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Abstract: In this early 21st century, our societies have to face a tremendous and increasing energy
need while mitigating the global climate change and preserving the environment. Addressing this
challenge requires an energy transition from the current fossil energy-based system to a carbon-free
energy production system, based on a relevant energy mix combining renewables and nuclear energy.
However, such an energy transition will only occur if it is accepted by the population. Powerful and
reliable tools, such as life cycle assessments (LCA), aiming at assessing the respective merits of the
different energy mix for most of the environmental impact indicators are therefore mandatory for
supporting a risk-informed decision-process at the societal level. Before studying the deployment
of a given energy mix, a prerequisite is to perform LCAs on each of the components of the mix.
This paper addresses two potential nuclear energy components: a nuclear fuel cycle based on the
Generation III European Pressurized Reactors (EPR) and a nuclear fuel cycle based on the Generation
IV Sodium Fast Reactors (SFR). The basis of this study relies on the previous work done on the
current French nuclear fuel cycle using the bespoke NELCAS tool specifically developed for studying
nuclear fuel cycle environmental impacts. Our study highlights that the EPR already brings a limited
improvement to the current fuel cycle thanks to a higher efficiency of the energy transformation
and a higher burn-up of the nuclear fuel (−20% on most of the chosen indicators) whereas the
introduction of the GEN IV fast reactors will bring a significant breakthrough by suppressing the
current front-end of the fuel cycle thanks to the use of depleted uranium instead of natural enriched
uranium (this leads to a decrease of the impact from 17% on water consumption and withdrawal and
up to 96% on SOx emissions). The specific case of the radioactive waste is also studied, showing that
only the partitioning and transmutation of the americium in the blanket fuel of the SFR can reduce
the footprint of the geological disposal (saving up to a factor of 7 on the total repository volume).
Having now at disposition five models (open fuel cycle, current French twice through fuel cycle,
EPR twice through fuel cycle, multi-recycling SFR fuel cycle and at a longer term, multi-recycling
SFR fuel cycle including americium transmutation), it is possible to model the environmental impact
of any fuel cycle combining these technologies. In the next step, these models will be combined with
those of other carbon-free energies (wind, solar, biomass . . . ) in order to estimate the environmental
impact of future energy mixes and also to analyze the impact on the way these scenarios are deployed
(transition pathways).
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1. Introduction

In this early 21st century, our societies have to address a global energy challenge: meeting our
tremendous and increasing energy needs while mitigating the global climate change and preserving the
environment. Following the COP21 commitment taken in December 2015 in Paris, facing this challenge
requires an energy transition from the current fossil energy based system (by order of importance, oil,
coal and gas) to a carbon-free energy production system, based on a relevant mix of renewables and
nuclear energy. Beyond the need for developing more efficient technologies, such an energy transition
will only occur if it is accepted by the population, and will only be beneficial if it demonstrates that it
allows the preservation of the global climate and the overall environment. Powerful and reliable tools
aiming at assessing the respective merits of the different energy mix for most of the environmental
impact indicators are therefore mandatory for supporting a risk-informed decision-process at the
societal level.

