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Abstract: Two methods, frequency domain analysis and time domain analysis, are widely applied to
modeling wave energy converters (WECs). Frequency domain analysis can evaluate the performance
of WECs quickly and efficiently, while it refers to a linear model. When it comes to investigations on
nonlinear characteristics of the power take-off (PTO) unit of WECs or control for improving the WECs’
performance, time domain analysis based on a state-space approximation for the convolution term is
more desirable. In this paper, a state-space approximation of the convolution term in a time domain
analysis of a raft-type WEC consisting of two rafts and a PTO unit is presented. The state-space
model is identified through regression in the frequency domain. Verification of such a type of time
domain analysis is conducted by comparison of its simulation results with those calculated by using
a frequency domain analysis, and there is a good agreement. Finally, the effects of PTO parameters,
wave frequency, surge and heave motions of the joint, and quadratic damping PTO on the power
capture ability of the raft-type WEC are investigated.

Keywords: raft-type wave energy converter (WEC); power take-off (PTO); frequency domain;
time domain; power capture ability; capture width ratio

1. Introduction

Wave energy with its renewable and non-polluting properties is wildly explored in many
countries [1,2]. In order to extract and utilize wave energy, many scholars have proposed varieties of
energy conversion devices. The most notable device is the point-absorbing wave energy converter
(WEC), which has been studied since the late 1970s [3]. Based on the mechanism of the point-absorbing
WEC, other types of WECs appeared, such as oscillating-water column WEC, pendulum WEC,
and raft-type WEC [4].

The raft-type WEC is a semi-submerged offshore structure, composed of a series of rafts, which are
articulated end to end by the joints containing hydraulic power take-off (PTO) units [5]. The device is
deployed in a direction parallel to the propagation direction of the incident waves. Under the action of
the incident waves, each raft outputs surge, heave, and pitch motions, while only the relative pitch
motion between the rafts around the joint forces the hydraulic cylinders to pump high-pressure (HP)
oil. Then, the HP oil drives the hydraulic motor shaft to rotate, and this rotation forces the generator to
produce electricity [1].

Research on the raft-type WEC originated in 1979, when Haren and Mei [6–8] adopted a two
dimensional fluid-structure coupling model to study the contouring rafts by modeling the PTO unit as
a linear PTO system. Their contribution included the power absorption efficiency of one raft hinged at
a wall in long wave conditions, multiple rafts with variable lengths in shallow water wave conditions,
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and a three-raft system in both shallow and deep-water wave conditions. By assuming that the raft
was a “limp-beam” model, Farley [9] explored the energy conversion ability of a flexible resonant raft.

In later years, the McCabe Wave Pump, another type of raft-type device, composed of three
rectangular barges hinged together, where the relative pitch motion between the fore, aft, and the
middle barges is used to generate electricity or produce potable water, was studied by Kraemer [10]
and Nolan et al. [11]. Kraemer’s finding showed that the pitch motion of the hinged barges could be
maximized by altering the ratio of the length of barges and the wavelength. Nolan et al. adopted the
bond graph method to model a more complicated PTO unit including a non-linear damper for the
McCabe Wave Pump. In order to solve the dynamics of multi-body WECs, Paparella et al. [12] applied
pseudo-spectral methods to the McCabe Wave Pump using both differential and algebraic equations
(DAEs) formulation and ordinary differential equations (ODEs) formulation. Their results showed
that pseudo-spectral methods are computationally more stable and require less computational effort
for short time steps.

The Pelamis WEC manufactured by Pelamis Wave Power Company is another successful
application of the raft-type device. The company has conducted many valuable researches on
the Pelamis device including testing on a laboratory scale and under real sea conditions [13–15].
The Pelamis device can use both the relative pitch and relative yaw motions around its joints to
generate electricity. The current model, the Pelamis P2 composed of five cylindrical modules, with a
total length of 180 m, has a maximum capture width as large as 150% of its ‘displacement width’ [15].

With the concept of Pelamis or Pelamis-like, Thiam and Pierce [16–18] investigated the radiation
loss in a Pelamis-like WEC by assuming an infinitely long flexible circular cylinder floating on the
surface of an infinitely deep ocean. Their researches showed that the influence of radiation losses is
significant if the overall length of the device is much larger than the wavelength of the incident wave.

In recent years, Zheng et al. [19,20] have presented a six-degree-of-freedom (six-DOF) frequency
domain model for a raft-type wave energy conversion device of an elliptical cross section. In their
research, the effects of the raft radius of gyration and axis ratio of the raft on the wave energy
conversion ability were explored, and they conducted a theoretical study on the maximum power that
the raft-type device could extract by using a linear PTO model. To investigate the effect of latching
control, a six-DOF time domain model based on Cummins’ equation for the raft-type device was also
presented by Zheng et al. [20].

By using the Lagrange multiplier technique, Sun et al. [21] provided a frequency domain linear
diffraction model to investigate the responses of interconnected floating bodies. Then, Sun et al. [22,23]
applied this frequency domain linear diffraction model to a raft-type-like WEC M4 in regular waves
and irregular multi-directional waves to predict relative pitch rotation and power capture. Their results
showed a good agreement of relative rotation and power capture with experiments. More recently,
Stansby et al. [24] presented a time domain linear diffraction model based on Cummins’ method for
the raft-type-like WEC M4 to investigate large capacity multi-float configurations.

So far, most of the previous researches on the raft-type WEC have been conducted by using a
frequency domain analysis with the assumption of a linear model, or using a time domain analysis
based on Cummins’ equation with a convolution term. When the research includes control to improve
the WEC’s performance, a time domain analysis with the convolution term approximated by a
state-space model is more desirable, since such a type of time domain analysis is well suited for
controller design and simulation [25,26]. Recent literature [27] has presented such a type of time
domain analysis for a raft-type WEC consisting of two rafts and a PTO unit. However, the details
of how to reformulate the convolution term into a state-space model and the realization of such
a state-space model were not reported. This paper focuses on providing the details regarding the
state-space modeling procedure for approximating the convolution term in the time domain analysis
of the raft-type WEC. Besides, based on such a type of time domain analysis, the effects of PTO
parameters, wave frequency, surge and heave motions of the joint, and quadratic damping PTO on the
power capture ability of the raft-type WEC are explored.



