
Article

Optimal Sizing of Energy Storage Systems for the
Energy Procurement Problem in Multi-Period
Markets under Uncertainties

Ryusuke Konishi 1,2, Akiko Takeda 2,3 and Masaki Takahashi 2,4,* ID

1 Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Japan;
konishi@2013.jukuin.keio.ac.jp

2 Japan Science and Technology Agency (JST), CREST, Kawaguchi 332-0012, Japan; atakeda@ism.ac.jp
3 Institute of Statistical Mathematics, Tachikawa 190-8562, Japan
4 Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
* Correspondence: takahashi@sd.keio.ac.jp

Received: 9 December 2017; Accepted: 2 January 2018; Published: 9 January 2018

Abstract: In deregulated electricity markets, minimizing the procurement costs of electricity is
a critical problem for procurement agencies (PAs). However, uncertainty is inevitable for PAs
and includes multiple factors such as market prices, photovoltaic system (PV) output and demand.
This study focuses on settlements in multi-period markets (a day-ahead market and a real-time
market) and the installation of energy storage systems (ESSs). ESSs can be utilized for time arbitrage
in the day-ahead market and to reduce the purchasing/selling of electricity in the real-time market.
However, the high costs of an ESS mean the size of the system needs to be minimized. In addition,
when determining the size of an ESS, it is important to identify the size appropriate for each role.
Therefore, we employ the concept of a “slow” and a “fast” ESS to quantify the size of a system’s
role, based on the values associated with the various uncertainties. Because the problem includes
nonlinearity and non-convexity, we solve it within a realistic computational burden by reformulating
the problem using reasonable assumptions. Therefore, this study identifies the optimal sizes of ESSs
and procurement, taking into account the uncertainties of prices in multi-period markets, PV output
and demand.

Keywords: energy procurement problem; electricity market; energy storage system; uncertainty;
probabilistic approach; scenario-based approach

1. Introduction

In many counties, electricity markets have been deregulated, resulting in several kinds of markets
with different roles and time scales. A procurement agency (PA), such as a load-serving entity or an
electric retailer, is an important player in a deregulated electricity market because it must meet two
difficult requirements: the load obligation and profit maximization. One of the PA’s major concerns
is to minimize procurement costs while satisfying its load obligation. As such, PAs usually have
multiple procurement sources, such as electricity markets, self-generation units and bilateral contracts.
In addition, renewable energy (RE) systems, such as photovoltaic (PV) systems, have become important
sources of energy with the increasing concern about environmental issues. However, market prices
and RE outputs include uncertainty; for example, the market price could spike in the event of an
unpredicted power shortage, and PV outputs often fluctuate with rapid changes in solar radiation.
PAs have to consider these kinds of uncertainties when procuring electricity because they can have a
significant effect on procurement costs.

In this study, we focus mainly on two methods to resolve the above issues: transactions in
multi-period markets and the installation of energy storage systems (ESSs). First, while there is a wide
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variety of markets in each country, multi-period markets are playing the principal role in market trade.
Multi-period markets include forward and spot markets, used to hedge against price risks, and are
used for many kinds of economic goods [1]. Even within the context of electricity markets, there are
many types of multi-period markets, including a day-ahead market (DAM) and real-time market
(RTM), a DAM and hourly ahead market and a DAM and imbalanced payments. Specifically, we focus
on a set of DAMs and RTMs, which PAs can use to reduce the risks associated with an increase in
procurement costs. Second, we consider that PAs own their ESSs, such as large-scale batteries. In order
to minimize procurement costs, ESSs can be used for time arbitrage in a DAM and to reduce the
number of transactions in the DAM. The former means that PAs earn profits by charging low and
discharging high in their ESSs. The latter indicates that PAs avoid purchasing or selling electricity on an
RTM at unfavorable prices. Although ESSs can be used to avoid unexpected increases in procurement
costs, PAs have to install the appropriate size of ESS, owing to the high costs of such systems.

Many previous studies have addressed the energy procurement problem (EPP), with uncertainties,
of different kinds of PAs in deregulated electricity markets [2–8], including studies that focus on
single-period markets. In the case of electricity markets, there are two major approaches used
to evaluate the impact of uncertainties: a scenario-based approach and a probabilistic approach.
The advantage of a scenario-based approach is that the type of optimization problem is retained,
resulting in it being employed in numerous studies [2–6]. However, the disadvantage of the approach
is that the scale of a problem becomes much larger, based on the number of scenarios. This is why the
number of scenarios is limited. As a result, several effective methods to reduce the number of scenarios
have been proposed [5,6,9,10]. Of course, it is important to eliminate unnatural scenarios that are not
based on actual historical data, but instead are generated by algorithms. However, it is better to deal
with a larger number of scenarios in order to consider a wider variety of scenarios, especially if a large
amount of actual data is available. On the other hand, a probabilistic approach assumes probability
density functions and evaluates uncertainty using mean values or variances. This kind of approach is
also used [7,8] because it can consider an entire case within a probability distribution. However, it is
difficult to derive exact solutions in this way because formulations can be nonlinear.