In this context, Life Cycle Assessment (LCA) methodology is a key tool, defined by ISO 14040 [1]
and ISO 14044 [2]. It takes into account the various industrial processes and plants which are involved
all along the industrial cycle, as well as the overall life of all these facilities, from the initial construction
up to the final dismantling and management of the ultimate waste. This approach is hence often
referred to as a “cradle to grave” approach; it averages the different impacts on the whole life of
the facilities without any specific consideration at that time for the respective contribution of the
different lifecycle stages. We recently published a comprehensive assessment of the French nuclear
energy environmental footprint based on a specific LCA tool (Nuclear Energy Life Cycle Assessment
Simulation, NELCAS) [3]. In that paper, the results were compared with published data on nuclear
energy as well as other energy sources (coal, oil/gas and renewables) showing the consistency and
relevance of the methodology developed in the NELCAS tool [3]. Since then, very few papers compared
different nuclear fuel cycles; one can mention the study of Kadiyala et al. [4] which focused on the
GHG emissions only. In our study, France was selected due to the existence of a very large set of
published environmental data in the annual environmental and safety reports produced by any nuclear
facility in France thanks to the Nuclear Safety and Transparency Law of 2006. France is also of specific
interest as the French nuclear industry covers the whole fuel cycle, from ore mining to geological
disposal, through the conversion, the enrichment, the fuel fabrication, the electricity production in the
reactors, the fuel storage, the fuel recycling and the different types of waste conditioning plants and
interim storage facilities, even though all the steps are not located in France. The ultimate repository
planned to be built in France by 2025 is also included. In this work, we demonstrated that spent
nuclear fuel (SNF) recycling has a very beneficial environmental impact due to its low impact by
comparison to front-end activities, in particular the ore-mining. We demonstrated that implementing
SNF recycling leads to decreasing most of the environmental indicators by 10 to 20% [3]. However,
this paper was restricted to the sole comparison of the so-called “Once-Through Cycle” (OTC) in which
SNF is considered as an ultimate waste to be disposed of (as it is currently deployed in Finland and
Sweden), and the “Twice-Through Cycle” (TTC) in which SNF is treated once to recycle Pu in MOX
fuels and U in URE fuels (as it is currently deployed in France). Actually, future nuclear systems are
anticipated to progressively evolve as follows:

(i) First by deploying 3rd generation reactors which are derived from the current BWR and PWR
in-operation but are reinforced in terms of safety (no radionuclide release in case of core fusion)
and efficiency;

(ii) Second by deploying 4th generation reactors which are aimed to more efficiently consume natural
uranium by favoring the transformation of the fertile 238U into fissile 239Pu thanks to higher
energy neutrons. They are hence referred to as Fast Neutron Reactors (FNR). In this work
FNR taken as reference are Sodium-cooled Fast Reactors for which numerous environmental
data are available in France thanks to PHENIX and SUPERPHENIX exploitation. This choice
does not reflect the diversity of 4th generation reactors and their associated fuel cycle explored
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worldwide [5] or in the Generation IV International Forum (GIF) [6] but rather illustrates the
benefits of FNR in the French nuclear strategy. Although our paper is based on the French strategy
and does not aim at reflecting all the potential future reactors systems, it is important to recall
that EPRs can be potentially used also for other innovative fuel cycles [7–9].

Estimating reliable environmental indicators for future nuclear energy systems is therefore
an important issue to enlighten the potential benefice and detriment of shifting towards new
generations of nuclear energy systems.

In order to assess the potential influence of such new nuclear energy systems, we used the
previous NELCAS LCA approach to compare these two scenarios with the current nuclear fuel
cycle. We based our estimation on: (i) the known available technologies, respectively the well-known
AREVA’s European Pressurized Reactor (EPR) for the 3rd generation; and (ii) for the 4th generation,
on a theoretical sodium-cooled fast spectrum reactor (SFR) derived from the French ASTRID project and
the feedback of the former PHENIX and SUPERPHENIX reactors. Based on the French R&D strategy,
we also studied the impact of the various kinds of nuclear fuel cycles that could be implemented
with FNR, i.e., the Pu-multi-recycling (the so-called Multi-Through Cycle, MTC) and the additional
Am-sole recycling for transmutation. Indeed, in the frame of the French Act of 28 June 2006 on the
sustainable management of radioactive materials and wastes, CEA was committed to develop new
processes and technologies suitable for reducing the ultimate waste long-term toxicity thanks to an
efficient partitioning and transmutation (P&T) of the long-lived radionuclides.

2. Presentation of the Various Scenarios under Study

Performing relevant LCA calculations for nuclear energy requires considering the overall nuclear
fuel cycles which includes the following steps:

• The fuel cycle front-end including the ore-mining and milling, the conversion of U3O8 into UF6,
the enrichment of UF6, the conversion of UF6 to oxide, and the fuel manufacturing;

• The electricity production in the considered reactors fleet;
• The fuel cycle back-end including the discharging of SNF from the reactor, its decay storage before

reprocessing it to recycle Pu in MOX fuel, U in URE and potentially Am for transmutation. It also
includes the conditioning and the disposal of the ultimate waste (High-Level and Long-Lived
Medium-Level Waste) in a deep geological repository.

