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Abstract: The significant fluctuation of industrial electricity consumption has a high impact on
power load, which makes the research on recurrence intervals between extreme events of theoretical
and practical significance. The study uses a high-frequency data of heavy and light industries and
employs recurrence interval analysis in different thresholds. We find that the reoccurrence interval
of volatility can fit with the stretched exponential function and the probability density functions of
recurrence intervals in various thresholds shows a scaling behavior. Then, the conditional probability
density function and the multifractal detrended fluctuation analysis demonstrate the existence of
short-range correlation, long-range correlation, and multifractal properties, respectively. We further
construct a hazard function, introduce recurrence intervals into VaR calculation and establish a
functional relationship between average recurrence interval and threshold. Following this result, we
also shed light on policy discussion for multi-industrial electricity supply management.

Keywords: electricity fluctuation; recurrence interval analysis; risk estimation

1. Introduction

Over the past few decades, China has snowballed and surpassed Japan in 2010 to become the
world’s second-largest economy [1]. As for energy consumption, China’s electricity consumption has
also exceeded the United States in 2011 and ranked number one in the world [2]. In 2016, China’s total
electricity consumption was 5.92 trillion kWh with an annual growth rate of 5.0%. Figure 1 shows
the proportion of electricity consumption of each industry in China. Compared to 2015, electricity
consumption of the tertiary industry increased by 11.2% and continued to maintain a high growth rate,
indicating that service consumption led the growth of China’s economy. The electricity consumption
of urban and rural household industry, secondary industry, and manufacturing industry increased by
10.8%, 2.9%, and 2.5%, respectively. For the four major energy-consuming sectors (Steel, Nonferrous
Metals, Building Materials, Chemistry), the electricity consumption barely increased. Such non-increase
is because it is apparently for equipment manufacturing, emerging technologies, and mass consumer
goods industries, reflecting that the readjustment and upgrading of the industrial structure have a
positive effect and the power consumption structure is continuously optimized. By the end of 2016,
China’s total power generation installed capacity was 1.65 billion kW with an annual increase of 8.2%,
which further aggravated overcapacity in some areas. The non-fossil energy generation continued to
increase, and the utilization of thermal power equipment further reduced to 4165 hours, which is the
lowest since 1964. In summary, the overall electricity supply and demand in China was loose with a
relative surplus in some areas [3]. Regarding price, the electricity price for industries is negotiated
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in most times which varies in different regions. For example, we can see from Figure 2 that the
price in developed areas such as Shanghai is higher than that in developing areas like Xinjiang (See
http://www.askci.com/news/chanye/20161020/13442871189.shtml).

Energies 2018, 11, 106  2 of 20 

 

reduced to 4165 hours, which is the lowest since 1964. In summary, the overall electricity supply and 

demand in China was loose with a relative surplus in some areas [3]. Regarding price, the electricity 

price for industries is negotiated in most times which varies in different regions. For example, we can 

see from Figure 2 that the price in developed areas such as Shanghai is higher than that in developing 

areas like Xinjiang (See http://www.askci.com/news/chanye/20161020/13442871189.shtml). 

 

Figure 1. China’s electricity consumption of each industry in 2016. 

 

Figure 2. Price of industrial electricity in various provinces of China in late August 2016 (Unit: Yuan). 

At the same time, the complexity of power consumption structure was also rising all over the 

country, which made regional electricity management a huge challenge both for public 

administrations and for power supply corporations. Therefore, since the year 2015, China has started 

a new round of electricity reform, which mainly included projects like power transmission, 

distribution price reform, energy market construction, electricity trading institution establishment 

and electricity supply reform. All of these projects require China’s electricity supply companies to 

rebuild their organization structure and upgrade management plans to deal with more intense 

market competition. Accurately predicting the trend and change of regional/sector electricity 

consumption by energy consumption modeling can help electricity companies optimize their 

management strategies, reduce operation cost and prevent potential power supply risks, and can also 

help the nation save resources, avoid waste and reduce infrastructure over-investment. 

