl with respect to MD(C) is defined as DIS({cl}) ={

mij
∣∣mij 6= ∅, cl ∈ mij

}
. Obviously, there exists DIS(C) = ∪cl∈CDIS({cl}). The importance of cl to MD(C) is

defined as:
IMP(cl) = Card(DIS({cl}))/Card(DIS(C)) (10)

The importance of cl reflects that the capacity of cl to distinguish sample pairs (xi, xj) satisfying
con(xi, xj). The higher the importance of cl is, the greater the ability of cl is to approximate the
decision. To find the feature reduction, we first initialize the reduction set as an empty set and keep
adding features into the reduction set one after another until it can distinguish all the sample pairs
with nonempty units in MD(C), where the added feature in each round maximizes the increment of
importance of current reduction set. Based on the above analysis, we design a feature selection strategy
based on NRS and discernibility matrix to compute the optimal feature reduction, the Algorithm 1 is
as follow.

Algorithm 1: Feature Selection Strategy Based on NRS and Discernibility Matrix

Input: Neighborhood information system NIS = 〈U, C, D, η〉, where U = {x1, x2, . . . , xm} is the set of
samples, C = {c1, c2, . . . , cn} is the set of features, D is the decision attribute which divides samples into
several equivalence classes {d1, d2, . . . , dN}. CORE = ∅, RED = ∅.

Output: reduction set RED
Step 1: Normalize the data by 0-1 normalization method to decrease the influence caused by difference of

units of measures.
Step 2: Compute the discernibility matrix MD(C) of NIS and the discernibility set DIS(C) of C to MD(C).

Choose the nonempty units mi in DIS(C) with single feature, and put them into core set CORE.
Step 3: For each unit mi in DIS(C), if the intersection of mi and CORE is not empty, delete the unit from

DIS(C).
Step 4: Put the features in core set into reduction set, namely, RED = CORE.
Step 5: If DIS(C) = ∅, then go to Step 7, otherwise, go to Step 6.
Step 6: For each feature cl /∈ RED, compute the discernibility set DIS({cl}) and importance IMP(cl) of cl

to MD(C). Find the maximum IMP(cl) and the corresponding feature cl . Put cl into reduction set RED and
delete units which includes cl from DIS(C). Then go to Step 5.

Step 7: Output the reduction set RED.

The computation complexity of constructing discernibility matrix is equal to O(|U|2 × n) and
the computation complexity of computing core set and reduction is O(|U|2 × n) . Thus, the overall
computation complexity of the proposed algorithm is O(|U|2 × n) . In practice, it can be found that
most of sample pairs can be distinguished by the feature with maximum importance. Since each time
we add a new feature into reduction set, the size of DIS(C) will be reduced. Thus, the computation
times will decrease after each round, especially at the start of search.
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5. Illustrative Example

In this section, the proposed method is applied to the New England 10 generator 39 bus system
and Australian simplified 14 generators system to illustrate its effectiveness. Moreover, comparative
experiments are also provided to analyze its performance.

5.1. New England 10 Generator 39 Bus System

The New England 10 generator 39 bus system (NES39) [34] is a well-known test system for the
study of transient stability and dynamic security analysis. This benchmark includes 10 generators,
39 buses, 19 loads and 46 transmissions, where the generator 1 represents an interconnected power
system in Canada.

According to features listed in Table 1, we first generate the initial sample space after a large
amount of offline time domain simulations. 10 different basic load conditions (80%, 85%, . . . , 125%)
are considered and the generator outputs are changed accordingly to ensure the power balance of
system. Three-phase short-circuit fault on each bus is set as the contingency, which is happened at 0.1 s
and cleared at 0.2 s, 0.25 s, 0.3 s or 0.35 s, respectively and there isn’t topology change from the fault.
The simulation time is set as 3s. We randomly choose 15 different fault locations at each load level
and 600 samples are generated, with 315 stable samples and 285 unstable samples. Seventy percent of
samples are used to train the classifiers, and the rest are used to test. The constant impedance load and
4th order generator model are considered in this system. The IEEE type DC1 is used as the excitation
system model. The decision system consists of feature data and the corresponding transient stability
state. The maximum difference of any two generators at the stop time of simulation is used to judge if
the system is transiently stable or not. If it doesn’t exceed 180◦, the system is transiently stable and we
mark the decision label of corresponding sample data with “1”; otherwise, the system is transiently
unstable and we mark the decision label of sample data with “0”. The above experiments are all carried
out in MATLAB/Simulink (2013b, MathWorks, Natick, MA, USA).