Energies 2018, 11, 169 3 of 22

2. Description of the Device

Figure 1 presents a raft-type WEC composed of two floating rafts and a hydraulic PTO unit.
The two rafts with a cylindrical shape are articulated by a joint with a gap d0 between them, as shown
in Figure 1b. The length, diameter, and density are denoted as L, D, and ρ0, respectively. The motion
characteristic of the device is formulated in a Cartesian coordinate (x, y and z) system with its origin O
coincident with the center of the joint, where the z-axis is in the vertical direction, while the x- and y-axes
are taken along the length and the diameter direction of the rafts in still water, respectively, as shown
in Figure 1a. For the fore raft, the displacements are labeled as x1-surge, z1-heave, and θ1-pitch.
For the aft raft, the displacements are labeled as x2-surge, z2-heave, and θ2-pitch. The surge and heave
displacements of the joint are denoted as x0 and z0, as shown in Figure 1c.

The forces acting on each raft are shown in Figure 1c. The wave force on mode j of the rafts
is denoted as f w,j (t) (here, subscript j = 1, 3, and 5 indicate the surge, heave, and pitch modes of
the fore raft, respectively; j = 1′, 3′, and 5′ indicate the surge, heave, and pitch modes of the aft raft,
respectively). As the wave passes along the length of the rafts, the rafts output a relative pitch motion
around the joint, which drives the hydraulic PTO unit to convert wave energy.
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3. Frequency Domain Analysis

By assuming the hydraulic cylinder as a linear damper plus a linear stiffness, Liu et al. [27]
adopted a generalized displacement vector x(t) = [x0 z0 θ1 θ2]T to describe the motion characteristic of
the device and given a four-DOF frequency domain model for waves in the positive x-direction based
on the Lagrange’s equations, which can be written as:[

−ω2(M + Aadd(ω))− iω
(
B(ω) + Cpto

)
+
(
Kpto + K

)]
X(ω) = Fe(ω), (1)

where ω is the wave frequency; “i” is the imaginary unit; M is the generalized mass matrix; Aadd(ω)
is the generalized added mass matrix; B(ω) is the generalized radiation damping matrix; K is the
generalized hydrostatic restoring stiffness matrix; Cpto and Kpto are the damping matrix and stiffness
matrix of the PTO unit, respectively; X(ω) is the complex amplitude of the generalized displacement
vector x(t); and Fe(ω) is the complex amplitude of the generalized wave excitation force vector.
Their expressions are given in Appendix A.
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3.1. Frequency Response Function

The frequency response function (FRF) of the wave amplitude-to-complex amplitude of the
generalized displacement vector, G(ω), can be described by [27]:

G(ω) =
X(ω)

aw
=

Γe(ω)

−ω2(M + Aadd(ω))− iω
(
B(ω) + Cpto

)
+
(
K + Kpto

) , (2)

where aw is the wave amplitude and Γe(ω) is the complex generalized excitation force coefficient vector
(force vector per unit incident wave amplitude). The expression of Γe(ω) is given in Appendix A.

The FRF of the wave amplitude-to-complex amplitude of relative pitch velocity, Gv_rp, is:

Gv_rp(ω) = (−iω) · ζ ·G(ω), (3)

where ζ = [0 0 1 −1].

3.2. Power Capture Ability

The average power captured by the PTO unit from the incident wave is:

Pave_cap(ω) =
1
2

2r0
2cpto

∣∣aw · Gv_rp(ω)
∣∣2. (4)

The time-average flux of energy transported by a regular wave per unit wave crest length in a
finite water depth is [28]:

Pw =
ρgωa2

w
4k

(
1 +

2kh
sinh(2kh)

)
, (5)

where ρ is the density of sea water; g is the gravity acceleration; h is the water depth; and k is the
wave number.

The capture width ratio is a significant parameter to evaluate the power capture ability of a
WEC. In the study of the raft-type-like WEC M4, Sun et al. [22,23] normalized the capture width by
wavelength to obtain the capture width ratio. Here, we also adopt the same definition, since this
definition of the capture width ratio enables a comparison with theoretical maxima, e.g., 3/2π in heave
and pitch and/or surge for a point absorber [28] and 4/3π for a slender two-raft WEC [29]. Thus,
the capture width ratio is:

ηcap =
Pave_cap

Pw · λ
, (6)

where λ is the wavelength at frequency ω.

4. Time Domain Analysis

When the model refers to a linear model, the frequency domain analysis shown in the above
section is convenient and efficient to evaluate the performance of the device in a prescribed sea
state. However, sometimes, due to the relatively low capture width ratio of a WEC without control,
it is imperative to do more thorough researches on its performance, for instance, incorporating the
nonlinear characteristics of the hydraulic PTO unit or the control; at this time, the frequency domain
analysis is limited, and therefore, a time domain analysis is more desirable. Taking the inverse Fourier
transform of Equation (1), the time-domain model of the device is shown as below:

(M + Aadd(∞))ẍ(t) +
∫ t

0
h(t− τ)

.
x(τ)dτ + Kx(t) = fe(t) + fpto(t), (7)

where Aadd(∞) is the limiting value of the generalized added mass matrix Aadd(ω) for ω = ∞; fe(t) is
the generalized wave excitation force vector; fpto(t) is the generalized force vector applied by the PTO
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unit; and h(t) is the retardation function matrix. The time and frequency domain representations of the
retardation function matrix are [28]:

h(t) =
2
π

∫ ∞

0
B(ω) cos(ωt)dω, (8)

H(−iω) = B(ω) + (−iω) · [Aadd(ω)−Aadd(∞)]. (9)

In regular waves, the wave excitation force acting on the mode j of the rafts is [28]:

fe,j(t) = aw ·
∣∣Γj(ω)

∣∣ · cos
(
−ωt +∠Γj(ω)

)
. (10)

In irregular waves, the wave excitation force acting on the mode j of the rafts can be expressed
as [28]:

fe,j(t) =
N

∑
n=1

aw(ωn) ·
∣∣Γj(ωn)

∣∣ · cos
(
−ωnt +∠Γj(ωn) + εn

)
, (11)

where ωn, εn, and aw(ωn) are the wave frequency, random phase angle, and wave amplitude of the
n-th wave component, respectively.