In addition to previous studies related to the EPP, researchers have focused on ESSs in multi-period
markets [11–15], considering the size and scheduling of an ESS in order to maximize profits or to
minimize procurement costs. For example, studies have examined time arbitrage [14] and how to
reduce payment imbalances [15]. However, to the best of our knowledge, few studies have attempted
to determine the size and schedule of an ESS based on both time arbitrage and reductions in RTM
transactions, although these specifications could differ depending on each purpose.

Based on the above discussion, our literature review identified the following two issues.
First, there are difficulties in dealing with the large number of scenarios in scenario-based approaches
and in deriving exact solutions using probabilistic approaches. Second, there is insufficient
consideration of the two different purposes when determining the size and scheduling of an ESS.
To address the first issue, we employ both a scenario-based and a probabilistic approach to evaluate the
uncertainties, preserving the advantages of each approach. The proposed combined approach makes
the optimization problem more difficult owing to its large scale and nonlinearity. However, we propose
finding exact solutions within a realistic computational burden by making reasonable assumptions.
To address the second issue, we employ the concepts of “slow” and “fast” ESSs, as proposed in [16,17],
which enable us to divide the effects of means and variances. This study shows that slow and fast
ESSs can quantify the time arbitrage in a DAM and reduce the number of transactions in an RTM,
respectively. In order to verify the effectiveness of our proposed approach, we perform simulations
using a generalized model of electricity markets, as well as a large amount of actual historical data.
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2. Overview of Procurement Agencies and Multi-Period Markets

This section explains the models of PAs and markets used in this study.

2.1. Procurement Agency

Previous studies have modeled players who procure electricity from multiple sources, such as
load-serving entities [2,7], electric retailers [4,5,8,15] and large consumers [3,6]. We model such a
player as a “procurement agency (PA),” without loss of generality. As in other models, PAs supply
electricity for contracted demand by procuring from multiple sources, such as bilateral contracts and
self-generation. In this study, a PA has the following sources of electricity: transactions in DAMs and
RTMs, self-generation, PVs and ESSs in an area. The capacity of each option is given, except in the case
of ESSs. Moreover, it is assumed that a PA is a price-taker in the markets, which means its behavior
has no impact on market prices.

2.2. Multi-Period Markets

Of the several types of multi-period markets, this study focuses on the following two-period
energy markets: a DAM and an RTM. Figure 1 shows the market scheme and the PA’s action in
each step. First, on the day before the operating day, bids are submitted to the DAM before the
DAM and RTM prices and the RE outputs become known. Second, the DAM is cleared based on
bidding curves by the beginning of the operating day (usually around noon on the day before).
Third, RE outputs are committed just before the RTM is cleared at each hour, and PAs decide on their
schedules of self-generation and the charging/discharging of their ESSs in order to supply the demand.
Fourth, PA imbalances are settled after the RTM is cleared.

Figure 1. Scheme and flow of multi-period markets.

3. Optimization Problem of Probabilistic Procurement

This section formulates the EPP with uncertainties, as well as the procedure used to solve the
problem, as shown in Figure 2. The original model of the EPP with uncertainties is formulated
in Section 3.1. Then, the problem is reformulated and relaxed in Sections 3.2–3.4. In the process
of formulating the problem, we propose an evaluation method that considers both a probabilistic
distribution and scenarios, resulting in a large-scale nonlinear problem with non-convex constraints.
Therefore, we make several reasonable assumptions in order to solve the formulated problem.
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Figure 2. Procedure to transform and relax the energy procurement problem (EPP). P-EPP,
probabilistic EPP; PS-EPP, probabilistic and scenario-based EPP, QPS-EPP, quadratic probabilistic
and scenario-based EPP.

3.1. Energy Procurement Problem

First, the original EPP is formulated. Note that the formulation in this step does not include
the reduction terms of RTM transactions. Moreover, we employ a model of multi-period markets,
where both markets have the same time steps for their transactions.

Referring to previous studies of the EPP in a single market [3,5,6] and in multi-period markets [12],
the objective function of the EPP in this study is given as follows.

3.1.1. Objective Function

min
x

pdur
E CE +

τ

∑
t=1


nG

∑
k=1

(pG2,kP2
Gk,t + pG1,kPGk,t + pG0,k)

+ p̃da
MtP

da
Mt + p̃rt

Mt P̃
rt
Mt

 , (1)

where x := [CE, PG, Pda
M , P̃rt

M, PE, S]T .
Here, Equation (1) is the objective function used to minimize the total costs of power procurement

for one settlement period, τ. In this case, τ = 24, and the time step is set to 1 h. The first term represents
the investment cost of an ESS with capacity CE. This is converted to an operating cost after annualizing
the investment cost from the price of the ESS using Equation (2):

pdur
E =

τ

8760
rdis pE

1− (1 + rdis)−yE
, (2)

where rdis and yE are the discount rate and the useful lifetime of the ESS (in years), respectively,
and 8760 corresponds to τ × 365. The second term in Equation (1) indicates the operational cost
of self-generation units, such as thermal power plants. Here, PGk,t denotes the output of the k-th
conventional generator, running from one to nG, and pGn,k is a polynomial coefficient of the n-th term
in the fuel-cost function of the k-th generator. The fourth and fifth terms denote purchasing/selling
electricity on a DAM and an RTM at time t (Pda