5.1.1. Performance Analysis of Feature Selection Strategy

By using the positive region of NRS theory as the evaluation index, different feature selection
strategies could be used to search the optimal feature set. To illustrate the effectiveness and superiority
of our proposed feature selection strategy, in this subsection, we first discuss the performance of
the proposed feature selection strategy by some comparative analysis. To avoid the occasionality,
three representative classifiers including back propagation neural network (BP), radial basis function
based support vector machine (RBF-SVM) and classification and regression tree (CART) are selected
to evaluate classification performance of the reduction set. The least-squares method is used to find
the separating hyperplane and the kernel parameter is set as 2 in RBF-SVM. As to BP, we adopt two
hidden layers and the L-M algorithm as training function. The classification accuracies are tested
100 times and the statistics are utilized to evaluate the characteristic of selected features. To explore the
correlations between number of features and classification performance, we first analyze the ranking
based feature selection strategy (Ranking for short) [24]. By comparing the significance (see Definition
4) of single features, features with greater significance are added one after another. The classification
accuracies with different number of selected features are presented in Figure 5. It can be seen that the
classification accuracy increases distinctly at the start of the screening process. After adding 17 features,
the classification accuracy doesn’t visibly increase and maintain in 0.95 approximately. This indicates
that there is redundant information in the original feature space, thus, it’s necessary to further reduce
the original features.
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Two other widely used feature selection strategies for NRS including the forward heuristic search
(Forward for short) and the backward heuristic search (Backward for short) [30] are also employed
here to make comparisons. The results are shown in Table 2, where our proposed feature selection
strategy is denoted by DM for short. The orders of selected features in Table 2 are arranged by the
orders of features added by the corresponding algorithm.

Table 2. Performance comparison of different feature selection strategies (NES39).

Feature
Selection
Strategy

Selected
Features in
Reduction

Accuracy (%)
CART

Accuracy (%)
RBF-SVM

Accuracy (%)
BP

Computation
Time

DM 17,1,10,7,3,2 95.33 ± 1.84 95.80 ± 1.76 95.75 ± 1.69 162.37 s
Forward 17,5,1,24,3,6 94.10 ± 2.03 95.23 ± 2.03 94.29 ± 1.63 224.55 s

Backward 9,22,26,29,31,32 96.03 ± 2.17 95.60 ± 1.92 95.07 ± 1.86 340.28 s

As shown in Table 2, we can see that all the above strategies finally select six features. However,
the feature reductions obtained by these three strategies are quite different. For instance, as to DM,
features 17,1,10,7,3,2 are selected while features 17,5,1,24,3,6 are chosen by Forward. There are three
features identical. As to Backward, the obtained reduction set includes features 9,22,26,29,31,32, which
are completely different from the selected features obtained by DM or Forward. The differences mainly
arose from different search strategies. From the view of classification performance, we could find that
all the feature reductions selected by the above strategies have similar classification abilities with the
original feature set. However, the features selected by DM have more stable test results, which are
more ideal. In terms of computation time, it is easy to find that DM has spent less computation time.
The underlying reason is that the maximum computation complexity of DM is O(|U|2 × n) while the
maximum computation complexity of Forward and Backward is O(

∣∣U∣∣2 × n2) , where |U| represents
the number of samples and n represents the number of features. Thus, the proposed discernibility
matrix based feature selection strategy is more efficient to find the optimal feature reduction.