As shown in Figure 1, China’s energy consumption concentrated in the industrial sector. For 

enterprises belonging to different industry sectors (i.e., heavy industry or light industry), the power 

loads have quite a different magnitude. As is well known, people are more interested in large 

electricity fluctuations than small ones. For example, in a particular area, if the power load of light 

1.81%

71.13%

13.45%

13.61%

primary

secondary

tertiary

urban and rural

household

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

S
h

an
g

h
ai

H
u

b
ei

A
n

h
u

i

T
ia

n
ji

n

G
u

an
g
x

i

Ji
li

n

G
u

an
g
d

o
n

g

L
ia

o
n

in
g

H
u

n
an

Z
h
ej

ia
n
g

B
ei

ji
n

g

H
ei

lo
n

g
ji

an
g

Ji
an

g
su

S
ic

h
u

an

Ji
an

g
x

i

G
an

su

C
h

o
n
g

q
in

g

Y
u

n
n

an

S
h

an
d

o
n

g

H
en

an

F
u

ji
an

G
u

iz
h
o

u

S
h
aa

n
x
i

T
ib

et

S
h

an
x

i

H
ai

n
an

Q
in

g
h

ai

N
in

g
x

ia

H
eb

ei

In
n
er

 M
o

n
g

o
li

a

X
in

ji
an

g

Figure 1. China’s electricity consumption of each industry in 2016.
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Figure 2. Price of industrial electricity in various provinces of China in late August 2016 (Unit: Yuan).

At the same time, the complexity of power consumption structure was also rising all over the
country, which made regional electricity management a huge challenge both for public administrations
and for power supply corporations. Therefore, since the year 2015, China has started a new round of
electricity reform, which mainly included projects like power transmission, distribution price reform,
energy market construction, electricity trading institution establishment and electricity supply reform.
All of these projects require China’s electricity supply companies to rebuild their organization structure
and upgrade management plans to deal with more intense market competition. Accurately predicting
the trend and change of regional/sector electricity consumption by energy consumption modeling can
help electricity companies optimize their management strategies, reduce operation cost and prevent
potential power supply risks, and can also help the nation save resources, avoid waste and reduce
infrastructure over-investment.

As shown in Figure 1, China’s energy consumption concentrated in the industrial sector.
For enterprises belonging to different industry sectors (i.e., heavy industry or light industry), the power
loads have quite a different magnitude. As is well known, people are more interested in large electricity
fluctuations than small ones. For example, in a particular area, if the power load of light industry

http://www.askci.com/news/chanye/20161020/13442871189.shtml
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enterprise reaches its peak, the power supply network in the area will not feel the pressure. However,
if a heavy industry enterprise exceeds its peak power, this may pose an enormous risk of grid paralysis
or even serious accidents, which would usually spread and cause an immeasurable damage and
suffering to the society. Such differences require power supply companies to differentiate their load
management strategies for different industries. Hence, analysis and comparison of heavy/light
industrial electricity consumption patterns, especially the extreme electricity events will provide a
theoretical foundation and practical guidance, which can help power supply companies avoid grave
accidents, ensure the stability of power supply operation and keep power transfer equipment safe.

Due to the availability of real-time power load data, forecasting extreme events in electricity
market becomes possible. In this paper, we use 15-min high-frequency electricity load data from two
companies (one belongs to heavy industry, another belongs to light industry) for the city of Nanjing in
China to study the recurrence pattern between fluctuations. The questions we tried to answer are as
follows: How to describe the volatility behavior? If a massive volatility occurred, will it happen again
or not? When will the next significant fluctuation occur? How to estimate the occurrence probability
and the time interval between two extreme events?

