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Abstract: Pumped storage units (PSUs) are an important storage tool for power systems containing
large-scale renewable energy, and the merit of rapid start-up enable PSUs to modulate and stabilize
the power system. In this paper, PSU start-up strategies have been studied and a new integrated
start-up method has been proposed for the purpose of achieving swift and smooth start-up.
A two-phase closed-loop startup strategy, composed of switching Proportion Integration (PI) and
Proportion Integration Differentiation (PID) controller is designed, and an integrated optimization
scheme is proposed for a synchronous optimization of the parameters in the strategy. To enhance
the optimization performance, a novel meta-heuristic called Artificial Sheep Algorithm (ASA) is
proposed and applied to solve the optimization task after a sufficient verification with seven popular
meta-heuristic algorithms and 13 typical benchmark functions. Simulation model has been built
for a China’s PSU and comparative experiments are conducted to evaluate the proposed integrated
method. Results show that the start-up performance could be significantly improved on both indices
on overshoot and start-up, and up to 34%-time consumption has been reduced under different
working condition. The significant improvements on start-up of PSU is interesting and meaning for
further application on real unit.

Keywords: pumped storage unit; artificial sheep algorithm; start-up strategy; parameter optimization;
meta-heuristic

1. Introduction

Nowadays, the increase of energy demand and the depletion of fossil fuel have necessitated the
large-scale utilization of renewable energy (RE). More and more REs, like wind and solar power have
access to power grid [1]. Due to the intermittent of the wind and solar power, the stability of the power
grid that contains large capacity of RE has become a severe problem. Energy storage devices like
batteries [2,3], flywheels [4] and pumped storage units (PSUs) [5] are indispensable in RE- connected
power systems to mitigate this problem. Among these, PSUs might be the most economical and mature
tool for power storage [6]. In addition, PSUs have good performance in peak load shaving, frequency
regulation and emergency response in power systems [7]. In recent years, with the increasing scale
of RE-integrated power systems, a considerable amount of work [8–11] has been carried out to study
large-scale pumped storage facilities integrated with the grid-connected wind or solar power systems.
In [8], joint operation of REs and energy storage devices like PSUs is studied in the energy and ancillary
service market. In [9], the scheduling problem of a hybrid energy system containing intermittent solar
power and pumped hydro storage (PHES) system has been investigated. In [10], a flexibility-based
reserve scheduling method for energy storage system with PSUs has been developed to improve
the flexibility of the power system. In [11], a model for transient stability analysis of a combined
wind-pumped storage generation system is studied. Furthermore, this new generation model will be
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installed in El Hierro Island, in Spain. In those system or facilities where PSUs have been extensively
adopted, the control quality of PSUs could not be neglected.

As a kind of hydropower generating unit, one of the merits of PSUs is their quick start-up, while a
PSU could start and transfer to no-load condition from static status within 100 s and increase the power
output to rated value within several minutes. This merit makes it able to quickly respond to RE power
intermitting and load fluctuation, and keep the stability of the power system containing large-scale RE.
The unit start-up related problems have attracted great interest of researchers. In [12], Saboya et al.
proposes a start-up decision method by using machine learning-based system for providing secondary
frequency control for a power grid. In [13], experimental investigations of transient pressure variations
in a high head Francis turbine during start-up. A control system model of a hydropower unit was built
and the start-up process was simulated in [14].

PSU start-up usually refers to the process of unit starting in turbine mode. This process begins
at the time the guide vane is beginning to move and ends at the time the unit connects to the grid.
PSU start-up is a complex control problem. Multiple control models exist in start-up processes.
The traditional and actually applied start-up strategy of PSUs mainly contains two phases [15],
namely the open-loop type and the close-loop type [16]. In the first phase, a direct guide vane control
(DGVC) is adopted, which is usually open-loop, while the governor drives the guide vane (GV) as a
given law. In the second phase, a closed-loop PID control is applied to track the rated rational speed
and maintain the stability. The open-loop DGVC law provides the trajectory of guide vane opening
(GVO), which could be a one-stage polyline or two-stage polyline. Take the two-stage DGVC as an
example, in a two-stage strategy, the guide vane will firstly open to start opening, which is about
twice as much as the no-load opening, and then keep the opening for a while; until the rotational
speed rises to a threshold, guide vane opening is adjusted to the no-load opening. In the second
phase, a closed-loop PID control is switched in to stabilize the rotational speed as soon as it reaches a
threshold value.

Although the traditional strategies are applicable, there are two main drawbacks, which are:
(1) parameters of GVO trajectory in the open-loop DGVC are difficult to set, which are always selected
by experience; (2) study on optimization of start-up strategy is not sufficient. In order to handle these
problems, researches have tried efforts. Bao et al. designed an “open-closed loop” GVO trajectory and
the results indicated that a fast and smooth start-up process could been achieved [17]. Zhang et al.
proposed a new DGVC strategy, which integrates the open-loop and close-loop trajectories in DGVC,
aiming at balancing the start-up time and control quality [18]. In [7], Yang and Yang tried to modify the
conventional open-loop DGVC law and the improved strategy has proved to be effective in promoting
start-up performance. Besides, more efforts have been made in optimization of start-up strategies.
Zhou et al. [19] selected a constant rational speed growth rate as the objective, so it’s easier to control
the frequency change in the whole start-up process. The results also indicate that indices of rotation
torque, axial thrust fluctuation as well as the pressure fluctuating of penstock could be improved
except for the quick-start index. Dynamic control indices have been chosen as optimization objectives
in designing an adaptively fast fuzzy fractional order PID controller in the second phase of start-up
process and the simulation results demonstrates that the new controller could enhance the dynamic
performance and stability of the pumped storage unit governing systems in the start-up process [20].
Although control quality indices are often considered in start-up strategy optimization, the start-up
time is always neglected. An excellent start-up strategy should be built on indices concerning both
quickness and control quality. Pannatier et al. presented the start-up and synchronization procedures
of large variable-speed pump-turbine units in pumping mode. By the optimization of the start-up
time, it leads to a significant decrease of the start-up time [21].

As for parameter tuning for control system of hydropower generating units, meta-heuristic
algorithms have been successfully applied [22,23]. Moreover, some popular meta-heuristic algorithms,
such as Genetic Algorithm (GA) [24], particle swarm optimization (PSO) [25], Ant Colony Optimization
(ACO) algorithm [26], and Gravitational Search Algorithm (GSA) [27–29] have been adopted to solve
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optimization problems. Although numerous meta-heuristic algorithms have been proposed and
applied to solve different optimization problems, there is no specific algorithm which can solve all
optimization problems. For optimization of start-up strategy, a powerful algorithm is essential to
achieve the desired goal.