The time domain generalized excitation force vector can be obtained by [27]:

fe(t) =


fe,1(t) + fe,1′(t)
fe,3(t) + fe,3′(t)
fe,5(t) + fe,3(t)l
fe,5′(t)− fe,3′(t)l

, (12)

where l is the distance between the mass center of the raft and the joint.
The force vector applied by the PTO unit can be written as:

fpto(t) = −Cpto
.
x(t)−Kptox(t). (13)

4.1. State-Space Model of Convolution Term

The time domain motion equation presented above contains a convolution term, which denotes
the fluid memory effect. Performing the simulation of such a type of time domain model can be
time-consuming and may require significant amounts of computer memory, as demonstrated in
Taghipour et al. [25,30]. What is worse is that it is not suited for controller analysis and design.
For these reasons, different methods of approximating the convolution term have been proposed
in many literatures [25,30,31]. One approach is to use a linear-time-invariant parametric model in
a state-space form to substitute the convolution term by frequency domain identification [25,30,31].
The convolution term in Equation (7) for calculating the fluid-memory effect can be described by µ(t):

µ(t) =
∫ t

0
h(t− τ)

.
x(τ)dτ. (14)

For the convolution term µ(t), it also has a form as:

µ(t) =



µ1(t) =
4
∑

q=1
µ1,q(t)

µ2(t) =
4
∑

q=1
µ2,q(t)

µ3(t) =
4
∑

q=1
µ3,q(t)

µ4(t) =
4
∑

q=1
µ4,q(t)


. (15)
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For each element µp,q(t) in the convolution term µ(t) can be replaced by a state-space model [29,32].

µp,q(t) =
∫ t

0
hp,q(t− τ)

.
x(q)(τ)dτ ⇒

{ .
x(p,q)

s = A(p,q)
s x(p,q)

s + B(p,q)
s

.
x(q)(t)

µp,q(t) = C(p,q)
s x(p,q)

s
, (16)

where p and q vary from 1 to 4, and x(q)(t) is the q-th element of the generalized displacement vector x(t);
the sizes of matrices As

(p,q), Bs
(p,q), and Cs

(p,q) are (np,q × np,q), (np,q × 1), and (1 × np,q), respectively;
and np,q is the number of states corresponding to the state vector xs

(p,q).
By using Equation (16) to replace all the elements in the convolution term µ(t), sixteen

state-space models are presented. Then, for reducing the model complexity and computational
load, four state-space models can be assembled by these sixteen state-space models to replace each
convolution term µp(t), and finally, a total state-space model can be assembled by the four state-space
models. Figure 2 shows the general idea of assembling the state-space model. Thus, the convolution
term µp(t) can be rewritten as:

µp(t) =
∫ t

0
hp(t− τ)

.
x(τ)dτ ⇒

{ .
x(p)

s = A(p)
s x(p)

s + B(p)
s

.
x(t)

µp(t) = C(p)
s x(p)

s
, (17)

where matrices As
(p), Bs

(p), and Cs
(p) are assembled by matrices As

(p,q), Bs
(p,q), and Cs

(p,q), respectively;
the state vector xs

(p) is assembled by state vectors xs
(p,q); the sizes of matrices As

(p), Bs
(p), Cs

(p),
and xs

(p) are (∑4
q=1 np,q ×∑4

q=1 np,q), (∑4
q=1 np,q × 4), (1×∑4

q=1 np,q), and (∑4
q=1 np,q × 1), respectively.

The expressions of As
(p), Bs

(p), Cs
(p), and xs

(p) are shown in Appendix A.
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Therefore, the total state-space model of Equation (14) can be written as:

µ(t) =
∫ t

0
h(t− τ)

.
x(τ)dτ ⇒

{ .
xs = Asxs + Bs

.
x(t)

µ(t) = Csxs
, (18)

where matrices As, Bs, and Cs are assembled by matrices As
(p), Bs

(p), and Cs
(p), respectively; the state

vector xs is assembled by state vectors xs
(p); and the sizes of matrices As, Bs, Cs, and xs are

(∑4
p=1 ∑4

q=1 np,q×∑4
p=1 ∑4

q=1 np,q), (∑4
p=1 ∑4

q=1 np,q× 4), (4×∑4
p=1 ∑4

q=1 np,q), and (∑4
p=1 ∑4

q=1 np,q× 1),
respectively. The expressions of As, Bs, Cs, and xs are shown in Appendix A.