Mt and Prt
Mt, respectively), at market prices p̃da

Mt and p̃rt
Mt,

respectively. Here, Pda
Mt and Prt

Mt refer to purchased power if positive and sold power if negative.
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3.1.2. Constraints

Load Obligation with a PA in Multi-Period Markets:

nG

∑
k=1

PGk,t + P̃Vt + Pda
Mt + PEt − P̃Dt + P̃rt

Mt = 0, (3)

where P̃Vt denotes the PV outputs at t and PEt denotes discharging in an ESS at t if positive and charging
if negative. In addition, P̃Dt denotes the electricity demand at t. This constraint on the PA’s load
obligation shows that it has to purchase/sell electricity on an RTM if there is a mismatch between
power demand and supply at t owing to uncertainties P̃Vt and P̃Dt.

Limitation of the Output of Conventional Power Plants:

Pmin
Gk ≤ PGk,t ≤ Pmax

Gk , (4)

|PGk,t+1 − PGk,t| ≤ ∆PGk. (5)

Here, Equations (4) and (5) represent the upper and lower limits of the generator output
(Pmax

Gk and Pmin
Gk , respectively) and the upper and lower limits of the rate of change of generation (∆PGk).

Relational Expression for Charging/Discharging and State of Charge:

St+1 − St = −PEt, (6)

where St is the charge state of a slow ESS at t.

Limitation of State of Charge:

0 ≤ St ≤ CE, (7)

where CE is the capacity of an ESS.
In summary, the EPP has stochastic parameters and variables, and thus, transformations are

required in order to solve the problem.

3.2. Probabilistic EPP

Based on the formulation of the EPP, probabilistic indices are employed to evaluate the
uncertainties. The modeling targets in this section are P̃Vt and P̃Dt in order to quantify the expectations
of purchasing/selling electricity on an RTM. In order to simplify the modeling of the indices, we assume
that the PV output and the demand for 1 h follow a Gaussian distribution. The use of other probability
distributions is reserved for future work.

Equation (8) denotes the expected imbalances after DAM clearing, based on P̄Vt and P̄Dt, and the
expectations of P̃Vt and P̃Dt:

P̄Nt =
nG

∑
k=1

PGk,t + P̄Vt + Pda
Mt + PEt − P̄Dt. (8)

The negative and positive values of P̄Nt denote a power shortage and surplus, respectively.
PAs have to purchase electricity from the RTM in the case of a shortage and have to sell electricity in
the RTM in the case of a surplus.

In addition, Equation (9) shows that P̄Nt is bounded by the upper and lower limits of P̄Nt, Pmax
Nt and

Pmin
Nt , respectively:

Pmin
Nt ≤ P̄Nt ≤ Pmax

Nt . (9)
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From the viewpoint of transactions in multi-period markets, both Pmax
Nt and Pmin

Nt denote the
degree of virtual bidding allowed on a DAM. If Pmax

Nt and Pmin
Nt are set to zero, the secondary market

can be regarded as a system of imbalanced payments because it is prohibited from practicing arbitrage
between the two markets.

Equation (10) shows the relational expression for the standard deviation of imbalances, σNt:

σ2
Nt = σ2

Vt + σ2
Dt + 2σVDt, (10)

where σVt, σDt and σVDt indicate the standard deviations of P̃Vt and P̃Dt and the covariance between
P̃Vt and P̃Dt, respectively. Here, the standard deviations of the imbalances are simply parameters,
because they do not include any decision variables.

Using this assumption for the probability density function, q(x; P̄Nt, σNt), two probabilistic
indices are formulated: expected energy not supplied (EENS, eNSt) [18] and expected energy not
used (EENU, eNUt) [19], as shown in Equations (11) and (12). The former measures the incidence
of power shortages, denoting expected purchases of electricity, and the latter is a metric for power
surpluses, denoting the expected selling of electricity in the RTM:

eNSt(P̄Nt; σNt) =
∫ 0
−∞(−x)q(x; P̄Nt, σNt)dx

= σNt√
2

(
zt(erf(zt)− 1) + exp(−z2

t )√
π

)
,

(11)

eNUt(P̄Nt; σNt) =
∫ ∞

0 xq(x; P̄Nt, σNt)dx

= σNt√
2

(
zt(erf(zt) + 1) + exp(−z2

t )√
π

)
,

(12)

where zt can be expressed as Equation (13), and erf(·) denotes the error function, as shown in
Equation (14):

zt =
P̄Nt√
2σNt

, (13)

erf(x) =
2√
π

∫ x

0
exp(−X2)dX. (14)

Therefore, the expected purchasing/selling of electricity in the RTM is given as Equation (15):

E[P̃rt
Mt] =

{
eNSt(P̄Nt) if Prt

Mt ≥ 0,

−eNUt(P̄Nt) otherwise.
(15)

Thus, the part of the objective function related to transaction costs in the RTM (set to f rt
M) can be

formulated as Equation (16):

f rt
M(P̄Nt) =

τ

∑
t=1

p̃rt
Mt {eNSt(P̄Nt)− eNUt(P̄Nt)} . (16)