Flocks of sheep, which is a common swarm in nature, also show intelligence in social activities.
In foraging ground, the strolling of sheep implies individual exploration, and the bellwether is the
leading elite that affects the swarm movement. Many swarm intelligence (SI) techniques are inspired
by foraging and search behaviors. However, there is no SI technique in the literature mimicking the
Herding Effect, which is a well-known phenomenon in the sheep flock. Motivated by this interesting
behavior, a new meta-heuristic optimization algorithm is proposed in this paper. The mathematical
model of the social behavior of a sheep flock, as well as investigation of its abilities in solving benchmark
problems, will be fully discussed before applying it in start-up strategy optimization of PSU.

Motivated by the above discussion, a new integrated start-up method for PSU is proposed in
this paper, while a two phase’s closed-loop startup strategy is designed, and optimization scheme
is built for parameter optimization of the strategy. Moreover, in order to promote the optimization
performance, new meta-heuristic algorithm is studied. This paper presents a novel meta-heuristic
called Artificial Sheep Algorithm (ASA) based on social behaviors of sheep flock. The mathematically
model of the social behavior of sheep flock, as well as investigation of its abilities in solving complicated
problems, will be fully discussed.

The remaining part of this paper is organized as follows: Section 2 establishes a mathematical
of Pump-Turbine Governing System which composed of PID controller, governor servo-mechanism,
water diversion system, pump-turbine and generator. Section 3 introduces the theoretical knowledge
of ASA. Section 4 delineates specific operations of traditional start-up and the proposed integrated
start-up strategy. In Section 5, the performances of optimization schemes and integrated start-up
strategy are analyzed by comparison experiment. The conclusions are summarized in the Section 6.

2. Modelling of Control System of PSU

The pump-turbine governing system (PTGS) is a main control system that undertakes the
modulation of frequency (rotational speed) and power output. The simulation of PSU start-up is also
related to PTGS. PTGS is composed of governor controller, governor servo-mechanism, water diversion
system, pump-turbine and generator, as presented in Figure 1. In this paper, a method of characteristic
(MOC) and an improved Suter transformation method have been studied for the modelling and
simulation of PTGS [30,31].
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Figure 1. Structure of pumped storage unit governing system.

2.1. Modelling of Water Diversion System

In this paper, the fundamental equations are applied to describe the water diversion pipelines,
as shown below [32]:

Momentum equation : L1 =
∂Q
∂t

+ gA
∂H
∂L

+
f

2DA
Q|Q| = 0 (1)
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Continuity equation : L2 = c2 ∂Q
∂L

+ gA
∂H
∂t

= 0 (2)

The details of all the symbols in these equations are given in the nomenclature. The method
of characteristics (MOC) is applied to the partial differential equations (PDEs) as shown in
Equations (1) and (2), and the partial differential terms associated with the flow velocity and the
pressure are reduced to ordinary differential ones compatible with two characteristics lines C+ and C−

as shown in Figure 2.
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The fixed-grid MOC requires that a common time step (∆t) being used for the solution of the
governing equations in all pipelines [33]. Consider L is one of the pipelines total length subdivided
into equal sections N, each of which ∆r = L/N. If we start with known steady state conditions at
t = 0, then we know Q and H at the N + 1 sections of the pipeline. If we specify the time interval ∆t
defined as the ∆t = ∆r/c, the characteristic lines from the sections A and B intersect at P [34]. In these
conditions, the final equations can be written in the following forms [32]:

C+

{
QP = Cp − Ca HP
Cp = QA + CaHA − C f QA|QA|

(3)

C−
{

QP = Cn + Ca HP
Cn = QB − Ca HB − C f QB|QB|

(4)

where coefficients Ca = gA/c, C f = f ∆t/2DA.
In addition, the elastic water hammer effect is considered and different forms of pipelines,

channels, and surge tanks are included.

2.2. Modelling of Pump-Turbine

Pump-turbines are the key component of PTGS, and the modeling of a pump turbine is based
on its complete characteristic curves. The original performance curves of the pump-turbine unit are
shown in Figure 3. The “S” area of characteristic curves presents an uneven distribution, crossing and
aggregation phenomenon, which brings difficulties for modeling of pump-turbines. In order to
overcome these problems, an improved Suter transformation method [35,36] have been proposed,
and experiments have proved that the improved Suter transformation method could eliminate the
uneven distribution, crossing and aggregation of “S” zone. Different processing methods for the curves
can establish the pump-turbine linear model under different conditions as well as a nonlinear model
by interpolation or fitting.
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Figure 3. Characteristic curve of a pump-turbine. (a) flow characteristic curve; and (b) torque
characteristic curve.

By setting the unit parameters N11~Q11 and N11~M11 as a cross-ordinate, a series of
two-dimensional curves could be built to describe the complete characteristics of a pump turbine.
While setting the gate opening y as reference variable, the flow characteristic curves and the torque
characteristic curves of the complete characteristics could be established for a pump-turbine, as shown
in Figure 3. In this figure, the range of guide vane opening is from 0◦ to 26◦. From Figure 3, it can
be noticed that the “S” area exists in characteristic curves. A multiple-valued problem occurs in
interpolation calculating for pump-turbine modeling. In order to overcome this obstacle, an improved
Suter transformation is used, as follows [36]:

WH(x, y) = h
a2+q2+Ch ·h

(
y + Cy

)2

WM(x, y) =
(

m+k1h
a2+q2+Ch ·h

)(
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√
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√

h
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(5)

where, k1 > |M11max|
M11r

, k2 = 0.5~1.2, Cy = 0.1~0.3, Ch = 0.4~0.6. A transformed WH and WM curves
based on the improved Suter transformation method have been shown in Figure 4. It is obvious that
the improved Suter transformation method eliminate the “S” characteristics, the uneven distribution,
cross and aggregation of the curves.
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According to the above content, the calculation model of pump-turbine could be summarized as
Equation (6): {

hn+1 = WH(yn+1, x(qn+1, an+1)) · (q2
n+1 + a2

n+1)

mn+1 = WM(yn+1, x(qn+1, an+1)) · (q2
n+1 + a2

n+1)
(6)

where equations hn+1 and mn+1 represent the interpolation of the characteristic curves of the pump
turbine unit.

2.3. Modelling of Power System

This model calculates the unit running speed from the unbalance between the load moment Mg

and the shaft mechanical moment Mt as defined in follows [37]:

J
π

30
da
dt

= Mt −Mg (7)

Under start-up operation, the value of Mg is 0 and the corresponding equation can be considered
as a special case of Equation (7), as follows:

J
π

30
da
dt

= Mt (8)

2.4. Modelling of Pump-Turbine Governor

The pump-turbine governor contains a controller and servomechanism. A conventional PID
controller is often used to eliminate the speed deviations from a reference speed in the later phases
of a start-up process and under no-load conditions [38]. The transfer function of a PID controller is
described as:

GPID(s) = Kp +
Ki
s
+ Kds (9)

and the output of the controller is shown as:

u(s) = GPID(s) · (are f (s)− a(s)) (10)

where Kp, Ki and Kd are the proportional gain, integral gain, differential gain of PID controller. u(s),
aref (s) and a(s) are the Laplace transform of controller output u, reference speed aref and synchronous
generator speed a.