The next task is to obtain matrices As
(p,q), Bs

(p,q), and Cs
(p,q). It can be seen from Equation (16)

that the Laplace transform of the retardation function hp,q(t) is the transfer function of the system with

scalar input
.
x(q)(t) and scalar output µp,q(t). Thus, the relationship between the state-space model and

the transfer function is:
Hpq(s) = C(p,q)

s

(
s · I−A(p,q)

s

)−1
B(p,q)

s . (19)
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The transfer function can also be described by:

Hpq(s) =
Npq(s)
Qpq(s)

=
κγsγ + κγ−1sγ−1 + · · ·+ κ1s + κ0

sν + λν−1sν−1 + · · ·+ λ1s + λ0
, (20)

where s = −iω.
Therefore, the transfer function matrix of the total system with vector input

.
x(t) and vector output

µ(t) (see Equation (18)) can be expressed by:

H(s) =


H11(s) H12(s) H13(s) H14(s)
H21(s) H22(s) H23(s) H24(s)
H31(s) H32(s) H33(s) H34(s)
H41(s) H42(s) H43(s) H44(s)

. (21)

Equations (9), (19), and (20) show a general idea of how to obtain the constant matrices As
(p,q),

Bs
(p,q), and Cs

(p,q) by identification using the generalized added mass matrix Aadd(ω) and radiation
damping matrix B(ω). Moreover, for the two rafts with the same geometric parameter, it should be
mentioned that some elements of the symmetrical transfer function matrix H(s) would satisfy the
following relationships: H12(s) = H21(s) = 0, H13(s) = H14(s), H23(s) = −H24(s), and H33(s) = H44(s).
Therefore, the identification only need to be carried out for H11(s), H13(s), H22(s), H23(s), H33(s),
and H34(s), i.e., to determine the transfer function matrix H(s) of the total system, the identification
procedure only needs to be carried out six times.

4.2. Transfer Function Estimation Using Regression in Frequency Domain

For a single input single output transfer function Hpq(s), a rational parametric model Ĥpq(s)
can be estimated by using the frequency domain regression from non-parametric data of the FRF
Hpq(−iω). Assuming the estimated Ĥpq(s) has a form of:

Ĥpq(s) =
Npq(s,ϕ)
Qpq(s,ϕ)

=
κγsγ + κγ−1sγ−1 + · · ·+ κ1s + κ0

sν + λν−1sν−1 + · · ·+ λ1s + λ0
, (22)

where ϕ is a vector containing the estimated parameters, and defined as:

ϕ = [κγ, . . . , κ0, λν−1, . . . , λ0]
T. (23)

It can be seen from Equation (22) that the problem of frequency domain identification is to find
the order ν and the relative degree ν − γ of Ĥpq, and to determine the parameter vector ϕ that gives
the best non-linear least square (NL-LS) fitting to the frequency response.

ϕ∗ = argmin
ϕ

∑
n

wn

∣∣∣∣Hpq(−iωn)−
Npq(−iωn,ϕ)
Qpq(−iωn,ϕ)

∣∣∣∣2, (24)

where wn is the weighting coefficient and “arg min” represents the minimizing argument.
Once the order ν and the relative degree ν − γ are chosen, the NL-LS fitting problem can be

solved by an iterative method proposed by Sanathanan and Koerner [33]. The iterative method runs
by using the polynomial corresponding to the previous iteration as the weight, and thus, the NL-LS
fitting problem defined in Equation (24) is simplified as:

ϕ∗ = argmin
ϕ

∑
n

αn,g
∣∣Qpq(−iωn,ϕ)Hpq(−iωn)− Npq(−iωn,ϕ)

∣∣2, (25)
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where
αn,g =

1∣∣Qpq
(
−iωn,ϕg−1

)∣∣2 .

The linear problem described in Equation (25) can be solved by Matlab function invfresqs with
the option of using a vector of weighting coefficients. Usually, the iterative procedure is implemented
starting with αn,g = 1, and after a few iterations Qpq (−iω, ϕg) ≈ Qpq (−iω, ϕg−1). Then, the optimal
parameter of vector ϕ can be determined as ϕ* = ϕg. Thus, the parametric model Ĥpq(s) can be
obtained. Then, the constant matrices As

(p,q), Bs
(p,q), and Cs

(p,q) of the state-space model can be
determined by using the Matlab function tf2ss. Thereafter, the matrices As, Bs, and Cs can be assembled
by the formulations shown in Appendix A. Finally, the identified state-space model can be applied to
replace the convolution term in the time domain model.

4.3. Power Capture Ability

The instantaneous power captured by the PTO unit is:

Pins_cap(t) = −fpto(t) ·
.
x(t). (26)

The average power captured in the time domain is:

Pave_cap =
1
T

∫ t0+T

t0

Pins_cap(t)dt, (27)

where t0 is a moment when the device has come into a steady state of motion and T is the wave period.
The capture width ratio in the time domain is:

ηcap =
Pave_cap

Pw · λ
. (28)

5. Numerical Results and Discussion

In this section, the identification of the state-space model is firstly carried out. Then, verification
of the time domain analysis is performed by comparing its simulation results with those calculated
by using the frequency domain analysis. Thereafter, the effects of PTO parameters, wave frequency,
surge and heave motions of the joint, and quadratic damping PTO on the performance of the device
are investigated and discussed.

5.1. Identification of State-Space Model

Before performing the time domain analysis, identification of the state-space model needs to be
carried out. The identification is carried out in the frequency domain by using an iterative method.
The general assumptions made in the hydrodynamic analysis of the device are: (1) the rafts are
considered as rigid bodies; (2) the fluid is incompressible inviscid; and (3) the flow is irrotational.
A truncated frequency ranging from 0.01 rad/s to 9 rad/s is adopted to calculate the hydrodynamic
parameters (i.e., the added mass auj(Ñ), the radiation damping buj(Ñ), and the complex excitation
force coefficient Γj(Ñ)) in ANSYS AQWA [34], commercial hydrodynamic software based on three
dimensional radiation/diffraction theory.

Figure 3 shows the identification results of the retardation functions H11(−iω), H13(−iω),
H22(−iω), H23(−iω), H33(−iω), and H34(−iω) for the device with structure parameters L = 10 m,
D = 1 m, d0 = 1 m, and ρ0 = 512.5 kg/m3. The sizes of constant matrices As, Bs, and Cs are 87 × 87,
87 × 4, and 4 × 87, respectively, which are not shown here for their large sizes. The original data of
retardation functions H11(−iω), H13(−iω), H22(−iω), H23(−iω), H33(−iω), and H34(−iω) calculated
by Equation (9) are also presented in Figure 3. It can be seen that there is a good agreement between
the identification results and those obtained by Equation (9).
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5.2. Validation of Time Domain Analysis

The time domain model (see Equation (7)) can be solved by the fourth-order Runge-Kutta method.
Thus, the FRF of the wave amplitude-to-complex amplitude of relative pitch velocity and the capture
width ratio can be obtained. In the frequency domain analysis, they can be calculated quickly by
Equations (3) and (6), respectively. The stiffness of the PTO unit is assumed to be zero in this work,
unless otherwise specified. Four types of structure parameters are considered, as shown in Table 1.
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Table 1. Four types of parameters.