Our study, therefore, contributes to the literature in the following perspectives. First, among
plenty studies that have done in the electric field, research on the electricity consumption pattern
between heavy and light industry is rare. So far as we know, this is the first paper to focus on
the industrial difference of power load from a policy perspective. Second, as a major city with a
fast-growing economy in China, Nanjing, the capital of Jiangsu province, has an urgent demand for
energy especially electricity. Research on Nanjing can be a useful guide for other emerging first-tier
cities in China. Most previous studies on Jiangsu area only use daily data [4–7] while here we use
high-frequency data which can help to capture more specific properties. Finally, different from many
studies using power law to model rare events in many fields [8–13] including electricity markets [14,15],
we use the stretched exponential function to analyze the extreme events [16–18]. Unlike the power-law
which displays a linear relationship in log-log plots, stretched exponential function has a significant
curvature in log-log plots which can better describe the natural phenomena in nature and economy [19].

The rest of this paper is arranged as follows: Section 2 reviews current studies. Section 3 describes
the method and presents basic statistics of the data set. Section 4 initials an empirical research, including
distribution function, scaling properties, memory effect and risk estimation. Section 5 delivers
management policy implications discussions for China’s power supply company. Section 6 concludes.

2. Literature Review

Currently, plenty of models have been applied to forecast electricity load, and most of them can
be classified into three categories: regression, data series analysis, and neural network.

Regression analysis considered power load as a dependent variable of other factors, such as
weather or holidays [20], and tried to construct a function relationship between electricity load and
other influence factors [21]. Such results were confirmed by the reality in some residential areas [22].
With technology evolving, a decomposition model was applied, and many vital factors were pinned
in the evolution progress [23]. Also, GDP [24], income [24], seasonal variations [25], etc. were
all confirmed to be relevant to electricity load forecast by regression analyses. In the 21st century,
the emergence of smart technology could help researchers grab high-frequency data from a personal
level and add human behavior into a regression model to improve the forecast accuracy [26,27]. Briefly,
regression analysis aimed to describe the quantitative relationship between the observed variables in
statistics, however, it could not capture the spatiotemporal variation and is sometimes restricted by the
data volume.

Time series analysis considered that the electricity load pattern was a time series signal, which
could be used to predict the future load with historical data [28]. With technology development, various
time series models have been proposed [29]. Carmine et al. [30] applied time-series analysis model
to the electricity consumption of public transportation in Sofia (Bulgaria) in 2011, 2012 and 2013 and
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detected a periodic pattern, which could be used to improve electricity management. Dong et al. [31]
proposed a hybrid model to predict residential load hour and day ahead with five different algorithms
and the results improved prediction accuracy. Liang and Liang [32] proposed a mathematical hybrid
method to analyze electricity demand in China and predicted the demand evolution in the next five
years from 2016 to 2020. Though the predictable time spectrum of time series analyses varies from
one hour to several years, the claim to the accuracy of historical data was very high. The algorithm
might be complex and unstable in some cases. Additionally, when applying in short-term power load
forecast, it was not sensitive to weather factors and not able to solve the inaccuracy problem caused by
meteorological factors.

Artificial neural networks (ANNs) could estimate future loads with previous data without the
presumption of the functional relationship between electricity load and other relative variables [29].
Compared with traditional methods, ANN was better at dealing with nonlinear relationships [33].
At present, the neural network was well applied in various fields including electric load forecasting [34–37].
Moreover, the integration of ANN and other methods has become a research hotspot. ANN was
integrated with fuzzy logic [38], genetic algorithm [39], wavelet analysis [40,41], chaos theory [42],
grey system [43], etc. However, ANN has its limitations: it is hard to avoid learning deficiency or
over-fit phenomena, and the convergence speed is slow and easy to fall into local minima.

In this paper, we will use a different method: recurrence interval analysis (RIA), which belongs
to time series analysis, to investigate the fluctuation characteristics of heavy/light industries. RIA
has been widely used to analyze extreme events in many fields, for example, climate [44], earthquake
activities [45,46], heartbeat monitoring [47,48] and financial volatility [49,50]. These events occur with
a high magnitude and low probability. For a long time in the past, extreme events were assumed to be
spontaneous, namely mutually uncorrelated. Nevertheless, researchers show that extreme events do
not occur independently; contrarily, they gather and happen in a relatively short period. RIA focuses
on the electricity fluctuation rather than the power load, which is good at depicting the volatility
pattern and estimating the risk. Assuming occurrence probability of future events is constant and
dependent on past events, RIA can estimate the probability of the events to happen again in the future.
Here, Recurrence interval means the time interval between two consecutive events beyond (under) one
certain threshold, which can be positive or negative. It is also powerful to characterize the fluctuation
behaviors in different magnitudes [51] and sometimes even to construct a relationship among them.