The servomechanism is the actuator of the speed governor which consists of main and assistant
servomotors. The servomechanism is used to amplify the control signal and provide power to operate
the guide vane of a pump-turbine. The structure of the servomechanism is shown as Figure 5.
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2.5. Simulation of PTGS

While simulating the PTGS, the coupling relationships of water diversion system, pump-turbine
and generator should be considered. Thus the iterative computation to calculate the water flow
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Qn+1 and turbine speed Nn+1 of the next time n + 1 for the simulation of PTGS before switching PID
regulation is adopted, as the flow chart shown in Figure 6.
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3. Artificial Sheep Algorithm

Optimization of parameters in the start-up strategy is an important task in this paper. A novel
meta-heuristic called Artificial Sheep Algorithm (ASA) based on the social behaviors of sheep flocks is
proposed and used to optimize the parameters. A series of test experiments are conducted to evaluate
the performance of the proposed ASA.
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Sheep flocks are always regarded as a scattered organization. Although they are loose, and can
collide with each other in group activities, they have the habitual nature of following and moving
towards the bellwether who is the strongest in the group. As sheep appear to blindly follow,
people always associate them with conformity. Actually, the behavior of this social group has
undergone ten million years of natural testing. From the perspective of SI, the loose individuals
indicate random diversity, the blind herd behavior indicates high-efficiency positive feedback, and the
bellwether leading implements the sharing of information in the whole group. This paper is inspired
by the herd behavior of sheep flock and tries to simulate a novel meta-heuristic optimization algorithm
with some artificial measures.

The social behaviors of sheep flock are attractive, and two main behaviors, namely the free
strolling of individuals and strong leading of bellwether. In a sheep flock, the strongest sheep is
called the bellwether, acting as the leader of the swarm. When fleeing from a predator or foraging,
the individual will follow the bellwether by moving as close as possible. When strolling or playing,
individuals are loose and always move randomly in their own local region.

3.1. Theoretical Knowledge of Algorithm

Consider a sheep flock with N sheep, the position of the ith sheep at specific time “t” is defined as:

Xi(t) = (x1
i (t), . . . , xd

i (t), . . . , xD
i (t)) for i = 1, 2, . . . , N (11)

where xd
i represents the position of ith sheep in the dth dimension, D is the dimension of the position.

For solving a minimization problem:{
min f (Xi)

s.t. xd
i ∈ [bd

l , bd
u], d = 1, . . . , D

(12)

where BL = (b1
l , . . . , bd

l , . . . , bD
l ) is the lower boundary of the searing space, and BU = (b1

u, . . . , bd
u, . . . , bD

u ) is
the upper boundary of the searing space. The objective function value of the ith agent at time “t” is expressed
as Ft

i = f (Xi(t)).

Leading of bellwether

The influence of the bellwether is decisive. When the bellwether moves with a big stride,
individuals will adjust their motion trajectory to follow the bellwether closely. The position of the
bellwether should be recorded and inherited, and this position is denoted as XB(t) =

[
XB

d (t)
]

1×D.
The influence of the bellwether acting on the ith sheep is expressed as bellwether vector, denoted by
Xbw

i (t) =
[

xbw
i,d (t)

]
1×D

.

The bellwether vector that affects the movement of the ith agent, i = 1, . . . , N, is defined as:{
xbw

i,d (t) = xB
d (t) + c2 · δi,d

δi,d =
∣∣∣c1 · xB

d (t)− xi,d(t)
∣∣∣ (13)

where δi,d is the influence scope of the bellwether playing on the ith sheep on the dth dimension,
c1 = 1 + (1 − α) · rand1, c2 = 2w · rand1, α is the coefficient of leading scope, rand1 is a random
number generated in [−1, 1], w is a dynamic weight that linearly decreased from 1 to 0 over the course
of iterations.

The coefficient c1 is a random value whose center is 1, and its radius is determined by the
parameter α, which is selected from [0, 1]. The α is a control parameter, which influences the consensus
effect of the bellwether in defining the distance vector. When α tends to 1, it emphasizes the consensus
influence of the bellwether; when α tends to 0, it enhances the stochastic components. The coefficient
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c2 is a random dynamic number that is automatically generated, and its random range is linearly
decreased over the course of iterations.

Individual strolling

Every individual of flock forages autonomously in a local area, and this behavior is called
“self-awareness”. The mathematical model of “individual strolling” to represent shelf-awareness
of sheep individual in the process of foraging is proposed as follow. We define a location vector
Xsel f

i (t) =
[

xsel f
i,d (t)

]
1×D

to denote self-awareness in foraging.

The shelf-awareness vector that affects the movement of the ith agent, i = 1, . . . , N, is defined as: xsel f
i,d (t) = xi,d(t) + rand2 · εi,d

εi,d = e−β·rand1 · cos(2π · rand1) · δi,d

(14)

where rand2 is a random number generated from [0, 1], the term cos(2π · rand1) is used to generate
periodic random.

The vector Xsel f
i,d represents the self-driven behavior and local random search of a sheep,

which consists of a series of nonlinear operations. The β parameter is a positive number that modulates
the amplitude of the strolling step. As β increases, the sheep’s jump steps increase exponentially and
vice versa. As a result, this parameter controls the resolution of individual exploration. The value of β

should be chosen according to the search scope of the optimization problem.
In a sheep flock, the direction of the sheep flock is determined by the lead of the bellwether and

the autonomous foraging. Based on the discussion above, the movement of a sheep is affected by its
self-awareness and the summoning of the bellwether. The individuals in artificial sheep flock will
automatically update their positions as follows:{

xi,d(t + 1) = ϕi · x
sel f
i,d (t) + (1− ϕi) · xbw

i,d (t)
ϕi = w · rand2

(15)

where w is linearly decreased from 1 to 0 over the course of iterations and r3 is random number
generated in [0, 1].

Competition strategy

In ASA, competition mechanism is designed to keep the diversity of the flock. For a minimum
problem, at a specific time “t”, calculate the average value of N objective function values of the flock
Ft

ave, and the minimal objective function value Ft
min.

For the ith sheep, if the elimination criteria as following is satisfied:

Ft
i > Ft

ave (16)

Then, the ith sheep Xi is eliminated and reinitialized between [BL, BU ].

3.2. The Optimized Procedures of Algorithm

The whole idea and the specific architecture of ASA have been clearly presented in above
paragraphs. The flow chart of ASA optimization is illustrated in Figure 7. Accordingly, the main steps
of the ASA is summarized as follows.