In the next step, we model the reduction in RTM transactions by charging and discharging within
an ESS, because the price of the DAM is usually unfavorable to a PA.

f rt
M(P̄Nt, ered

NSt, ered
NUt) =

τ

∑
t=1

 p̃rt
Mt

{
(eNSt(P̄Nt)− ered

NSt)− (eNUt(P̄Nt)− ered
NUt)

}
+pdur

E (ered
NSt + ered

NUt)

 , (17)

where ered
NSt and ered

NUt indicate the expected reductions in purchases and sales of electricity at t,
respectively. Here, the term pdur

E (ered
NSt + ered

NUt) is added as the investment cost of an ESS associated
with reducing the number of RTM transactions.
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In the following step, ered
NSt and ered

NUt are determined, but it is required that PAs derive the size of
an ESS to be installed. Therefore, a term with the same dimension as P̄Nt can be extracted from the
difference between the original expected electricity transaction and the reduced transaction using the
inverse functions of EENS and EENU, as shown in Equations (18) and (19).

Pfs
Et = e−1

NSt(eNSt(P̄Nt))− e−1
NSt(eNSt(P̄Nt)− ered

NSt)

= P̄Nt − e−1
NSt(eNSt(P̄Nt)− ered

NSt),
(18)

Pfu
Et = e−1

NUt(eNUt(P̄Nt))− e−1
NUt(eNUt(P̄Nt)− ered

NUt)

= P̄Nt − e−1
NUt(eNUt(P̄Nt)− ered

NUt).
(19)

The new variables, Pfs
Et and Pfu

Et , constrain purchases and sales of electricity caused by sudden
changes in power supply and demand. Thus, these variables can be regarded as “fast” discharging
and charging in an ESS. Here, we refer to these as “fast” ESSs for shortages (Pfs

Et) and surpluses (Pfu
Et ).

In order to simplify the problem, we assume that fast ESSs for shortages and surpluses can only
discharge and charge, respectively. Based on this assumption, the required capacities of fast ESSs,
Cfs

E and Cfu
E , can be easily determined, as expressed in Equations (20) and (21).

Cfs
E =

τ

∑
t=1

Pfs
Et (20)

Cfu
E =

τ

∑
t=1

(−Pfu
Et). (21)

In order to distinguish a conventional ESS (PEt, CE) from a fast ESS, we refer to ESSs that do not
consider uncertainties as “slow” ESSs.

Using the characteristics related to eNSt(P̄Nt) and eNUt(P̄Nt), as shown in Equation (22),
Equation (17) can be simplified as shown in Equation (23):

E[P̃rt
Mt] = eNSt(P̄Nt)− eNUt(P̄Nt)

=
∫ 0
−∞ (−x)q(x)dx−

∫ ∞
0 xq(x)dx

= −
∫ ∞
−∞ xq(x)dx

= −P̄Nt,

(22)

f rt
M(P̄Nt, ered

NSt, ered
NUt) = ∑τ

t=1

(
− p̃rt

Mt P̄Nt

+(pdur
E − p̃rt

Mt)e
red
NSt + (pdur

E + p̃rt
Mt)e

red
NUt

)
. (23)

Finally, Equations (24) and (25) must be installed to keep the amount of electricity purchased/sold
non-negative:

0 ≤ ered
NSt ≤ eNSt(P̄Nt), (24)

0 ≤ ered
NUt ≤ eNUt(P̄Nt). (25)

These are reverse-convex constraints because both eNSt(P̄Nt) and eNUt(P̄Nt) are convex functions
(see Appendix A).
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In summary, the probabilistic EPP (P-EPP) is formulated as follows:

min
x

pdur
E CE +

τ

∑
t=1


nG

∑
k=1

(pG2,kP2
Gk,t + pG1,kPGk,t + pG0,k)

+ p̃da
MtP

da
Mt − p̃rt

Mt P̄Nt

+(pdur
E − p̃rt

Mt)e
red
NSt + (pdur

E + p̃rt
Mt)e

red
NUt


s.t. Equations (4)–(9), (24) and (25).

3.3. Probabilistic and Scenario-Based EPP

Even though stochastic decision variables are removed, the P-EPP includes stochastic parameters
of p̃da

Mt and p̃rt
Mt. We fix these stochastic parameters based on the number of scenarios.

Equation (26) defines the occurrence probability of the ω-th scenario, with values ranging from
one to nΩ.

qMω = Pr[ p̃da
Mt = pda

Mtω, p̃rt
Mt = prt

Mtω ]. (26)

In other words, one scenario provides two prices (i.e., for the DAM and the RTM).
The variables are decided according to each scenario, so the expected procurement costs should be

taken into account in the objective function. In addition, for the constraints, Equations (4)–(9), (24) and (25)
are generated for each scenario. However, this does not affect the characteristics of the optimization
problem. Therefore, the probabilistic and scenario-based EPP (PS-EPP) is formulated as follows:

min
x

nΩ

∑
ω=1

qMω

pdur
E CEω +

τ

∑
t=1


nG

∑
k=1

(pG2,kP2
Gk,t,ω + pG1,kPGk,t,ω + pG0,k)

+pda
Mt,ωPda

Mt,ω − prt
Mt,ω P̄Nt,ω

+(pdur
E − prt

Mt,ω)e
red
NSt,ω + (pdur

E + prt
Mt,ω)e

red
NUt,ω




s.t. Equations (4)–(9), (24) and (25), ∀ω ∈ {1, ..., nΩ}.