3. Data Description

The data in this paper is extracted from the transformer of each corresponding area in
15-min frequency, and we chose two enterprises, which represented heavy and light industries,
respectively. In the national economy, heavy and light industries refer to the sectors which provide
capital and consumption goods, respectively. Heavy industry includes steel industry, metallurgical
industry, machinery, energy (electricity, oil, coal, natural gas, etc.), chemistry and materials science.
These industries provide technical equipment, power and raw materials for all branches of the national
economy. Light industry mainly includes foodstuff, textile, leather, papermaking, daily chemical
industry, culture, education and sporting goods industry. According to the data from National Bureau
of Statistics of China, the finished goods of heavy and light industry were 2.608 and 1.341 trillion yuan
in 2015, respectively (See http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E010D&sj=2015).
In this paper, we select a steel/textile enterprise to represent the heavy/light industry. The sample
period was from 1 January 2016 through 31 December 2016 and finally we ended up with
35,316 electricity load observations. The returns of time series are calculated by taking differences of
the load as:

r(t) = l(t)− l(t− ∆t) (1)

where l(t) is the electricity load (unit: kW) of the tth time and ∆t = 15 because the data is 15-min
frequent. Figure 3 shows the returns of heavy/light industries and Figure 4 is the frequency distribution
of fluctuation. The statistics are summarized in Table 1.

http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E010D&sj=2015
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Figures 3 and 4 and Table 1 show that the returns are not normally distributed. One has a sharp
peak, and another has platy kurtosis. Though their average and standard deviation values have
magnitude difference, the two industries also have common properties, like skewness. From Figure 3,
it is clear that there are zero values in Figure 4b, which means in a specified period, the light industry
enterprise was not in operation. When combining with Table 1, we can see that even a large company
could not operate continually, which is the reason why the minimum values are both zero and why we
used different values to describe fluctuation.
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Table 1. Statistics of the returns of heavy/light industries.

Average Maximum Minimum Std. Skewness Kurtosis Nobs

Light 10.21 47.40 0 8.18 0.84 3.20 35,316
Heavy 1.54 × 104 3.70 × 104 0 8.70 × 103 0.61 1.91 35,316

The x-ray of Figure 5 is the value of threshold q, and y-ray is the number of extreme events of
q; q measures the volatility of the normalized r(t). Due to magnitude discrepancy of electricity
consumption between heavy and light industries, we normalize the fluctuation for comparison
purposes and the results are shown in Figure 5. It can be clearly seen that the number decreases
with an increasing q, indicating that a larger fluctuation has less occurring probability, which is in
accordance with reality. The slope is getting smaller when q increases for each curve, and there is an
intersection point in the figure, indicating that small fluctuations more likely happen in heavy industry
and larger volatilities more likely happen in light industry.
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4. Results

4.1. Probability Density Function

Consider τ as the recurrence interval when threshold is q, the overwhelming consensus is that the
recurrence intervals of volatility are distributed as a stretched exponential.

f (x) = ατe−(βτx)γ

(2)

In Equation (2), τ is the mean recurrence interval that depends on the threshold q, where the
probability distribution function of recurrence interval τ is Pq(τ), and α, β, γ are the parameters [16–18],
where α and β are the coefficients related to the threshold q, while γ is the correlation exponent
reflecting the long term memory of the recurrence intervals.