Parameter Type-One Type-Two Type-Three Type-Four

Raft length L (m) 10 20 20 30
Raft diameter D (m) 1 1 2 2

Raft space d0 (m) 1 1 1 1
Raft density ρ0 (kg/m3) 512.5 512.5 512.5 512.5

Raft volume V/m3 7.8540 15.7080 62.8319 94.2478
Damping coefficient cpto (kN/m/s) 500 500 500 500

Mounting position r0 (m) 0.5 0.5 1 1
Optimal ratio kL 3.1163 3.6184 3.4987 3.6715

Optimal ratio of raft length to wavelength 0.4960 0.5759 0.5568 0.5843
Resonant frequency of relative pitch

velocity ωrp (rad/s) 1.7485 1.3322 1.3100 1.0957

Resonant frequency of heave velocity
ωh (rad/s) 1.4078 1.2354 1.2100 1.0179

Resonant frequency of surge velocity
ωs (rad/s) 1.0144 0.7370 0.7322 0.6021

Amplitude of FRF of wave amplitude to
relative pitch velocity at ωrp (rad/s/m) 0.4281 0.3181 0.3054 0.1799

Amplitude of FRF of wave amplitude to
heave velocity at ωh (m/s/m) 1.2623 1.5099 1.4735 1.2589

Amplitude of FRF of wave amplitude to
surge velocity at ωs (m/s/m) 0.7881 0.5624 0.5655 0.4674

Figure 4 shows the comparison of the performance of the devices with these four types of structure
parameters between the frequency domain calculations and the time domain simulations. It can be
seen from Figure 4 that there is a good agreement between the results obtained by using the time
domain analysis and those calculated by using the frequency domain analysis.
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5.3. Numerical Results in Regular Waves

5.3.1. Influence of Wave Frequency

One can also see from Figure 4b that, for the devices with these four types of structure parameters,
the optimal ratio kL corresponding to the peak captured power ranges from 3.1163 to 3.6715, which is
shown explicitly in Table 1. The optimal ratio of raft length to wavelength varies from 0.4960 to 0.5843,
whereas the corresponding resonant frequency of relative pitch velocity varies from 1.7485 rad/s to
1.0957 rad/s. Figure 5 shows the variation of average captured power and capture width ratio with
wave frequency.
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It can be seen from Figure 5 that the captured power and the capture width ratio are relatively large
when the wave frequency gets close to the corresponding resonant frequency of the device, whereas
they are rather small at the wave frequency far away from the resonant frequency. Therefore, in order
to maximize the captured power and the capture width ratio, the resonant frequency of the designed
device should be close to the considered wave frequency. The resonant frequency depends on the raft
mass, the rotary inertia about the mass centre, the added mass, the radiation damping, the hydrostatic
restoring stiffness, and the damping coefficient and stiffness of the PTO unit, among which the added
mass, the hydrostatic restoring stiffness, the raft mass, and rotary inertia mainly depend on the raft
size when the material of the raft is chosen. If there is no control included in the PTO unit, the arrival
of resonance is usually at the cost of a relatively large raft size, which is shown explicitly in Table 1.
The resonant frequency of the device with a type-one parameter is 1.7485 rad/s, whereas the resonant
frequency of that with a type-four parameter is 1.0957 rad/s; however, the raft volume of the device
with a type-four parameter is twelve times as large as that with a type-one parameter.

5.3.2. Influence of Mounting Position r0

As shown in Equations (4) and (6), the mounting position r0 of hydraulic cylinder is a key
parameter influencing the capture width ratio of the device. It is assumed that the mounting position
r0 is not confined to the diameter of the rafts. The power capture ability of the device is examined
by using the time domain analysis over a wide range of mounting positions r0. Figure 6a shows
the variation of the capture width ratio of the device with a type-four parameter with the mounting
position normalized by the diameter of the raft at four different wave periods. It can be seen that the
capture width ratio ηcap increases with an increasing normalized mounting position r0/D, and then
decreases after reaching a peak value. This is not surprising. As shown in Equation (A.6), there is
a quadratic function relationship between the rotational damper 2r0

2cpto and the mounting poison
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r0. For any specified wave period T and any specified damping coefficient cpto, a too large mounting
position r0 (i.e., too large rotational damping 2r0

2cpto) would lead to a small relative pitch motion,
and consequently, the device outputs a little power; whereas a too small mounting position r0 (i.e.,
too small rotational damping 2r0

2cpto) would induce a small PTO force, which also results in a little
captured power. Therefore, for any specified wave period and any specified damping coefficient cpto,
there exists an optimal normalized mounting position r0*/D, which corresponds to a peak capture
width ratio ηcap*.
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The variation of the optimal normalized mounting position r0*/D with wave period T is
illustrated in Figure 6b. It is found that the optimal normalized mounting position r0*/D presents an
approximately linear relationship with wave period, and a smaller damping coefficient cpto gives a
larger gradient of the approximate linear relationship.

5.3.3. Influence of Damping Coefficient cpto and Stiffness kpto

In the above sections, the stiffness kpto is assumed to be zero, while in fact, the stiffness plays a
significant role in power extraction. In order to see how the stiffness kpto and the damping coefficient
cpto affect the power capture ability of the device, the capture width ratio is examined by using the
time domain analysis over a wide range of damping coefficients cpto and stiffnesses kpto. Figure 7
shows the influence of the damping coefficient cpto and stiffness kpto on the capture width ratio of the
device with a type-four parameter.