3.4. Quadratic Probabilistic and Scenario-Based EPP

The PS-EPP is formulated as in Section 3.3 and has a quadratic objective function.
However, the feasible region consists of nonlinear and non-convex functions, as shown in
Equations (24) and (25). This section describes the method to solve the PS-EPP, considering the
structural features and making several reasonable assumptions.

Focusing only on the decision variables ered
NSt,ω and ered

NSt,ω, the objective function of the PS-EPP
is separable and linear, and both are bounded by Equations (24) and (25). Owing to these
structural features, the solution of ered

NSt,ω and ered
NSt,ω can be derived automatically, as shown in

Equations (27) and (28).

ered
NSt,ω =

{
0 if pdur

E − prt
Mt,ω ≥ 0,

eNSt,ω(P̄Nt,ω) otherwise,
(27)

ered
NUt,ω =

{
0 if pdur

E + prt
Mt,ω ≥ 0,

eNUt,ω(P̄Nt,ω) otherwise.
(28)
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As a result, ered
NSt,ω and ered

NSt,ω can be eliminated, and the reverse-convex constraints of
Equations (24) and (25) can be ignored. Equation (29) shows the transaction costs in the RTM,
after reformulating using Equations (22), (24) and (25).

f rt
M(P̄Nt,ω) =

nΩ

∑
ω=1

qMω


∑

t∈T1

(
−prt

Mt,ω P̄Nt,ω
)

+ ∑
t∈T2

{
pdur

E eNSt,ω(P̄Nt,ω)− prt
Mt,ωeNUt,ω(P̄Nt,ω)

}
+ ∑

t∈T3

{
prt

Mt,ωeNSt,ω(P̄Nt,ω) + pdur
E eNUt,ω(P̄Nt,ω)

}

 , (29)

where T1, T2 and T3 are defined as follows:

T1 := {t = 1, ..., τ | − pdur
E ≤ prt

Mt,ω ≤ pdur
E },

T2 := {t = 1, ..., τ | pdur
E − prt

Mt,ω < 0},
T3 := {t = 1, ..., τ | pdur

E + prt
Mt,ω < 0}.

Here, T1 ∩ T2 ∩ T3 = ∅, and T1 ∪ T2 ∪ T3 = {1, ..., τ} because pdur
E is greater than zero.

Although non-convex constraints are eliminated, f rt
M(P̄Nt,ω) is non-convex (and more specifically,

concave; see Appendix B), which could make it difficult to find the global optimal solution. In addition,
the nonlinearity could be a factor causing high computational costs.

Therefore, in order to simplify and relax the problem, we assume that P̄Nt,ω is set to Pmax
Nt

at t ∈ T2 and that P̄Nt,ω is set to Pmin
Nt at t ∈ T3, showing some of the features that make these

assumptions reasonable.
The first feature of the PS-EPP is that we can determine the P̄Nt,ω that minimizes f rt

M(P̄Nt,ω) in
the case of t ∈ T2 ∪ T3, as shown in Equations (30) and (31), because the functions are monotonically
decreasing or monotonically increasing (see Appendix B):

arg min
Pmin

Nt ≤P̄Nt,ω≤Pmax
Nt ,

∀t∈T2

{pdur
E eNSt,ω(P̄Nt,ω)− prt

Mt,ωeNUt,ω(P̄Nt,ω)} = Pmax
Nt (30)

arg min
Pmin

Nt ≤P̄Nt,ω≤Pmax
Nt ,

∀t∈T3

{prt
Mt,ωeNSt,ω(P̄Nt,ω) + pdur

E eNUt,ω(P̄Nt,ω)} = Pmin
Nt . (31)

Note that the global optimal solution is not guaranteed, because P̄Nt,ω is fixed considering only
f rt
M(P̄Nt,ω), even though Equation (8) includes P̄Nt,ω.

The second feature is that the fixed P̄Nt,ω at t ∈ T2 ∪ T3 does not conflict with reasonable PA
actions in the RTM. Specifically, in the case of t ∈ T2 ∪ T3, the real-time (RT) price is so unfavorable as
to install an ESS, as described in the inequality constraints. This is why ered

NSt,ω and ered
NSt,ω should be

greater than zero, which means installing fast ESSs.
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Finally, the quadratic PS-EPP (QPS-EPP) can be formulated as follows:

min
x

nΩ

∑
ω=1

qMω


pdur

E CEω

+
τ

∑
t=1

(
nG

∑
k=1

(pG2,kP2
Gk,t,ω + pG1,kPGk,t,ω + pG0,k) + pda

Mt,ωPda
Mt,ω

)
+ ∑

t∈T1

(
−prt

Mt,ω P̄Nt,ω
)


s.t. Equations (4)–(9)

P̄Nt,ω = Pmax
Nt , ∀t ∈ T2

P̄Nt,ω = Pmin
Nt , ∀t ∈ T3

∀ω ∈ {1, ..., nΩ}.