5.1.2. Performance Comparison of Different Feature Reduction Methods

It’s noteworthy that a feature reduction method consists of both a feature evaluation index and
the feature selection strategy. In order to analyze the performance of our proposed feature reduction
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method, we further compare our method with several existing feature reduction methods of TSA,
which include the Pawlak rough-set-based method (RS for short) [25,26], the kernelized fuzzy rough
set and memetic algorithm based method (FRS-MA for short) [27], correlation analysis and principle
component analysis based method (CA-PCA for short) [11] and Relief-F [35]. Our proposed feature
reduction method is denoted by NRS-DM for short. The above-mentioned methods have different
feature evaluation indexes and feature selection strategies. In the meanwhile, we report the reduction
performance of NRS with single neighborhood threshold (NRSS for short), where the threshold is
set as 0.1 according to the recommended value range of neighborhood threshold in [28]. Some basic
configurations are given as follows. The population size and maximum generation are set as 30 and
100 respectively in FRS-MA. The equal frequency discretization is used in RS and the frequency is set
as 4. In CA-PCA, if the correlation of each pair of features is greater than 0.95, we delete one of them.
Moreover, 95% of variation of feature space is considered in PCA. As to Relief-F, each feature negative
correlative with the classification will be deleted. The results are given in Table 3. Figure 6 shows the
corresponding reduction rates and average classification accuracies of three classifiers. The orders of
selected features in Table 3 are arranged by the orders of features added by the corresponding method.
Since the final feature space has changed, in Table 3, we only provide features obtained by CA for
CA-PCA (labeled by *).

Table 3. Comparison of different feature reduction methods (NES39).

Feature Reduction
Method

Selected Optimal
Feature Set Dimension Accuracy (%)

CART
Accuracy (%)

RBF-SVM
Accuracy (%)

BP

NRS-DM 17,1,10,7,3,2 6 95.33 ± 1.84 95.80 ± 1.76 95.75 ± 1.69

FRS-MA 1,2,4,7,8,14,
17,23,26,31 10 95.08 ± 2.02 95.28 ± 1.71 96.02 ± 1.88

RS 17,2,13,12,21,7,
3,27,25,4,9 11 95.12 ± 1.87 94.25 ± 2.08 95.29 ± 2.08

CA-PCA * 1,2,3,4,5,6,7,8,9,12,13,17,
19,20,21,24,25,26,27,29,30 8 88.30 ± 2.43 92.12 ± 2.35 92.28 ± 1.95

Relief-F 2,7,8,9,10,13,14,16,17,18,
19,21,22,23,24,25,28,30,31,32 20 95.12 ± 1.78 96.08 ± 1.34 95.96 ± 1.80

NRSS 17,5,32,1,7,6,3 7 95.92 ± 1.78 94.45 ± 1.87 95.04 ± 2.38

The original
feature set – 32 94.75 ± 2.06 95.67 ± 1.63 96.46 ± 1.69
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Figure 6. Performance comparison of different feature reduction methods (NES39).

From Table 3 and Figure 6, we can find that the dimension of features selected by NRS-DM is only
one fifth of the original feature set, but the corresponding classification accuracies are similar to or
even better than the original feature set. As to FRS-MA and RS, there are 10 and 11 features selected
respectively, which are more than NRS-DM. Moreover, their average classification accuracies are lower
than NRS-DM. The above differences may result from two aspects. One is the difference of feature
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selection strategies. As we discussed above, a sound search strategy has a direct impact on the result of
feature reduction. Since the randomness of evolutionary algorithm, FRS-MA may be trapped into local
optimal. Moreover, the result is susceptible to the control parameters setting. In contrast, NRS-DM is
more robust and has a good suitability for feature reduction. The other is the used evaluation index.
Since RS is based on the equivalence relation, it can’t directly handle the real-valued data, which
means that we need to discretize input data first. As we know, data discretization will inevitably result
in information loss. In contrast, the equivalence relation is replaced by the neighborhood similarity
relation in NRS-DM, which avoids the influence of discretization. The results of NRSS show that NRS
with multiple neighborhood thresholds has better performance than the one with single threshold.
As to CA-PCA, we can see that at the first round, 21 features are selected by correlation analysis and
the dimension is finally reduced to 8 by PCA at the second round. The final reduction rate is high
to 75%, however, the classification performance is not as high as NRS-DM. The underlying reason
is that the component with lower variation may include important information closely associated to
classification. Moreover, not matter CA or PCA, the decision information is not considered. As to
Relief-F, although the selected features has similar classification accuracies to the original feature set,
it can’t effectively eliminate the redundancies in feature space. From the above analysis, it can be seen
that NRS-DM performs better than the other feature selection methods for TSA problem.