It can be seen from Figure 7a,b that, for a specified wave period T, there exists an optimal stiffness
kpto*, which only depends on the wave period T. For a specified wave period T and a specified stiffness
kpto, there exists an optimal damping coefficient cpto*. The optimal damping coefficient cpto* decreases
with increasing stiffness kpto, and then increases after reaching a minimum value, and is symmetric
to the optimal stiffness kpto*, as shown in Figure 7b. When the optimal damping coefficient cpto* is
obtained in the condition of optimal stiffness kpto*, an optimal combination of the optimal damping
coefficient and the optimal stiffness is achieved. This optimal combination could improve the power
extraction ability significantly. As is shown in Figure 7a,b, the capture width ratio obtains a value
of 0.0769 at kpto = 0 kN/m and the corresponding optimal damping coefficient, whereas it can reach
0.2868 at the optimal combination, i.e., an increase of more than 270%. Therefore, if the stiffness kpto of
the PTO unit can be adjusted to be an optimal stiffness kpto* in the varying wave states, which makes
the resonant frequency close to the considered wave frequency, the capture width ratio of the device
can be improved dramatically. However, as it is revealed in [35], the nonlinear viscous damping would
play an important role in the dynamic response of a WEC, especially in the vicinity of the resonant
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frequency. Hence, the present numerical model based on inviscid flow theory may overestimate the
captured power, and the capture width ratio may thus be overpredicted.Energies 2018, 11, 169 13 of 22 
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The variation of the optimal damping coefficient cpto* and the optimal stiffness kpto* in the optimal
combination with wave period is presented in Figure 7c. It can be learned from Figure 7c that the
optimal stiffness kpto* in the optimal combination is normally negative, which means that the PTO
unit may output power to the rafts in some period of its cycle. To be scientific, it is a kind of reactive
control [28], but it is difficult to implement practically without a complicated PTO unit. It can also be
seen from Figure 7c that the optimal damping coefficient cpto* in the optimal combination increases
with the increase of wave period, then decreases after reaching a peak value, whereas, generally,
the optimal stiffness kpto* in the optimal combination decreases monotonously.

5.3.4. Influence of Surge and Heave Motions of Joint

To investigate the effect of surge and heave motions of the joint on the performance of the device,
we remove the surge and heave motions of the joint, and take the motion system as a two-DOF
model and a three-DOF model, and then compare their results with those of the full four-DOF model.
Figure 8a presents the FRF of the wave amplitude-to-complex amplitude of the relative pitch velocity
Gv_rp for the device with a type-one parameter. Figure 8b shows the corresponding capture width
ratio ηcap, obtained by the model with and without a consideration of surge and heave motions of the
joint, whereas the variation of capture width ratio ηcap with the damping coefficient cpto is presented
in Figure 8c.

It can be seen from Figure 8 that the results obtained by the full-four DOF model are almost
overlaid by those obtained by the three-DOF model only removing the surge motion of the joint.
However, the results obtained by the three-DOF model only removing the heave motion of the joint
and those obtained by the two-DOF model removing both the surge and heave motions of the joint
deviate greatly from those obtained by the full-four DOF model. This indicates that the surge motion
of the joint has little effect on the performance of the device, whereas the heave motion of the joint
makes a huge difference. This is, perhaps, not surprising based on physical intuition. For a deeper
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understanding, we can see from Table 1 that the resonant frequency of heave velocity is very close to
that of relative pitch velocity, while the resonant frequency of surge velocity is far away from that of
relative pitch velocity. In addition, the amplitude of FRF of the wave amplitude to heave velocity at the
resonant frequency of heave velocity is largely higher than that of the wave amplitude to surge velocity
at the resonant frequency of surge velocity. The information in Table 1 and Figure 8 reveals that the
relative pitch mode shows stronger coupling with the heave mode than the surge mode. Therefore,
the surge motion of the joint could be neglected. Thus, the motion equation of the device could be
reduced to a three-DOF model only with the consideration of the heave motion of the joint and two
pitch motions of the two rafts. Besides, by using the three-DOF model removing the surge motion of
the joint to obtain the total state-space model for substituting the convolution term, the identification
procedure only need to be carried out four times, which is more concise than the full four-DOF model.
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where fx0(t), fz0(t), fθ1(t), and fθ2(t) are the PTO forces acting on the generalized modes x0, z0, θ1, and θ2, 
respectively; and β is the quadratic damping coefficient. 
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5.3.5. Influence of Quadratic Damping PTO

In this section, the force applied by the PTO system is assumed to be quadratic damping. It can
be written as:

fpto(t) =
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where fx0(t), fz0(t), fθ1(t), and fθ2(t) are the PTO forces acting on the generalized modes x0, z0, θ1, and θ2,
respectively; and β is the quadratic damping coefficient.

We apply the time domain analysis to explore the effect of quadratic damping on the performance
of the device with a type-one parameter. Figure 9a shows how relative pitch velocity and PTO force
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vary with time, whereas the variation of capture width ratio with quadratic damping coefficient β is
presented in Figure 9b.

It can be seen from Figure 9a that the relative pitch velocity presents nonlinear characteristics
due to the nonlinear PTO unit. As shown in Figure 9b, the capture width ratio ηcap increases with an
increasing quadratic damping coefficient β, and then decreases after reaching a peak value. For the
wave states with the same period, a larger wave amplitude gives a higher capture width ratio at
small quadratic damping coefficients β, while the peak capture width ratio ηcap* has the same value at
different wave amplitudes.