This optimization problem can be solved easily using quadratic programming, even if the scale of
the problem is large.

4. Simulation

4.1. Parameter Setting and Data

This section describes the parameters related to a PA and to the multi-period markets. As described
in Section 2.1, a PA has the following procurement sources: transactions in a DAM and an RTM,
self-generation, PVs and ESSs.

4.1.1. PVs and Contracted Demands

The capacity of PVs and the contracted demand are set to 50 MW and 100 MW, respectively.
Moreover, we use data provided by Pennsylvania-New Jersey-Maryland interconnection (PJM)through
Data Miner 2 [20] to create the profiles for PV output and demand for the operating day. Specifically,
PV output uses data on generating power based on the fuel type of “solar” [21]. Then, the demand
is hourly data of metered loads in PJM (RTO region) [22]. Both sets of data cover the period 1 July
2017–30 September 2017, because they both include seasonal characteristics. Then, both sets of data are
adjusted using the capacity of PVs and the contracted demand, comparing them with the maximum
values for the study period. Figure 3 shows the mean PV output (P̄Vt) and mean demand (P̄Dt) for
the study period, as well as the standard deviations of imbalances (σNt), derived from each standard
deviation and the covariance (i.e., σVt, σDt and σVDt).

Figure 3. Cont.
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Figure 3. Statistical parameters of PV output and demand.

4.1.2. Market Prices

We use the data on prices in the DAM and RTM given in PJM (pricing node: PJM-RTO) [23,24],
as well as the PV output and demand. The data cover the period 1 July–30 September, which is
the same period used for the PV output and demand, for the four years between 2014 and 2017.
Therefore, there are 368 scenarios. The probability of each scenario is divided equally: qMω = 1/368.
Figure 4 shows samples of the DAM and RTM prices.

Figure 4. Example of scenarios of market prices.

4.1.3. Self-Generation

The number of self-generating units is set to one (i.e., nG = 1), and the type of generator is set as
an oil-fired power plant as a dispatchable generator. The capacity of generation is set to 100 MW, and
all parameters are taken from the generation unit at bus 7 in the IEEE Reliability Test System (RTS) [25].
As for the generation costs for the above unit, pG2, pG1 and pG0 are 0.05 $/MW2, 43.66 $/MW and
781.52 $/h, respectively. The parameters related to generator outputs are as follows: Pmin

G , Pmax
G

and ∆PG are set to 0 MW, 100 MW and 100 MW, respectively.

4.1.4. ESSs

The installation cost of an ESS, pE, is 0.50 million [26], and the daily cost of an ESS, pdur
E ,

is 177 $/day, from Equation (2). Moreover, we add upper limits to the installed capacities of ESSs
of 50 MWh, which is equal to the size of settled PVs. This is because the optimization problem is
unbounded in some cases.
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4.1.5. Others

All the simulations in Section 3 are carried out on a computer configured as Intel(R) Core(TM)
i7-6700 CPU (Intel Corporation, Santa Clara, CA, USA) 3.40 GHz and 32.0 GB of RAM and using
MATLAB (2017a, The MathWorks, Inc., Natick, MA, USA).

4.2. Simulation Results

Figures 5 and 6 shows the aggregated results of all scenarios derived from the QPS-EPP. Figure 5
shows the average profit and loss of procurement, divided into each source, and Figure 6 shows
the average power procurement portfolio for all scenarios. Several findings are evident from these
simulation results: (1) the amount of procured electricity from self-generation is not large, but the
procurement cost is high; (2) PAs procure electricity mainly from a DAM; (3) the amount of electricity
sold is smaller than bought; and (4) ESSs are only installed in a few cases.

First, almost half the total procurement cost is for self-generation, with the remainder comprising
purchases from the DAM. On the other hand, the amount of power procured from the DAM is much
larger than that from self-generation. This is because of the generation cost is independent of PGt
(i.e., ∑τ

t=1 pG0 = 18, 756). However, some results described later show that self-generation is used
effectively when the price on the DAM is relatively high.

Second, PAs bought a large amount of electricity on the DAM because this market had the
greatest price advantage. This is obvious after comparing the amount of bought electricity and the
procured amount.

Third, the amount of electricity sold is smaller than that bought. The first reason for this is that
the operating duration was mainly in summer, when power shortages often occur, which may have
resulted in higher market prices. The second reason is that the size of settled PVs is not sufficient to
cause power surpluses. Even though power shortages are likely to occur in the overall market, PAs that
have large sources can sell electricity in the markets. PV output is the best source of electricity to be
sold because the operational costs are zero. However, PAs do not have sufficient PVs for this option.

Fourth, as shown in Figures 5 and 6, the sizes of the slow and fast ESSs are small, overall. This is
obviously because of their high costs, although both ESSs were installed and used effectively and
sufficiently in some cases.

Figure 5. Average profit and loss of procurement. EENS, expected energy not supplied; EENU,
expected energy not used.
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Figure 6. Average power procurement portfolio.