5.1.3. Performance Test in the Condition of N-1 Contingencies

In order to verify the effectiveness of our method in different conditions, in this subsection,
the method is tested in the condition of N-1 contingencies, where any one of the transformers or
transmission lines is out of the service. A three-phase short-circuit fault on bus is set as the contingency
and we randomly choose the fault locations. The load conditions and fault-occurring and fault-clearing
time are set in the same way. 600 samples are generated, with 249 stable samples and 351 unstable
samples. In the same way, five feature reduction methods mentioned above are applied to make
comparisons with the proposed method. The results are presented in Figure 7 and Table 4. The results
show that the classification accuracy of our method is almost the highest (just little lower than Relief-F).
Moreover, compared with other methods, our method owns the highest reduction rate. The results are
consistent with the previous conclusions. The underlying reason is that our evaluation index can well
reflect the classification ability of input features, it is applicable to different circumstances. Based on
that, the proposed feature selection strategy helps us to find the optimal feature set.Energies 2018, 11, 185 15 of 19 
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Figure 7. Performance comparison in the condition of N-1 contingencies (NES39).
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Table 4. Results in the condition of N-1 contingencies (NES39).

Feature Reduction
Method

Selected Optimal
Feature Set Dimension Accuracy (%)

CART
Accuracy (%)

RBF-SVM
Accuracy (%)

BP

NRS-DM 6,17,29,10,7,2 6 95.44 ± 1.55 95.51 ± 1.31 96.07 ± 1.12

FRS-MA 1,2,3,14,16,17,
19,20,26,31,32 11 95.15 ± 1.46 94.87 ± 1.47 95.87 ± 1.32

RS 13,21,12,9,4,7,
26,8,3,19 10 95.08 ± 1.39 94.93 ± 1.48 94.58 ± 1.45

CA-PCA * 1,2,3,4,5,6,7,8,9,12,13,
17,19,20,21,25,26,27,29,30 8 89.44 ± 2.06 93.07 ± 1.67 92.58 ± 1.79

Relief-F 2,7,8,9,10,11,13,14,16,17,18,
19,21,22,23,25,28,29,30,31,32 21 95.53 ± 1.37 96.18 ± 1.11 95.73 ± 1.00

NRSS 17,7,1,2,3,6,11 7 95.28 ± 1.22 94.63 ± 1.45 95.69 ± 1.13

The original
feature set – 32 95.43 ± 1.26 95.30 ± 1.19 96.28 ± 1.20

5.2. Australian Simplified 14 Generators System

To further illustrate the effectiveness of the proposed method, the Australian simplified
14 generators system (ASS14) [36] is employed in this subsection. The Australian simplified
14 generators system models the southern and eastern Australian power system (refer to [36] for
more details). This system includes 14 generators, 59 buses, 29 loads and 114 transmissions. Several
power system stabilizers are provided in this system. Moreover, five Static Var Compensators are also
included in this system. 10 different basic load conditions (80%, 85%, . . . , 125%) are considered and
the generator outputs are changed accordingly to ensure the power balance of system. Three-phase
short-circuit fault on each bus is set as the contingency, which is happened at 0.1 s and cleared at 0.15 s,
0.2 s, 0.25 s or 0.3 s, respectively and there isn’t topology change from the fault. The simulation time
is set as 3 s. We randomly choose 30 different fault locations at each load level and 1200 samples are
generated, with 727 stable samples and 473 unstable samples. Seventy percent of samples are used to
train the classifiers, and the rest are used to test. The constant impedance load and 4th order generator
model are considered in this system. The IEEE type AC4A is used as the excitation system model.

5.2.1. Performance Analysis of Feature Selection Strategy

The obtained feature reductions with different feature selection strategies are given in Table 5.
It can be seen that all the three acquired feature reductions have similar classification accuracies, but
the number of selected features obtained by DM is less than the other two algorithms. Moreover, it’s
noted that the computation time is greatly reduced by DM. This is mainly because that in NRS-DM,
most sample pairs can be distinguished by the selected features at the start of algorithm, thus, the
dimension of discernibility set will be greatly reduced, which reduces the cycle times. In contrast,
each time a new feature is added, the neighborhoods of samples would be recomputed in Forward
and Backward. Therefore, as the number of samples increases, the computation time of Forward and
Backward will increase exponentially.

Table 5. Performance comparison of different feature selection strategies (ASS14).