• Step 1: Initialization. Initialize locations Xi(0) of sheep flock with N sheep in the solution space
with boundaries [BL, BU ], and calculate the objective function value F0

i = f (Xi(0)), i = 1, . . . ,N;
set the first sheep as the bellwether XB = X1(0), FB = F0

1 ; set other control parameters: the initial
scope coefficient of leading α and the modulation coefficient of strolling β; set the total number of
iteration T, and the current number of iteration t = 0.
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• Step 2: Calculate the objective function values of agents Ft
i = f (Xi(t)), i = 1, . . . ,N, and update

the bellwether XB(t) by conducting: if Ft
i < FB then XB(t) = Xi(t), FB = Ft

i .
• Step 3: Calculate the bellwether vector Xbw

i (t), i = 1, . . . ,N, according to the Equation (13).

• Step 4: Calculate self-awareness vector Xsel f
i (t), i = 1, . . . ,N, according to the Equation (14).

• Step 5: Updating position of flock according to the Equation (15).
• Step 6: Judge whether sheep need to be eliminated according to the Equation (16) and reinitialize

the same number of new sheep between [BL, BU ].
• Step 7: t = t + 1; if t > Tmax, end and output bellwether’s position as the final solution; else, go to

Step 2.

The ASA is inspired by the behavior of the sheep flock and the complete optimization mechanism
of ASA algorithm has been established now.
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3.3. Experimental Study and Comparison Results on Benchmark Functions

To evaluate the performance of the proposed ASA, as well as other seven meta-heuristic
optimization algorithms, i.e., Particle Swarm Optimization (PSO) [25], Differential Evolution (DE) [39],
Ant Colony Optimization for continuous domain (ACOR) [40], Artificial Bee Colony (ABC) [41],
Cuckoo Search (CS) [42], Gravitational Search Algorithm (GSA) [27], and Grey Wolf Optimizer
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(GWO) [43], were applied to solve 13 standard benchmark functions. The selected algorithms are
representatives of evolutionary, physics-based and SI based meta-heuristics. In these algorithms,
the newly developed meta-heuristics are included. The following experiments are conducted on
MATLAB (R2016a, MathWorks, Natick, MA, USA).

3.3.1. Benchmark Functions

Tables 1 and 2 present the benchmark functions used in our experimental study. The employed
benchmark functions can be divided into two groups: unimodal, multimodal test functions with high
dimension. The unimodal test functions have only one global optimal value, so they are often used
to test the ability of exploitation of algorithms, as shown in Table 1. The multimodal test functions
with high dimension have many local optimal values expect for the global optimum, so they are most
difficult to optimize, as shown in Table 2.

In these tables, D is the dimension of function, fopt is the minimum value of the function,
and searching space is a subset of RD. The minimum value (fopt) of the functions of Tables 1 and 2 are
zero, except for F8 which has a minimum value of −418.9829 × D. The optimum location (Xopt) for
functions of Tables 1 and 2, are in [0]D, except for F5, F12 and F13 with Xopt in [1]D and F8 in [420.96]D.

Table 1. Unimodal test functions (D = 50).

Test Function Range

F1(X) = ∑D
i=1 x2

i [−100, 100]D

F2(X) = ∑D
i=1|xi|+ ∏D

i=1|xi| [−10, 10]D

F3(X) = ∑D
i=1 (∑

i
j=1 xj)

2 [−100, 100]D

F4(X) = max{|xi|, 1 ≤ i ≤ D} [−100, 100]D

F5(X) = ∑D−1
i=1

[
100(xi+1 − x2

i )
2
+ (xi − 1)2

]
[−30, 30]D

F6(X) = ∑D
i=1([xi + 0.5])2 [−100, 100]D

F7(X) = ∑D
i=1 (ix

4
i + random[0, 1]) [−1.28, 1.28]D

Table 2. Multimodal test function (D = 50).

Test Function Range

F8(X) = ∑D
i=1−xi sin(

√
|xi|) [−500, 500]D

F9(X) = ∑D
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]D

F10(X) = −20 exp(−0.2
√

1
D ∑D

i=1 x2
i )− exp( 1

D ∑D
i=1 cos(2πxi)) + 20 + e [−32, 32]D

F11(X) = 1
4000 ∑D

i=1 x2
i −∏D

i−1 cos( xi√
i
) + 1 [−600, 600]D

F12(X) = π
D {10 sin(πy1) + ∑D−1

i=1 (y1 − 1)2[1 + sin 2(πyi+1)] + (yD − 1)2}+ ∑D
i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k, m) =


k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a) xi < −a

[−50, 50]D

F13(X) = 0.1{sin 2(3πx1) + ∑D
i=1 (xi − 1)

2
[1 + sin 2(3πxi + 1)]

+(xn − 1)2[1 + sin 2(2πxn)]}+ ∑D
i=1 u(xi, 5, 100, 4)

[−50, 50]D

3.3.2. Parameters of Algorithms

A set of fair parameters obtained by a simple trail-and-error procedure was adopted for ASA.
For a fair comparison, the recommended parameters of PSO, DE, ACOR, ABC, CS, GSA and GWO
were used to tackle these problems. In order to conduct a fair comparison, the maximum number of
iteration was chosen to 1000 and the population size of all algorithms was set to 30 (i.e., N = 30) in all
experiences in this section. Other parameters of the comparative algorithms were set as follows:

• PSO: the inertia weight w was decreased linearly from 1 to 0.2. c1 and c2 are learning genes and
chosen to be 2 in this section in this paper [44].

• DE: the mutation factor φ ∈ [0, 1], the crossover rate c ∈ [0, 1] [44].
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• ACOR: the number of ants used in an iteration m = 3, an archive size k = 50, the Locality of the
search process, q = 0.05 and the speed of convergence, E = 0.85 [44].

• ABC: the number of onlooker bees, employed bees and food sources was 30 [44].
• CS: the discovery rate p = 0.25 [42].
• GSA: G0 = 100, α = 20 [27].

• GWO:
→
a are linearly decreased from 2 to 0 over the course of iterations and r1, r2 are random

vectors in [0, 1] [43].
• ASA: the initial scope coefficient of leading α = 0; the modulation coefficient of strolling β = 2.

3.3.3. Comparison Results on Benchmark Functions

All experiences were repeated 30 times independently. The mean value, the best value, as well as
the standard deviation, of the optimal objective function values of 30 runs, were reported for unimodal
functions in Table 3 and for multimodal test functions with high dimension in Table 4.

Table 3. Mean, best and standard deviation values of solutions achieved for unimodal test functions
taken over 30 runs.