To recognize the difference in behaviour exhibited between linear damping and quadratic
damping, we compare the peak capture width ratios obtained by using linear damping and quadratic
damping. Figure 10 presents the comparison of peak capture width ratios ηcap* obtained by using
linear damping and quadratic damping. It can be seen that the peak capture width ratio ηcap* obtained
by using quadratic damping is slightly larger than that obtained by using linear damping, especially in
the vicinity of wave period T = 3.3 s. For 2 s < T< 2.6 s or 2.6 s < T< 5 s, the difference in peak capture
width ratios obtained by using linear damping and quadratic damping increases with increasing wave
period, and then decreases after reaching a local maximum value. The maximum peak capture width
ratio ηcap* obtained by using quadratic damping is 0.1086, whereas that obtained by using linear
damping is 0.1031, and they are all obtained at wave period T = 3.3 s.
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5.4. Numerical Results in Irregular Waves

We also investigate the performance of the device in irregular waves by using the time domain
analysis. For the irregular wave computations, the Pierson–Moskowitz energy density spectrum
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as a function of the angular frequency is used to provide a good representation of the sea states.
The Pierson–Moskowitz spectrum has the form [36]:

S(ω) = 5π4 H2
s

T4
p

1
ω5 exp

[
−20π4

T4
p

1
ω4

]
, (30)

where Hs is the significant wave height and Tp is the peak wave period.

5.4.1. Influence of Mounting Position R0

In regular waves, it is found that there exists an optimal normalized mounting position r0*/D,
and the optimal normalized mounting position r0*/D presents an approximately linear relationship
with wave period. In this section, we intend to investigate how the capture width ratio varies with
mounting position r0 in irregular waves. A wide range of mounting positions r0 are examined.
Figure 11a shows the variation of capture width ratio ηcap with normalized mounting position r0/D
for the device with a type-four parameter, whereas the variation of the optimal normalized mounting
position r0*/D with peak wave period is presented in Figure 11b.
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One can see that, similar to the results in regular waves, for a specified peak wave period
Tp and a specified damping coefficient cpto, there exists an optimal normalized mounting position
r0*/D. However, unlike the results in regular waves, the relationship between the optimal normalized
mounting position r0*/D and the peak wave period Tp presents obvious nonlinear characteristics in
irregular waves. This is perhaps due to the random nature of the irregular waves.

5.4.2. Influence of Damping Coefficient cpto and Stiffness kpto

As it has been demonstrated that in regular waves the damping coefficient cpto and the stiffness
kpto play a significant role in the capture width ratio, we wonder whether the damping coefficient cpto

and the stiffness kpto play a similar role in the capture width ratio in irregular waves. Figure 12a,b show
the influence of the damping coefficient cpto and stiffness kpto on the capture width ratio of the device
with a type-four parameter in irregular waves. Unlike the results in regular waves, it can be seen from
Figure 12b that the optimal stiffness kpto* not only depends on the peak wave period but also increases
slightly with an increasing damping coefficient cpto, and the optimal damping coefficient cpto* is not
symmetric to the optimal stiffness kpto*. The variation of the optimal damping coefficient cpto* and the
optimal stiffness kpto* in the optimal combination with peak wave period is presented in Figure 12c.
Similar to the results in regular waves, the optimal stiffness kpto* in the optimal combination is negative
and decreases with increasing peak wave period, whereas the optimal damping coefficient cpto* in the
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optimal combination increases with increasing peak wave period, and then decreases after reaching a
peak value.
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5.4.3. Influence of Surge and Heave Motions of Joint

To see whether surge and heave motions of the joint affect the power capture ability of the device
in irregular waves, the capture width ratio of the device with a type-one parameter is examined by
using the model with and without a consideration of surge and heave motions of the joint. Figure 13a
shows the variation of capture width ratio ηcap with peak wave period, whereas the variation of
capture width ratio ηcap with damping coefficient cpto is presented in Figure 13b.

Similar to the results in regular waves, it can be seen from Figure 13 that the surge motion of
the joint has no effect on the capture width ratio, whereas the heave motion of the joint makes much
difference to the capture width ratio.
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5.4.4. Influence of Quadratic Damping PTO

As it was demonstrated in the previous section that the peak capture width ratio ηcap* obtained
by using quadratic damping is slightly larger than that obtained by using linear damping in regular
waves, it is necessary to investigate how quadratic damping β influences the capture width ratio
ηcap in irregular waves. Figure 14a shows the variation of capture width ratio ηcap with quadratic
damping coefficient β, whereas the variation of peak capture width ratio ηcap* with peak wave period
is presented in Figure 14b. As shown in Figure 14a, there exists an optimal quadratic damping
coefficient β*, which corresponds to a peak capture width ratio ηcap*. However, unlike the results in
regular waves, it can be seen from Figure 14b that the peak capture width ratio ηcap* obtained by using
quadratic damping is almost the same as that obtained by using linear damping.
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6. Conclusions

In this paper, a state-space approximation of the convolution term in a time domain analysis of a
raft-type WEC consisting of two rafts and a PTO unit is presented. The state-space model is identified
through regression in the frequency domain. Verification of such a type of time domain analysis is
conducted by comparison of its simulation results with those calculated by using frequency domain
analysis, and there is a good agreement. The effects of PTO parameters, wave frequency, surge and
heave motions of the joint, and quadratic damping PTO on the power capture ability of such a raft-type
WEC are investigated. From the above investigations, some conclusions can be drawn as follows:

(1) State-space approximation of the convolution term through regression in the frequency domain
has sufficient accuracy. The time domain analysis with the convolution term approximated by a
state-space model could be used to investigate the performance of the device.

(2) To obtain a relatively large capture width ratio, the resonant frequency of the designed device
should be as close to the considered wave frequency as possible. When there is no control
included in the PTO unit, the arrival of resonance is usually at the cost of a relatively large
raft size.

(3) For a certain wave period (or peak wave period), there exists an optimal mounting position r0*,
corresponding to a peak capture width ratio ηcap*. In regular waves, the relationship between the
optimal normalized mounting position r0*/D and the wave period is approximately linear, and a
smaller damping coefficient cpto gives a larger gradient of the approximately linear relationship;
however, this relationship presents nonlinear characteristics in irregular waves.