Feature Selection
Strategy

Selected Features in
Reduction

Accuracy (%)
CART

Accuracy (%)
RBF-SVM

Accuracy (%)
BP

Computation
Time

DM 5,30,13,2,4,8,19,7 96.38 ± 1.45 96.03 ± 1.22 94.02 ± 1.32 209.96 s
Forward 31,32,6,2,29,8,5,13,30 95.25 ± 1.46 95.13 ± 1.43 94.27 ± 1.49 1335.06 s

Backward 5,8,17,22,25,26,29,30,31,32 95.90 ± 1.79 95.94 ± 1.61 94.23 ± 1.48 1447.29 s
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5.2.2. Performance Comparison of Different Feature Reduction Methods

In the same way, five feature reduction methods mentioned above are applied to make
comparisons with the proposed method. Table 6 presents the obtained feature reductions and their
classification accuracies. Figure 8 shows the corresponding reduction rates and average classification
accuracies of three classifiers. The results show that the feature reductions obtained by NRS-DM
and CA-PCA have the minimum dimension, however, the classification performance of CA-PCA is
distinctly lower than the original feature set. In contrast, we can find that although the reduction
rate of NRS-DM is the highest, but its classification performance is the best. Moreover, it’s noted
that no matter what method we utilize, the dimension of obtained feature reduction is higher than
the obtained feature reduction in NES39. This indicates that as the scale of systems increases, more
features should be correspondingly added to describe the characteristics of systems.
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Table 6. Comparison of different feature reduction methods (ASS14).

Feature
Reduction

Method

Selected Optimal
Feature Set Dimension Accuracy (%)

CART
Accuracy (%)

RBF-SVM
Accuracy (%)

BP

NRS-DM 5,30,13,2,4,8,19,7 8 96.38 ± 1.45 96.03 ± 1.22 94.02 ± 1.32

FRS-MA 2,4,7,13,14,18,
20,21,22,26,31 11 93.79 ± 2.15 95.19 ± 1.66 94.02 ± 1.55

RS 21,16,7,29,2,4,14,
30,10,5,8,17,28,19 14 94.95 ± 1.66 95.04 ± 1.27 94.44 ± 1.10

CA-PCA
*

1,2,3,4,5,6,7,8,9,11,12,13,15,
16,19,20,21,26,27,28,29,30,32

8 90.14 ± 2.15 92.48 ± 1.64 90.38 ± 2.09

Relief-F 2,5,7,8,9,10,11,12,13,14,18,19,20,
21,22,23,24,25,27,28,29,30,31,32 24 95.13 ± 1.50 96.33 ± 1.21 95.15 ± 1.28

NRSS 31,32,1,2,11,5,13,8,30 9 94.90 ± 1.82 95.94 ± 1.24 93.98 ± 1.15

The original
feature set – 32 94.55 ± 1.81 95.63 ± 1.22 94.41 ± 1.62

6. Conclusions

In this paper, we present a novel feature reduction technique based on NRS and discernibility
matrix for TSA problems, where NRS is used to act as the evaluation index and a discernibility matrix
based feature selection strategy is used to find the optimal feature set. Moreover, the rationale and
some useful properties of NRS and discernibility matrix are explored. In order to verify our proposed
method, the New England 10 generator 39 bus system and the Australian simplified 14 generators
system are employed to conduct the comparative experiments. According to the analysis, the following
conclusions can be obtained:
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1. By using neighborhood rough set theory, the input space is divided into positive region and
boundary region, which can intuitively describe the effective classification information contained
in the feature space. Compared with some existing evaluation index, such as CA, Relief-F and
Pawlak rough set, the NRS is more comprehensive to characterize features.

2. Through analyzing the mechanism and principle of positive region of input space based on NRS
theory, the discernibility matrix is constructed and a feature selection strategy based on that is
designed to search the optimal feature set. The comparative experiments show that our proposed
search strategy expends lower computation time, which has higher search efficiency.

3. Both the normal power network topology and the condition in N-1 configuration are considered;
it shows that our method is applicable to different circumstances. Moreover, the features
selected by the proposed method are applicable to different classifiers such as CART, RBF-SVM
and BP-Neural Network. Compared with several existing feature reduction methods of TSA,
the proposed method owns the maximum reduction rate and relatively the best classification
performance, which is more favorable to find the optimal feature subset.

This paper provides a systematic methodology for the feature reduction of TSA. However, it’s
based on the assumption that all feature data are available. In practice, due to the loss of measurement
units or communication delay, the collected data may be incomplete. Thus, how to find the optimal
feature set in such case still needs to be further studied. Moreover, the classification accuracy of
machine learning-based methods requires further improvement.
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