PSO DE ACOR ABC CS GSA GWO ASA

F1

Best 2.59 × 10−5 0.000125 6.78 × 10−10 5.40 × 10−19 2.545205 2.21 × 10−15 2.80 × 10−45 4.00 × 10−47

Mean 0.003453 0.000283 6.37 × 10−8 1.57 × 10−16 6.777254 0.007024 8.64 × 10−44 6.31 × 10−42

Std 0.01392 0.000118 1.37 × 10−7 2.99 × 10−16 2.588802 0.02132 1.39 × 10−43 3.17 × 10−41

F2

Best 0.023024 0.002001 2.71 × 10−6 1.76 × 10−12 5.076218 3.39 × 10−7 6.12 × 10−27 9.81 × 10−31

Mean 0.12412 0.004183 6.000077 2.21 × 10−10 3 × 109 1.052277 5.16 × 10−26 3.49 × 10−28

Std 0.160725 0.001342 7.70134 2.80 × 10−10 4.66 × 109 1.819242 4.44 × 10−26 6.62 × 10−28

F3

Best 230.6381 48344.53 24835.99 7.992538 251.9153 1035.82 4.51 × 10−11 1.36 × 10−16

Mean 556.8782 61553.98 38502.07 316.2684 751.5542 2121.014 1.53 × 10−5 4.95 × 10−8

Std 178.079 6337.879 7592.073 277.9050 282.7432 566.2951 7.19 × 10−5 2.66 × 10−7

F4

Best 1.820148 12.32438 87.49964 0.036120 9.132951 4.172456 8.46 × 10−11 0.000178
Mean 2.249488 15.60988 92.4693 0.411885 14.91595 9.381604 2.67 × 10−9 0.035010

Std 0.283119 2.545444 2.144256 0.270970 2.481156 1.901231 3.13 × 10−9 0.025305

F5

Best 50.08615 48.63219 22.10962 24.10442 439.6469 83.36688 45.31071 0.00026
Mean 281.4765 61.03248 316.0433 25.02321 1328.587 267.8605 47.11051 0.796821

Std 358.3448 3.73 × 101 758.5534 0.368753 866.8021 192.4422 0.837187 1.043769

F6

Best 5.76 × 10−5 0.000118 2.05 × 10−9 3.15 × 10−7 29 5.76 × 10−15 1.505454 1.02 × 10−6

Mean 0.001352 0.000306 2.01 × 10−6 5.12 × 10−6 60.43333 0.003991 2.463479 0.146174
Std 0.002104 0.000117 1.06 × 10−5 5.92 × 10−6 21.66625 0.020979 0.532694 0.737852

F7

Best 0.223833 0.164606 21.12714 8.325989 0.113516 0.231023 0.000248 1.19 × 10−5

Mean 0.446835 0.258014 23.26484 9.56142 0.237656 1.383992 0.001543 0.001756
Std 0.153217 0.033662 1.529113 0.49641 0.08223 2.041238 0.000938 0.001532

Table 4. Mean, best and standard deviation values of solutions achieved for multimodal test functions
taken over 30 runs.

PSO DE ACOR ABC CS GSA GWO ASA

F8

Best −4712.89 −10238.1 −16992.1 −11535.6 −13521.4 −5076.05 −10857.1 −20949.1
Mean −2796.73 −8966.34 −14809.9 −10795.1 −12888.8 −3360.46 −9346.87 −20949.1

Std 791.2755 472.7152 649.162 465.5335 305.9319 646.0058 838.7516 0.026194

F9

Best 93.19619 278.5933 97.38696 0 92.36084 44.77313 0 0
Mean 132.2983 322.4454 223.8093 5.146369 132.2034 77.02013 0.240699 0

Std 26.68086 15.32829 111.5528 6.148586 19.80883 19.80864 1.143943 0

F10

Best 0.008998 0.001541 0.011792 0.000396 2.761509 2.65 × 10−8 2.58 × 10−14 7.99 × 10−15

Mean 0.962793 0.003375 0.131553 0.005502 4.817019 0.295493 3.19 × 10−14 1.70 × 10−14

Std 0.666548 0.000738 0.140057 0.004212 0.962438 0.457241 3.22 × 10−15 4.14 × 10−15

F11

Best 4.04 × 10−6 0.000146 7.37 × 10−10 0 1.008131 17.99741 0 0
Mean 0.005948 0.000392 0.017358 0.000575 1.06668 31.3846 0.002693 0

Std 0.008839 0.000222 0.028997 0.002212 0.037663 6.600331 0.00555 0
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Table 4. Cont.

PSO DE ACOR ABC CS GSA GWO ASA

F12

Best 5.21 × 10−7 0.000422 0.525900 1.84 × 10−5 2.360578 0.678241 0.034809 6.85 × 10−7

Mean 0.024906 0.002805 4.271751 0.004343 4.412597 2.315895 0.087145 6.61 × 10−5

Std 0.053181 0.003206 1.400772 0.015570 1.719829 0.805198 0.034141 5.33 × 10−5

F13

Best 1.28 × 10−5 4.25 ×
10−11 8.636222 1.90 × 10−7 27.7498 2.21 × 10−31 1.15723 3.16 × 10−5

Mean 0.041362 1.99 × 10−8 19.01885 0.015484 94.52199 0.643825 1.870492 0
Std 0.162455 7.63 × 10−8 7.79599 0.031675 187.1737 1.593794 0.333347 0

Note: In MATLAB, 2.2251 × 10−308 is the minimal real number, and the value “0” represent a small value smaller
than 2.2251 × 10−308.

The unimodal test functions are relatively simple to optimize because they only have one global
optimal value. From Table 3, it is clear that the ASA has a very good performance for the unimodal
test functions. The ASA algorithm shows obvious advantage over the competitors in the remainder
of high dimension unimodal functions, except for F4 and F6. The multimodal test functions with
high dimension are relatively difficult to optimize because they have many local optimal values and
one optimal global value. The ASA also has significant performance, as shown in Table 4. Generally,
the ASA algorithm has shown an obvious advantage over the competitors on high dimensional
benchmark functions F1–F13. Furthermore, optimization processes of the comparative algorithms
were given in Figures 8 and 9. The values shown in these figures were the average of “best so far” in
iterations achieved from 30 runs. The “best so far” is the best objective function value searched by the
artificial sheep flock at certain iteration.
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Figure 8. Comparison of performance of different algorithms for minimization of high dimensional
unimodal functions. (a) unimodal test function F1; (b) unimodal test function F2; (c) unimodal test
function F3; (d) unimodal test function F4; (e) unimodal test function F5; (f) unimodal test function F6

and (g) unimodal test function F7.

Figure 8 shows the average “best so far” in iterations obtained by the eight methods on the
unimodal functions F1–F7. From Figure 8 ASA performance is superior to the seven methods in the
optimization process on all high dimensional unimodal functions except for F4 and F6.
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Figure 9. Comparison of performance of different algorithms for minimization of high dimensional
multimodal functions. (a) multimodal test function F8; (b) multimodal test function F9; (c) multimodal
test function F10; (d) multimodal test function F11; (e) multimodal test function F12 and (f) multimodal
test function F13.