Figures 7 and 8 shows some of the cases when ESSs were installed and utilized, including the
operations in each scenario. The first figure shows the procurement result on 25 September 2017,
when slow ESSs were installed and utilized. The second figure shows the result on 20 July 2015,
when fast ESSs were installed. In general, as shown in Figures 7 and 8, PAs procure electricity from the
DAM when the day-ahead (DA)price is low and use self-generation when the price is high. Moreover,
P̄Nt,ω is Pmax

Nt in the case of prt
Mt,ω > pda

Mt,ω, and vice versa.

Figure 7. Procurement on 25 September 2017.
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Figure 8. Procurement on 20 July 2015.

On 25 September 2017, slow ESSs were installed up to the upper limits because the DA price
was relatively higher than on other days. Given the expected operation at t = 1, slow ESSs were
charged when the DA price was lower and then discharged immediately after the price increased.
This means that arbitrage using slow ESSs in the DAM was practiced perfectly. On the other hand, fast
ESSs were not installed because the real-time (RT)price was low. Moreover, the amount of electricity
bought on the RTM was large because the RT price was lower than the DA almost all day, resulting in
P̄Nt,ω = Pmin

Nt .
On 20 July 2015, fast ESSs for shortages were installed and discharged at some t in the case of

prt
Mt,ω > pdur

E = 177. As a result, PAs were able to avoid buying electricity on the RTM. The sizes
of the installed fast ESSs, Cfs

E , were 139.7 MWh, which depended on P̄Vt and P̄Dt, owing to the
functions eNSt,ω.

Finally, we explain the principal used to determine the size of an installed slow and fast
ESSs, based on simulation results and the above discussion. Table 1 shows the data on ESS sizes,
which include the minimum, maximum and average capacity of each ESS in all scenarios, the number
of scenarios in which each ESS was installed and the average capacity of each ESS among those
scenarios. Several viewpoints can be considered by decision-makers when determining the size
of each ESS: conservative, cost-savings and balanced. First, conservative decision-makers should
install the maximum size because they can avoid paying more than usual in any cases considered.
Second, cost-saving-minded decision-makers should install the minimum or average sizes for all
scenarios. However, it might be meaningless to install a limited size of ESS, because a certain
size is required to adapt to a day when PAs charge or discharge ESSs. Third, balanced-minded
decision-makers should install the average size for days with ESSs, because this will enable them to
employ intermediate scenarios, when PAs without ESSs could pay more. Regardless of the nature of a
decision-maker, we need to note the following. The simulation results are based only on the given
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scenarios, and are underestimated owing to certain assumptions. In addition, decision-makers should
consider how to utilize ESSs in ways other than arbitrage and to reduce payments in an RTM, such as
ancillary services and demand response programs.

Table 1. Data of ESS installation.

Minimum Maximum Average Number of Average for
Type of ESS Capacity Capacity Capacity Cases Procured Days with ESSs

(MWh) (MWh) (MWh) from ESSs (MWh)

Slow ESS 0 50.0 0.3 2 50.0
Fast ESS for shortage 0 203.6 2.3 10 86.2
Fast ESS for surplus 0 0 0 0 0

5. Conclusions

Minimizing the procurement costs of electricity is a critical problem for PAs, but multiple factors
associated with uncertainties are inevitable, including market prices, PV output and demand. To hedge
against risks in energy procurement, this study focused on settlements in multi-period markets (a DAM
and an RTM) and on the installation of ESSs. Although ESSs can be utilized for time arbitrage in the
DAM and to reduce purchases/sales of electricity in the RTM, the size of ESSs should be minimized
owing to their high costs. Furthermore, it is important that we distinguish between the sizes of
ESSs appropriate for different roles. Therefore, we proposed an evaluation method that combines
probabilistic and scenario-based approaches and employed the concept of “slow” and “fast” ESSs
to quantify the sizes of the different roles. Because the optimization problem is formulated as a
large-scale quadratic problem with nonlinear and non-convex constraints, it is generally difficult to
derive exact solutions within a realistic computational burden. To overcome this issue, we made several
reasonable assumptions based on the characteristics of the problems and then transformed the problem
into a linear-constrained quadratic problem. Using simulations on a large amount of historical data,
we verified that the sizes and schedules of ESSs were determined appropriately, distinguishing between
time arbitrage and reductions of settlements in the RTM.

In future work, we intend to incorporate bidding models in the markets to investigate the
optimality of the proposed framework by solving the EPP directly. In addition, it is expected that
our methodology can determine the sizes of ESSs considering prediction errors, by preparing several
kinds of scenarios. However, the proposed method does not include prediction errors in terms of the
formulations, so our future work is to propose the systematic methodology which can include the
prediction errors related to market prices, PV output and demand.
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Nomenclature

Indices and sets:

k Index of conventional generators, running from one to nG
t Index of time, running from one to τ
ω Index of scenarios, running from one to nΩ
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Decision variables:

CE Capacity of slow ESSs at t
PGk,t Output of the k-th conventional generator at t
Pda

Mt, Prt
Mt Purchasing/selling electricity in a day-ahead market and a real-time market at t, respectively

PEt Scheduling of slow ESSs at t
St State of charge of slow ESSs at t
PNt Mismatch of power demand and supply at t
ered