We normalize the returns of each series by dividing its standard deviation: R(t) = r(t)

[Er(t)2−E2r(t)]
1/2 ,

where [Er(t)2 − E2r(t)]
1/2

is the standard deviation of r(t). For each threshold q, we can obtain a data
set of recurrence interval τ, and then get the probability density function of τ. The q here is positive
(q > 0) because our interest is the overload operation of the electrical system. The empirical parameters
of the probability distribution function Pq(τ), calculated by maximum likelihood estimation are shown
in Table 2.

Table 2. Estimates of the coefficients of stretched exponential functions.

Industry q α β γ

Heavy

1.0 0.031 0.090 0.684
1.2 0.025 0.075 0.648
1.4 0.018 0.058 0.587
1.6 0.012 0.041 0.519
1.8 0.008 0.029 0.448

Light

1.0 6.880 261.870 0.171
1.2 5.072 193.056 0.170
1.4 3.684 149.838 0.168
1.6 2.542 115.224 0.165
1.8 1.564 87.587 0.163

Note that the coefficients of the exponent γ of large enterprises are in the range between 0.448 and
0.684, while the corresponding exponents of the light enterprises are much smaller within the interval
(0.163, 0.171). It is obvious that the long-term memory effect in the recurrence intervals of electricity
usage in large enterprises dies out faster than that in light companies.
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Figure 6 shows that first, for large fluctuations, Pq(τ) decays slowly, indicating that with q rises,
recurrence intervals will be longer, in accordance with the fact that large fluctuations have more long
intervals and less short intervals than small fluctuations. Second, when threshold q is fixed, Pq(τ)

decreases with increasing recurrence interval τ. This implies that when the previous fluctuation
occurred t units of time ago, if ∆t1 < ∆t2, the probability Pq(τ) of the next fluctuation to occur after
∆t1 is larger than ∆t2. The result suggests that if the enterprise suffers a huge electricity load rise, the
enterprise should be aware that the probability that if another large load rise occurs within a shorter
time interval it is likely to be larger with a longer time interval. Moreover, when recurrence interval is
fixed, Pq(τ) increases with q. If an extreme event occurs, the probability that another extreme event
occurs will be higher for a larger threshold q. Last, comparing Figure 6a,b, we can find for a same
threshold q, Pq(τ) decreased faster along with τ for heavy enterprises than low enterprises, indicating
that the probability of large fluctuations of heavy enterprise is less than light enterprise, which in
accordance with the fact that heavy industry is less risk-taking to large volatility than light industry.
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From Figure 6, it can be seen that with q rising, recurrence intervals will be longer, in agreement
with the fact that large fluctuations have more long intervals and less short intervals than small
fluctuations, which means for large fluctuations, there is a higher probability that the time intervals
between two consecutive events will increase.

Besides, by the observations in Table 2 and Figure 6, we find all the probability density function
curves have similar shapes, which make us wonder whether there is a scaling behavior between
these probability density functions? To examine that, we use Yamasaki et al.’s [52] method. Not only
discovering the scaling behavior of events of different thresholds, but it can also efficiently solve the
problem of insufficient data.

fq(τ/τ) = Pq(τ)τ (3)

where τ/τ is scaled recurrence interval and Pq(τ)τ is scaled PDFs. When threshold q changes,
τ changes and there is (dτ)/(dq) > 0, indicating that with volatility increases, the mean time of
recurrence interval increases, which is consistent with the fact. If fq(τ/τ) is independent to q, then
there will be a unique function f (x), for different threshold q.

fq(x) = f (x) (4)

Namely, the scaled probability distribution fq(τ/τ) will converge to the single curve f (τ/τ) and
recurrence intervals have a scaling behavior. To test that, we picture the scatter diagram of fq(τ/τ) as
the function of τ/τ in Figure 7. It can be seen that for different thresholds q, Pq(τ)τ converge to one
curve regardless of which enterprise it belongs, indicating that there exists a scaling behavior and we
can deduce the behavior characteristics of large fluctuations by those of small fluctuations.
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4.2. Memory Effect