Figure 9 shows the average iteration processes obtained by the eight methods on the multimodal
functions F8–F13. From Figure 9, it is demonstrated that ASA performs the best compared with
another seven methods on F8–F12. ASA has advantages over other algorithms, except for DE, in the
optimization process of F13. From these figures, it was seen that the ASA had a faster converge
speed compared with other approaches. In particular, ASA had a very good performance on high
dimensional test functions.

4. An Integrated Start-Up Method for Pumped Storage Units

4.1. Traditional Start-Up Strategies of a PSU

The traditional start-up method of a PSU contains two phases. In the first phase, the control
system of the PSU is open-loop, in which the feedback signal of rotational speed of pump-turbine
is not adopted and used for control. In this phase, the control system undertakes a kind of direct
guide vane control (DGVC). After receiving the start-up command, governor will control the guide
vane to tract a DGVC trajectory. As the rational speed of pump-turbine increase to a threshold value,
the second phase starts. At that moment, the control system is closed-loop, while the feedback signal
of pump-turbine speed is used for control. The system is then under a speed control mode. In the
second phase, PID control is adopted for the purpose of adjusting and maintaining the stability of
pump-turbine speed referring to the rated speed.
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4.1.1. The First Phase: Direct Guide Vane Control

One-stage DGVC

The guide value opens as the highest speed to no-load opening, while the rotational speed of unit
will increase. As the speed reaches 90% of the rated value, a closed-loop PID control will be switched
on to adjust and maintain the stability of speed for grid connection. The one-stage DGVC is illustrated
in Figure 10.
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Two-stage DGVC

The guide vane opens rapidly to start opening (opening is about twice as much as the no-load
opening) with the fastest speed, and keep the opening for a period, until the speed rises to a set value
nc (nc is usually 60% of the rated speed). The guide vane opening is then adjusted to the no-load
opening immediately. After the speed reaches 90% of the rated value, the PID control is switched on.
The illustration of the two-stage DGVC is shown in Figure 11.
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4.1.2. The Second Phase: PID Control

As mentioned above, following the open-loop direct guide vane control, the closed-loop PID
control will be switched on when the pump-turbine speed reaches a threshold value, which is usually
set as 90% of the rated speed. Though the PID controller is a very traditional design, it is still one of the
favorite and most widely used controllers for many industrial process control applications. This is due
to its simple structure, satisfactory control effect and acceptable robustness [45,46]. The PID controller
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is easier to understand due to intuitive simplicity of the algorithm and simple meaning of its tuning
parameters proportional (Kp), integral (Ki) and derivative (Kd).

In the following, the start-up strategy composed of open-loop one-stage DGVC and closed-loop
PID control is named the one-stage start-up strategy. The start-up strategy composed of open-loop
two-stage DGVC and closed-loop PID control is named the two-stage start-up strategy.

4.2. Optimization Variables for Start-Up Strategies

In order to improve the start-up performance, the parameters in the start-up strategies could
be optimized. Traditionally, PID control parameters are often optimized to enhance the control
performance for a quick and smooth PSU start-up. The tuning parameter vector for a PID controller is
θ1 =

[
Kp, Ki, Kd

]
.

The parameters of the DGVC could also be optimized, though this has seldom been researched.
For a one-stage DGVC, the maximum value yc and the rising slope of guide vane kc can be used as
parameters to be optimized, as θ2 = [yc, kc]. The parameters to be optimized of a two-stage DGVC are
the maximum value of the guide vane opening yc1, the minimum value after guide vane closure yc2

and the set frequency fc when the guide vane began to decrease, as θ3 = [yc1, yc2, fc].
In this paper, optimization experiments of the traditional two-phase start-up strategies are

grouped into two categories:
Scheme A: optimization of PID controller. In practice, parameters of the DGVC are set as a rule of

thumb. The PID parameter vector θ is optimized. In these categories, one-stage DGVC and two-stage
DGVC can be selected corresponding.

Scheme B: optimization of DGVC. DGVC parameters are optimized, the parameters of PID controller
are kept the same as the optimized parameters of Scheme A.

4.3. An Integrated Start-Up Method

In order to improve the performance of the start-up process of PSUs, a new integrated start-up
strategy and the relevant optimization method are proposed. This strategy is composed of two phases,
in which a closed-loop PI control, instead of the open-loop GVO control, is applied in the first phase to
open GVO, and a closed-loop PID control is switched on once the speed reaches the threshold. In the
first phase, a closed-loop PI control is conducted to open the GVO to accelerate the rotational speed,
while the control target is to keep the ratio of differential speed and speed deviation to be a constant:

d∆a/dt
∆a

= C (17)

where d∆a/dt is the speed differential speed; ∆a is deviation of speed. When the speed is close to the
rated speed (about 98% of the rated speed), the governor will switch to the PID controller to track the
rated speed.

Parameters of the integrated start-up strategy can be optimized synchronously. Parameters of
the first phase include parameters Kp1, Ki1, of PI controller, and the constant C in Equation (17).
Parameters of the second phase are that of PID controller, Kp, Ki, and Kd. Therefore, the optimization
vector is θ4 =

[
Kp1, Ki1, C, Kp, Ki, Kd

]
.

4.3.1. Objective Function

The objective function for start-up strategy optimization is an integral performance index to
evaluate the control performances, including overshoot and start-up time. The Integral Time Absolute
Error (ITAE) [47] index is used as the objective function as defined by:

FITAE(θ) =
Ns

∑
k=1

T(k)·|1− a(k)| (18)
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where θ is parameter vector to be optimized, k is the sample number, Ns is the number of samples,
T(k) is the sample time, a(k) is the relative value of unit speed.

In order to assess the performance of the proposed integrated start-up methods quantitatively,
three indices about overshoot, start-up time and steady-state error are presented:

IOvershoot = (a(t)max − 1) · 100% (19)

ISteady−state error = lim
t→∞

e(t) = lim
t→∞

(a(t)− 1) · 100% (20)

amax is the relative value of the peak speed, ts called the start-up time is the corresponding time when
the relative value of the speed reaches rated relative speed 1 and the steady-state error means the
deviation of the actual rotational unit speed and rated relative speed 1 that can’t be eliminate. Here,
considering the constraints of the experiment, we choose the steady-state error at 100 s. The specific
description is shown in Figure 12.
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4.3.2. Procedures

In the proposed method, the ASA is used to optimize the objective function, while optimization
parameters are elements in θ4 =

[
Kp1, Ki1, C, Kp, Ki, Kd

]
. As for optimization of traditional start-up

strategies, i.e., Scheme A and Scheme B, the objective function is also selected as the ITAE function,
while the optimization vectors are θ1, θ2, θ3, respectively. Take optimization of the integrated start-up
strategy as an example, the detail flow chart of start-up strategy optimization based on the ASA is
shown in Figure 13. To illuminate the procedures briefly, the main steps are summarized as follows.