NSt, ered
NUt Expected reductions in purchases and sales of electricity in a real-time market at t, respectively

Pfs
Et, Pfu

Et Scheduling of fast ESSs for shortages and surpluses at t, respectively
Cfs

E , Cfu
E Capacity of fast ESSs for shortages and surpluses at t, respectively

Parameters:

pGn,k Polynomial coefficient of the n-th term in a fuel cost function of the k-th generator
pdur

E Operating cost of and ESSs during the period
pda

Mt, prt
Mt Electricity price on a day-ahead market and a real-time market at t, respectively

rdis Discount rate
yE Useful lifetime of ESSs in years
pE Price of ESSs
PVt Output of PV at t
PDt Electricity demand at t
Pmin

Gk , Pmax
Gk Minimum and maximum output of the k-th generator, respectively

∆PGk Maximum difference of the k-th generator for one time step
Pmin

Nt , Pmax
Nt Degree of virtual bidding allowed in a day-ahead market at t

σNt Standard deviation of imbalance at t
σVt Standard deviation of PV output at t
σDt Standard deviation of demand at t
σVDt Covariance between PV output and demand at t
qMω Occurrence probability of the ω-th scenario

Functions and others:

eNSt(·) Function of EENS at t
eNUt(·) Function of EENU at t
q(·) Probability density function of the Gaussian distribution
erf(·) Error function
Pr[X] Probability of X
x̃ Estimated value of stochastic variable x
x̄ Mean value of stochastic variable x

Appendix A. Convexity of EENS and EENU

The first-order partial derivatives of EENS and EENU are as follows, because −1 < erf(x) < 1:

∂

∂P̄Nt
eNSt(P̄Nt) = −

1
2

(
1− erf

(
P̄Nt√
2σNt

))
< 0, (A1)

∂

∂P̄Nt
eNUt(P̄Nt) =

1
2

(
1 + erf

(
P̄Nt√
2σNt

))
> 0. (A2)

The Jacobian matrix is given as follows:

J(eNS) =
∂(eNS1, ..., eNSτ)

∂(P̄N1, ..., P̄Nτ)
= diag

(
∂eNS1

∂P̄N1
, ...,

∂eNSτ

∂P̄Nτ

)
. (A3)

This is applied to the EENU, as well.
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The second-order partial derivatives of EENS and EENU are as follows:

∂2

∂2P̄Nt
eNSt(P̄Nt) =

1
σNt
√

2π
exp

(
−1

2

(
P̄Nt
σNt

)2
)

> 0, (A4)

∂2

∂2P̄Nt
eNUt(P̄Nt) =

1
σNt
√

2π
exp

(
−1

2

(
P̄Nt
σNt

)2
)

> 0, (A5)

The Hessian matrix is given as:

H(eNSt)i,j =

 ∂2

∂2 P̄Nt
eNSt if i = j = t,

0 otherwise,
(A6)

Therefore, the EENS and EENU are convex functions.

Appendix B. Shapes of Functions in Equation (29)

We need to check the Jacobian and Hessian matrices of the following functions:

f rt
MT2

(P̄Nt,ω) = pdur
E eNSt,ω(P̄Nt,ω)− prt

Mt,ωeNUt,ω(P̄Nt,ω) (A7)

f rt
MT3

(P̄Nt,ω) = prt
Mt,ωeNSt,ω(P̄Nt,ω) + pdur

E eNUt,ω(P̄Nt,ω) (A8)

Note that we remove ω because it does not affect the shape.
The first-order partial derivatives of Equation (A7) are:

∂
∂P̄Nt

f rt
MT2

(P̄Nt) = − pdur
E
2

(
1− erf

(
P̄Nt√
2σNt

))
− prt

Mt
2

(
1− erf

(
P̄Nt√
2σNt

))
= − pdur

E
2

(
1− erf

(
P̄Nt√
2σNt

))
< 0 (∵ pdur

E > 0).

(A9)

Therefore, f rt
MT2

(P̄Nt) is a monotonically-decreasing function.
The first-order partial derivatives of Equation (A8) are:

∂
∂P̄Nt

f rt
MT3

(P̄Nt) = − prt
Mt
2

(
1− erf

(
P̄Nt√
2σNt

))
+

pdur
E
2

(
1 + erf

(
P̄Nt√
2σNt

))
> 0 (∵ prt

Mt < 0, ∀t ∈ T3).
(A10)

Thus, f rt
MT3

(P̄Nt) is a monotonically-increasing function.
The second-order partial derivatives of f rt

MT2
(P̄Nt) and f rt

MT3
(P̄Nt) are:

∂2

∂2P̄Nt
f rt
MT2

(P̄Nt) =
pdur

E − prt
Mt

σNt
√

2π
exp

(
−1

2

(
P̄Nt
σNt

)2
)

< 0, ∀t ∈ T2, (A11)

∂2

∂2P̄Nt
f rt
MT3

(P̄Nt) =
pdur

E + prt
Mt

σNt
√

2π
exp

(
−1

2

(
P̄Nt
σNt

)2
)

< 0, ∀t ∈ T3. (A12)

Therefore, both functions are concave.
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