4.2.1. Short-Term Memory

Short-term memory means that small τ tends to follow small τ0, and big τ tends to follow big
τ0. The conditional probability density functions Pq(τ|τ0) [52] can be used to reflect the occurrence
probability of a recurrence interval τ immediately after the recurrence interval τ0. If there is no
short-term memory, Pq(τ|τ0) is independent of τ0. However, due to the insufficiency of interval
sample, it is impossible to calculate Pq(τ|τ0) for a single value τ0. In order to obtain more data,
we adopt a method based on the idea of coarse-graining [53–55] and calculate Pq(τ|τ0) for values
of τ0 in a certain interval instead of a single value τ0. Specifically, for a given threshold q, all the
recurrence intervals in the set T are sorted in an increasing order, and then we divide the set T into
four non-overlapping subsets with the same size,

T = T1 ∪ T2 ∪ T3 ∪ T4, Ti ∩ Tj = φ, i 6= j (5)

where T1 contains the smallest quarter while T4 contains the largest. Then we estimate the conditional
probability density functions:

Pq(τ|Ti) = Pq(τ|τ0 ∈ Ti) (6)

If there is no short-term memory, we should find

Pq(τ|Ti) = Pq(τ|Ti), i 6= j (7)

Figure 8 shows the results of Pq(τ|τ0)τ as a function of τ/τ for τ0 in the smallest subset T1 (filled
symbols) and the largest subset T4 (open symbols). Obviously, no matter for heavy or light enterprises,
Pq(τ|Ti) 6= Pq(τ|Ti). We also find that Pq(τ|τ0 ∈ T1) is bigger than Pq(τ|τ0 ∈ T4) for small τ/τ, while
for big τ/τ, Pq(τ|τ0 ∈ T1) is smaller than Pq(τ|τ0 ∈ T4) in Figure 8a,b. There exists very short-term
memory in the recurrence intervals.
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4.2.2. Long-Term Memory

Experience shows that scaling behavior and short-term memory is usually a foreshadowing of
the long-term memory [56,57]. To figure out whether there exists long-term memory in electricity
use of the high/light industries, we adopt the MF-DFA (multifractal detrended fluctuation analysis)
method [56,58–60].

The conventional DFA method invented by Peng et al. (1994) [61], which is used to investigate the
statistical self-affinity in time series analysis, but limited to scale the second order statistical moment of
one-dimensional fractal time series by computing Hurst exponent.

In mathematics, a fractal is an abstract object used to describe and simulate naturally occurring
objects. Artificially created fractals can exhibit similar patterns at increasingly small scales. So far
several models applied in electricity market are proposed based on fractal theory [62–65]. With the
study objects becoming increasingly diverse and complicated, fractal with a single exponent (the fractal
dimension) is not capable of describing the dynamics in reality, like coastlines length, stock market time
series, heartbeat dynamics, real-world scenes, etc. A continuous spectrum of exponents (singularity
spectrum) is needed and then emerges the multifractal [66–69]. A multifractal system is a generalization
of a fractal system and can be discovered in nature, which we can apply in a variety of practical
situations such as electricity demand [70,71].

In 2002, Kantelhardt et al. [72] combined multifractal with DFA and put forward the MF-DFA,
which can describe the multifractal characteristics of time sequence and computes the H(p) for all
p-order statistical moments. As one practical method to test whether a non-stationary time series
has multifractal characteristics, MF-DFA is widely applied in the financial markets [68], molecular
biology [73], disaster prevention and control [69], power pricing analysis [74,75] and electricity
market [71,76]. Assume the sample X = {xk, k = 1, 2, . . . , N}, the specific steps of this algorithm are
as follows.

(1) Calculate the accumulated deviation N times of the original data and construct new time series:

Y =

{
y(i) =

i

∑
k=1

(xk − x), k = 1, 2, . . . , N

}
(8)

where x is the average of X.
(2) Divide new series Y into forward and backward direction, separately; the length of each unit

is s, end up with 2Ns non-overlapping section with equal length, and Ns = int(N/s), int() is
integer-valued function, which avoids information loss if N cannot be divisible by s.