(4) In regular waves, the optimal stiffness kpto* only depends on wave period, and the optimal
damping coefficient cpto* relies on wave period and stiffness kpto, and is symmetric to the optimal
stiffness kpto*. However, in irregular waves, the optimal stiffness kpto* depends on not only the
wave period, but also the damping coefficient cpto, and the optimal damping coefficient cpto* is
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not symmetric to the optimal stiffness kpto*. The optimal damping coefficient cpto* in the optimal
combination increases with increasing wave period (or peak wave period), and then decreases
after reaching a peak value, whereas the optimal stiffness kpto* in the optimal combination is
usually negative and decreases monotonously.

(5) The surge motion of the joint could be neglected. The motion equation of the device can be
reduced to a three-DOF model only with the consideration of heave motion of the joint and two
pitch motions of the two rafts.

(6) In regular waves, the peak capture width ratio ηcap* obtained by using quadratic damping is
slightly larger than that obtained by using linear damping; however, this advantage vanishes in
irregular waves.

The present model based on potential theory is relatively convenient to predict the performance of
the raft-type WEC. However, without any consideration of energy dissipation due to the fluid viscosity,
vortex shedding, and turbulence, it may over-assess the captured power and consequently leads to an
over-estimation of the capture width ratio. This problem will be studied in the near future.
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Appendix A

Expressions of terms used in Equation (1) [27]:

M =


2m 0 0 0
0 2m ml −ml
0 ml Ic + ml2 0
0 −ml 0 Ic + ml2

 (A1)

Aadd(ω) =


a11 + a11′ + a1′1 + a1′1′ a1′3 + a13′ a15 + a1′5 + a1′3l a1′5′ + a15′ − a13′l

a31′ + a3′1 a33 + a33′ + a3′3 + a3′3′ (a33 + a3′3)l + a3′5 −(a3′3′ + a33′)l + a35′
a51 + a51′ + a31′l (a33 + a33′)l + a53′ a55 + a33l2 a55′ − (a53′ − a35′)l − a33′l2

(a5′1′ + a5′1)− a3′1l −(a3′3′ + a3′3)l + a5′3 a5′5 − (a3′5 − a5′3)l − a3′3l2 a5′5′ + a3′3′l2

 (A2)

B(ω) =


b11 + b11′ + b1′1 + b1′1′ b1′3 + b13′ b15 + b1′5 + b1′3l b1′5′ + b15′ − b13′l

b31′ + b3′1 b33 + b33′ + b3′3 + b3′3′ (b33 + b3′3)l + b3′5 −(b3′3′ + b33′)l + b35′
b51 + b51′ + b31′l (b33 + b33′)l + b53′ b55 + b33l2 b55′ − (b53′ − b35′)l − b33′l2

(b5′1′ + b5′1)− b3′1l −(b3′3′ + b3′3)l + b5′3 b5′5 − (b3′5 − b5′3)l − b3′3l2 b5′5′ + b3′3′l2

 (A3)

K =


0 0 0 0
0 k33 + k3′3′ k33l −k3′3′l
0 k33l k55 + k33l2 0
0 −k3′3′l 0 k5′5′ + k3′3′l2

 (A4)

Fe(ω) = Γe(ω) · aw =


Γ1(ω) + Γ1′(ω)

Γ3(ω) + Γ3′(ω)

Γ5(ω) + l · Γ3(ω)

Γ5′(ω)− l · Γ3′(ω)

 · aw (A5)

Cpto =


0 0 0 0
0 0 0 0
0 0 2r0

2cpto −2r0
2cpto

0 0 −2r0
2cpto 2r0

2cpto

, Kpto =


0 0 0 0
0 0 0 0
0 0 2r0

2kpto −2r0
2kpto

0 0 −2r0
2kpto 2r0

2kpto

 (A6)
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Here, m is the mass of each raft; Ic is the rotary inertia about the centre of mass; auj and buj
are the frequency-dependent added mass and radiation damping at mode u due to the motion of
mode j (u = 1, 3, 5, 1′, 3′, 5′; j = 1, 3, 5, 1′, 3′, 5′), respectively; k33 and k3′3′ are the hydrostatic restoring
stiffnesses of the fore and aft rafts caused by the their heave motions, respectively; k55 and k5′5′ are the
hydrostatic restoring stiffnesses of the fore and aft rafts caused by the their pitch motions, respectively;
Γj (ω) is the complex excitation force coefficient at mode j (force per unit incident wave amplitude);
the modulus and argument of Γj (ω) are |Γj (ω)| and ∠Γj (ω), respectively; r0 is half the distance of the
mounting position between the top and bottom hydraulic cylinders, as shown in Figure 1b; and cpto

and kpto are the equivalent damping coefficient and stiffness of the hydraulic cylinder, respectively.
Formulations for resembling the total state-space model:

A(p)
s =


A(p,1)

s 0 0 0

0 A(p,2)
s 0 0

0 0 A(p,3)
s 0

0 0 0 A(p,4)
s

 (A7)

B(p)
s =


B(p,1)

s 0 0 0

0 B(p,2)
s 0 0

0 0 B(p,3)
s 0

0 0 0 B(p,4)
s

 (A8)

C(p)
s =

[
C(p,1)

s C(p,2)
s C(p,3)

s C(p,4)
s

]
(A9)

x(p)
s =


x(p,1)

s

x(p,2)
s

x(p,3)
s

x(p,4)
s

 (A10)

As =


A(1)

s 0 0 0
0 A(2)

s 0 0
0 0 A(3)

s 0
0 0 0 A(4)

s

 (A11)

Cs =


C(1)

s 0 0 0
0 C(2)

s 0 0
0 0 C(3)

s 0
0 0 0 C(4)

s

 (A12)

Bs =


B(1)

s

B(2)
s

B(3)
s

B(4)
s

, xs =


x(1)s

x(2)s

x(3)s

x(4)s

 (A13)
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