• Step 1: Initialization. Initialize locations Xi(0) of a sheep flock with N sheep in the solution space
with boundaries [BL, BU ], set the first sheep as the bellwether XB = X1(0), FB = F0

1 ; set other
control parameters: the initial scope coefficient of leading α and the modulation coefficient of
strolling β; set the total number of iteration Tmax, and the current number of iteration t = 0.

• Step 2: Objective function calculation. For the ith (i = 1, .., N) agent, the objective function value Ft
i is

calculated as three steps:

Step 2.1: Decode Xi, and get the control parameters of the first phase Kp1, Ki1, and C,
and parameters of second phase Kp, Ki, Kd.
Step 2.2: Set these parameters for controllers and start the established PTGS simulation plant to
simulate the start-up process of PSU; sample and record system outputs including the unit speed
a(k), opening of guide vanes y(k).
Step 2.3: Calculate the objective function value by Equation (18), and let Ft

i
= FITAE.

• Step 3: Implement other iterative procedures of ASA as described in Section 3.2;
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• Step 4: Set, t = t + 1; if t > Tmax, stop simulation and output bellwether’s position as the final
solution; or else, go to Step 2.
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5. Experiments

To verify the effectiveness of the integrated intelligent start-up strategy, a PSHP in Jiangxi Province
of China has been investigated and used as the study target. The structure of the water diversion
system of the PSHP is shown in Figure 14. In this study, the following condition is considered: unit 1 is
working and unit 2 stops. The control system of the working PSU is simulated in MATLAB (R2016a,
MathWorks, Natick, MA, USA).
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5.1. Model Parameters

The values of initial and specified parameters of the simulated PTGS are listed in Table 5, while ts

is sampling time. Experiments are conducted under same water head condition which the water level
of upper reservoir is 735.45 m and downstream reservoir is 181 m.

Table 5. Parameters of the simulated model of PTGS.

Components Value

Suter transformation k1 = 10 k2 = 0.9 Cy = 0.2 Ch = 0.5
Generator J = 96.84

Servo-mechanism TyB = 0.05 Ty = 0.3 k0 = 1
Simulation setting kmax = 20 ts = 0.02 s

As discussed in Section 4, different PSU start-up strategies, including traditional start-up strategies
and the proposed one, are optimized by applying ASA. In the following experiments, the parameters
of ASA is set as: the initial scope coefficient of leading α = 0 and the modulation coefficient of strolling
β = 1, the population size is 30, the total number of iteration Tmax = 200. The boundaries [BL, BU ] of
each optimized parameter are listed in Table 6. Initial DGVC parameters are selected by experience as
some popular rules, which are presented in Table 7.

Table 6. The boundaries of each optimized parameter.

Parameters Boundary Value

θ1
BL 0 0 0
BU 10 5 10

θ2
BL 0.1 0
BU 0.4 1/27

θ3
BL 0.3 0.1 0.4
BU 0.8 0.3 0.9

θ4
BL 0 0 0.01 0 0 0
BU 20 20 1 10 5 10

Table 7. DGVC parameters selected by experience.

Start-Up Strategy Parameters

One-stage yc = 0.167 kc = 1/27
Two-stage yc1 = 0.334 yc2 = 0.167 fc = 0.6

5.2. Comparative Analysis of Traditional Start-Up Strategies

In this part, experiments on optimization of the traditional start-up strategies are conducted.
At first, optimization experiments on Scheme A are executed, while one-stage and two-stage DGVC is
applied, respectively. In this optimization scheme, the parameters of the first phase DGVC are given
by experience, as shown in Table 7, and the second phase PID controller is optimized by ASA.

The results of optimized PID controller parameters are listed in Table 8. The dynamic processes of
one-stage and two-stage start-up strategies are shown in Figures 15 and 16, where the rotational speed
and guide vane opening curves are presented respectively. The performance indices calculated by
Equations (19) and (20), including start-up time, overshoot and steady-state error, are listed in Table 9.

From the results in Figure 5 and Table 9, it is found that one-stage strategy achieves a better
performance on overshoot at the price of a longer start-up time. Compared to the one-stage start-up
strategy, the two-stage strategy possesses a quicker rotational speed rise ratio. From Figure 6,
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the change process of guide vane opening of one-stage strategy has the same slope with the two-stage
strategy to make the rotational speed rises quickly within the first 4.5 s, but the two-stage start-up
strategy has a larger guide vane opening as time elapses, therefore, less time is consumed for the
rotational speed to reach 90% of its rated value.

Table 8. Optimized PID parameters in optimization Scheme A.

Start-Up Strategy Kp Ki Kd

One-stage 5.35 0.04 9.97
Two-stage 4.064 1.509 9.90
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Table 9. Performance indices of traditional start-up strategy of PSU in optimization Scheme A.

Start-Up Strategy
Performance Measure of Rotational Speed

IOvershoot (%) Start-Up Time (s) ISteady-state error (%)

One-stage 0.30 31.1 0.02
Two-stage 3.66 30.16 0.02

Subsequently, one-stage DGVC and two-stage DGVC are compared in experiments on
optimization Scheme B, while the parameters of the PID controller are kept the same as in the previous
results on Scheme A. In this scheme, the parameters of DGVC are optimized by the ASA.

The optimized DGVC parameters are listed in Table 10. The dynamic processes of one-stage and
two-stage start-up strategies are shown in Figures 17 and 18, where the rotational speed and guide
vane opening curves are presented. The performance indices are listed in Table 11. From these results,
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a similar conclusion is drawn that a smaller overshoot is obtained with the one-stage DGVC strategy
and a shorter start-up time is achieved with the two-stage DGVC strategy.

Table 10. Optimized DGVC parameters in optimization Scheme B.

Start-Up Strategy Parameters

One-stage yc = 0.193 kc = 0.0368
Two-stage yc1 = 0.413 yc2 = 0.255 fc = 0.64
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Table 11. Performance indices of traditional start-up strategy of PSU in optimization Scheme B.

Scheme Start-Up Strategy
Performance Measure of Rotational Speed

IOvershoot (%) Start-Up Time (s) ISteady-state error (%)

B
One-stage 0.77 28.4 0.3
Two-stage 3.61 26.42 0.03

Some interesting facets are worth discussing. The guide vane responses are similar to those in
scheme A. However, in zone A of Figure 18, the guide vane opening doesn’t remain invariant as a
horizontal line like in Figure 16. The reason is that the rotational speed increases fast as the guide vane
opening continues increasing in this case. The relative value of the speed has risen to 0.64 before guide
vane opening reaches the inflection point yc1 = 0.413 to become horizontal. Moreover, point b is the
moment the PID controller is switched on and there exists a tiny fluctuation.
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5.3. Results of the Integrated Start-Up Method

In order to verify the superiority of the proposed integrated start-up method, a comparison of
different start-up strategies is made. At first, the results of the integrated start-up method are presented,
while the optimized parameters of the integrated method are listed in Table 12, and the corresponding
dynamic responses of start-up process are illuminated in Figure 19. From these results, it is obvious that
the start-up process achieved by the integrated method shows significant performance improvement,
with a short start-up time and negligible overshoot.