(3) Use least square method for each new subinterval v(v = 1, 2, . . . , 2Ns) to curve-fitting, get
first-order or multi-order local trend function yv(j). When v = 1, 2, . . . , Ns, calculate residual
sequence of subinterval v, when v = Ns + 1, . . . , 2 Ns,

Zv(j) =
1
s

s

∑
j=1
{Y[N − (v− Ns)s + i]− yv(j)} (9)

(4) Calculate p-order volatility function of sequence

F2(s, v) =
1
s

s

∑
j=1

Zv
2(j), v = 1, 2, . . . , 2 Ns (10)

Fp(s) =


{ 1

2Ns

2Ns
∑

v=1
[F2(s, v)p/2]}

1/p

, p 6= 0

exp
{

1
4Ns

2Ns
∑

v=1

[
F2(s, v)

]}
, p = 0

(11)



Energies 2018, 11, 106 10 of 20

when p = 2, it is standard DFA.
(5) Based on Equation (10), we know Fp(s) is positively correlated with s, with log-log coordinate,

we have
Fp(s) ∼ shp (12)

where hp is Hurst exponent, for non-stationary time series, only when 0.5 < hp < 1, this series
has a long-term correlation, indicating that the system has the fluctuation pattern in long-term
evolution. When hp is the function of p, X(t) has multiple fractal characteristics.

In Figure 9, there are ten subfigures, and each subfigure has four sub-subfigures, which show the
results of MF-DFA, respectively. It can be seen that the p-order Hurst exponent of each line is higher
than 0.5 in a certain area, suggesting that long-term correlations and multifractal characteristics exist
in the recurrence intervals. When hp < 0.5; it means the volatility is of anti-continuity.
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q = 1.2; (a3) Heavy, q = 1.4; (a4) Heavy, q = 1.6; (a5) Heavy, q = 1.8; (b1) Light, q = 1.0; (b2) Light, q = 1.2;
(b3) Light, q = 1.4; (b4) Light, q = 1.6; (b5) Light, q = 1.8.

4.3. Risk Estimation

The hazard probability function Wq(∆t|t) is an important method to estimate risk in recurrence
interval analysis. Considering the fact that t units of time have passed since last large volatility is
greater than q occurred, what fascinates us is the probability that the next large volatility greater than q
will occur within ∆t units of time. The hazard probability function is as follows:

Wq(∆t|t) =
∫ t+∆t

t Pq(τ)dτ∫ ∞
t Pq(τ)dτ

(13)

we can calculate the theoretical value of Pq(τ) with the parameters given in Table 2 if the distribution
Pq(τ) fits with a stretched exponential index, and calculate the empirical value by rewriting
Wq(∆t|t) into:
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Wq(∆t|t) =
count

(
t < τq ≤ t + ∆t

)
count

(
τq > t

) (14)

where “count
(
τq > t

)
” is the number of recurrence intervals greater than t and “count

(
t < τq ≤ t + ∆t

)
”

is the number of recurrence intervals greater than t and less than t + ∆t for a given q.
Figure 10 is the hazard function; the symbols are empirical values and the curves are the theoretical

values of Wq(∆t = 15|t). We can observe that they are fitted very nicely and the discrepancy between
empirical and theoretical curves decreases when t increases. Furthermore, Wq(∆t = 15|t) decreases
with increasing t, confirming that recurrence intervals exhibit clustering behaviors and long-term
memory between volatilities and theoretical values will overestimate the risk in a short time period.
For a given threshold q, we can calculate the recurrence probability of extreme events.

For risk estimation, value at risk (VaR) is widely applied. Here we use loss probability density
function to define the risk at rising q:

∫ q
−∞ P(R)dR = P∗, where P(R) is the probability density function

of normalized series R(t), and P∗ is the rise probability. The mean recurrence interval τq is:

τq =
1

Nq

τq

∑
i=1

τq,i (15)
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Nq is the number of recurrence intervals below the threshold q, ∑
τq
i=1 τq,i is the total number of

recurrence returns. Then the relation between mean recurrence interval and VaR can be expressed as:

1/τq =
∫ q

−∞
P(R)dR =

number of R(t) below q
total number of R(t)

(16)

Equation (16) means that one/τq defines the rise probability of q which is depicted in Figure 11.
If one wants to know the risk level at 1% probability of rise they can find the q for 1/τq = 1%, which
is the VaR one is looking for.
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5. Discussion

In the context of China’s new round of power reform, according to the empirical analysis above,
we propose several suggestions for power supply companies in various regions of China to promote
future management.

Firstly, based on the analysis of probability density function and risk estimation, we can see
that the power load of light industry is more likely to fluctuate than for heavy industry in China.
Such fluctuation difference means that the power companies need more intensive and meticulous
maintenance of the electricity load in the light industry, which is supported by all analyses including
the risk analysis. However, since the power load consumed by the heavy industry is much higher
than that of the light industry at the same time interval, the management of the heavy industry should
be more biased towards safety checks of the pre-process and the normative constraint of the overall
operation flow instead of increasing the times of maintenance of the electricity load.

Secondly, power enterprises can make load and customer management based on the analysis
of load data. Power companies can increase the communication with their clients, plan the line
redundancy, enlarge load redundancy of the existing heavy industry and eliminate the risk of
equipment damage caused by capacity loads. Also, the electric power enterprise should incorporate
the improvement of electricity utilization rate into management assessment, through the introduction
of clean energy and distributed energy, and improve energy supply structure, to cope with the effects
of the large power enterprises’ sudden peak with least environment negative externalities.

Thirdly, existing power companies should pay more attention to the fluctuation characteristics of
different industries to realize optimal management expenditure. As we demonstrated in Section 4,
the enterprises of two distinct industries in this study have some similarities in fluctuation pattern,
which makes it possible to use similar management strategies for maintaining related equipment.
Moreover, the difference between the two enterprises’ load peaks allows the power companies to
design different maintenance teams to eliminate frequency to optimize the cost of management
and maintenance.

Finally, an electric power company can make use of the correlation between small and large
fluctuations, especially small fluctuations, and provide them as a value-added services to the existing
large power customer to increase corporate earnings in this competitive market. For example, using
the current fluctuation trends, the power enterprises can fully expect the changes of large fluctuations
according to the characteristics of small fluctuations in the relevant industries. Based on pre-judgment,
power companies can design different energy storage or line maintenance and support strategies,
pack these strategies into different packages, and offer them to energy consumers in the form of
value-added services. It can improve the efficiency of regional energy utilization, optimize local
network and equipment management of electric circuitry, and also can bring extra income for the
electric power company and improve the survivability of the electric power enterprises under the
market reform.

6. Conclusions

The paper uses recurrence interval analysis to investigate the property of recurrence intervals
of electricity fluctuations of heavy/low industries in China for different thresholds using 15-min
high-frequency data, attempting to understand the behaviors of large volatilities in different industries.

First, we observe the distribution functions of recurrence and find the results that for different
thresholds, the probability density function fits the stretched exponential function. We found that
there is scaling behavior in the distributions for different thresholds after the recurrence intervals
are scaled with the mean recurrence interval. Then we use conditional probability density function
and MF-DFA to investigate the short-term, long-term memory and multi-fractural characteristics
separately, indicating that the clusters of recurrence intervals of volatilities are not only caused by
present conditions, but also long-term correlations. Later, we apply recurrence interval analysis to
evaluate the risk of heavy/light industries, which provide relatively accurate estimates of hazard and
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forge a link between loss possibility and VaR. Finally, we propose management suggestions to Chinese
energy supply companies based on all previous analyses.

Of course, this paper still has deficiencies. For example, other forecasting methods could be
used or more enterprises from heavy/light industry could be chosen to test the robustness of research
results. These deficiencies could be perfected by subsequent researchers to help energy company
administrators evaluate risk.
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