Table 12. Optimized parameters for integrated star-up method.

Parameters

Kp1 = 0.95 Ki1 = 4.77 C = 0.308 Kp = 8.48 Ki = 4.25 Kd = 9.98
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Figure 19. Comprehensive results of integrated start-up strategy.

The results of different strategies are presented in Table 13 and Figure 20, where the indices of
overshoot, start-up time and steady-state error are shown, and the rotational speed curves of start-up
process are compared. From these results, it is easy to find out that the start-up time obtained by
integrated start-up strategy is shorter than with other methods. This is especially important from
the practical implementation point of view because it is a key index to evaluate the ability of quick
connection to the grid. Because the guide vane opening is under closed-loop control in the whole
start-up process, the control system has a better dynamic quality. Indices of overshoot and steady-state
error obtained by the integrated method are still satisfactory, although the overshoot obtained by the
integrated model is a little bigger than one-stage start-up strategy.

Table 13. Performance indices of the variable start-up strategy of PSU with different scheme.

Start-Up Strategy Optimization Scheme
Performance Measure of Rotational Speed

IOvershoot (%) Start-Up Time (s) ISteady-state error (%)

One-stage A 0.3 31.1 0.02
B 0.77 28.4 0.3

Two-stage A 3.66 30.16 0.02
B 3.61 26.42 0.03

Integrated - 0.97 21.92 0.02
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5.4. Performance under Different Initial Water Head Condition

In practical operation, the water head of a PSU might vary frequently. Hence other two initial
conditions (T2 and T3) with different water levels in the upper and downstream reservoir have been
adopted to test the performance of the discussed start-up methods. Three initial working conditions
are listed in Table 14.

Table 14. Working conditions.

Condition Number Upper Reservoir Downstream Reservoir

T1 735.45 m 181 m
T2 716 m 181 m
T3 735.45 m 189 m

Traditional start-up strategies, including the one-stage strategy and two-stage strategy are
optimized in Scheme B. The performance indices of different shut-up methods under various head
conditions are presented in Table 15. Compared with the traditional start-up strategies, the proposed
method has achieved the best performance on all indices overall. Especially, the start-up time has been
significantly shortened by the proposed method under all working conditions.

Table 15. Performance indices of the variable start-up strategy of PSU under different water
head conditions.

Condition Number Strategy
Performance Measure of Rotational Speed

IOvershoot (%) Start-Up Time (s) ISteady-state error (%)

T1
One-stage 0.77 28.4 0.3
Two-stage 3.61 26.42 0.03
Integrated 0.97 21.92 0.02

T2
One-stage 2.75 33.76 0.9
Two-stage 0.59 25.94 0. 07
Integrated 0.73 22.14 0.01

T3
One-stage 7.55 32.06 0.06
Two-stage 4.47 27.3 0.04
Integrated 1.23 23.44 0.02
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In order to show the results more explicitly, bar graphs of the indices of overshoot and start-up
time are exhibited in Figures 21 and 22. From these figures, it’s clearly shown that a smooth and
swift start-up of PSU could be realized by applying the proposed integrated start-up strategy, with an
extremely low overshoot and a short start-up time. Compared with one-stage strategy, the proposed
method has shortened the start-up time 22.8%, 34.4%, 26.9% under the three working conditions.
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6. Conclusions

In order to improve the start-up process indices, a new integrated start-up method is proposed.
In this method, a two-phase closed-loop start-up strategy is designed, while PI control is applied to
quickly open the guide vane with a specially designed control target in the first phase, and PID control
is adopted to adjust the rotational speed of a PSU to track the rated value in the second phase. What’s
more, an integrated optimization method is used to synchronously tune the parameters of the PI and
PID controllers.

To solve this complicated optimization problem, the ASA, a novel meta-heuristic that mimics the
social behaviors of sheep, has been proposed and fully verified by comparing it with seven popular
meta-heuristics on 13 typical benchmark functions. The results show that the ASA significantly
outperforms all competitors for high dimension numerical functions.

Based on the mathematical model of PSUs, the control system, PTGS, has been modeled and
simulated in MATLAB, and simulation experiments on different start-up strategies have been
conducted. The proposed method has been compared with the traditional one-stage DGVC,
and two-stage DGVC strategies with different optimization schemes. The experimental results have
revealed that the proposed integrated start-up method shows great advantages in terms of performance
indices, i.e., overshoot, start-up time, compared with the traditional start-up strategies. The start-up
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time could be improved by as much as 34%, while maintaining the overshoot under a low level.
The significant improvements on these key indices is interesting and merit further application in
real PSUs.
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Abbreviations

PSU Pumped Storage Unit
RE Renewable Energy
DGVC Direct Guide Vane Control
GVO Guide Vane Opening
MOC Method Of Characteristic
ITAE Integral Time Absolute Error
PSO Particle Swarm Optimization
ACO Ant Colony Optimization
CS Cuckoo Search
GSA Gravitational Search Algorithm
PID Proportional-Integral-Derivative
ASA Artificial Sheep Algorithm
GV Guide Vane
PTGS Pump-Turbine Governing System
PDE Partial Differential Equation
PSHP Pumped Storage Hydropower Plant
DE Differential Evolution
ABC Artificial Bee Colony
GWO Grey Wolf Optimizer
GA Genetic Algorithm

Nomenclature

PTGS
c Velocity of pressure wave
D Inner diameter of the pipe
f Darcy-Weisbach coefficient of friction resistance
g Gravitational acceleration
H Piezometric water head in the pipeline
t Time
V Average flow velocity of pipeline section
L Pipeline total length
Q Water flow in the pipeline
a The relative value of turbine speed
q The relative value of turbine flow
h The relative value of water head
m The relative value of turbine torque
x Horizontal coordinate of curves WH and WM
J Moment of inertia
kc The rising slope of guide vane
yc1 The maximum value of GVO
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fc The set frequency
ts Start-up time
A Cross section area of pipeline
Ta Inertia time constant of the generator
Nn Turbine speed at time n
k0 The gain coefficient of servo-mechanism
TyB The assistant servomotor response time
Ty The main servomotor response time
n Time of simulation
Qn Water flow at time n
Ca Depends on the pipeline characteristics
ε1 Accuracy index for calculating Q
ε2 Accuracy index for calculating N
λ Iterative coefficient for calculating Q and N
kmax Maximum iterative number for calculating Q and N
N11 Unit turbine speed
nc A set value of turbine speed
yc Maximum value of GVO
yc2 The minimum value after guide vane close
amax Relative value of the peak speed
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