The current French fuel cycle (TTC) as described in a previous paper [3] is the reference fuel cycle.
Theoretical future French fleets were derived from the current situation by: (i) replacing the current
reactors with 3rd and then 4th generation reactors in order to produce the same amount of electricity;
and (ii) adapting the overall material and energy fluxes in the various steps of the nuclear fuel cycle.
Following sections describe the different stages which have been studied.

2.1. Case Study of a 100% EPR Fleet

The first theoretical case corresponds to the replacement of current 2nd generation reactors by
3rd generation reactors, namely EPR. The corresponding fuel cycle with the reference annual fluxes
are presented in Figure 1. In this case study, the current 58 PWRs (34 of 900 MWe, 20 of 1350 MWe and
four of 1450 MWe) are replaced by 38 EPR in order to produce 453 TWhe per year. The EPR reactor
considered for our calculation has the following characteristics:

• an electrical production capacity of 1600 MWe;
• a thermal efficiency of 36% with an availability of 85%;
• a fuel burn-up of 55 GWd/tU to be compared to the current average burnup of 40 GWd/tU;
• a reactor lifetime of 60 years (conception lifetime).
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In order to equilibrate the nuclear material fluxes and balance, among the 38 EPR fleet:

• 24 are only fed with UOX fuel manufactured from enriched U-ore;
• 11 use both UOX and MOX fuel with a ratio of 30% of MOX in the reactor core, and a plutonium

content of 10.9% in the MOX fuel;
• three use reprocessed uranium fuel (URE). For this purpose 587 t of reprocessed U have to be

re-enriched up to 4.5% 235U content.

Therefore, the corresponding nuclear fuel requires 861 t of UOX and 83 t of MOX to be yearly
charged in the reactors and discharged four years later. In this case study, we assume that the
reprocessing plant only treats UOX fuel, the MOX fuel being temporarily stored to be used in the future
FNR. Up to 2012, the French enrichment plant used gaseous diffusion (Georges Besse I plant, GB I)
which required much more energy (2400 kWh/SWU) than the most recent ultracentrifugation
(100 kWh/SWU) which has been used since 2012 (Georges Besse II plant, GB II). In this study, the former
enrichment by gaseous diffusion was considered in the TTC case whereas the ultracentrifugation
process is taken in consideration for the EPR fleet.

2.2. Theoretical Case Study of a 100% SFR Fleet

This case study considers the very hypothetical far-future case where the French fleet could only
be composed of FNR, typically SFR. We recognize that such a situation is not realistic but it was
however used to better evidence the respective influence of FNR on the environmental footprint.
Obviously, all the linear combination of both 3rd (GEN III) and 4th (GEN IV) generation reactors
(respectively EPR and SFR) could be simultaneously operated, and our models allow calculating all
these different situations.

In a theoretical pure GEN IV FNR fuel cycle, a stable plutonium mass balance is achieved thanks
to the multi-recycling of plutonium in MOX fuel and the intrinsic characteristics of FNR which allows
the transformation of fertile 238U in fissile 239Pu: the mass of plutonium which is yearly introduced
as fuel in the reactor is identical to those at the outlet of the reprocessing plant. In such a nuclear
fuel cycle, the front-end operations are not needed anymore and disappeared. FNR MOX fuel is
therefore manufactured from recycled Pu and from either reprocessed or depleted uranium, this latter
being quite abundant in France due to the operation of the 2nd and 3rd generation reactors (the total
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stockpile is estimated to be around 410,000 t end of 2030 according to ANDRA [10]. Moving to GEN IV
reactors would then highly reduce the need natural uranium and therefore increase the self-sufficiency
in uranium of countries in high nuclear energy development such as China [11]. The representative
fluxes are shown in Figure 2.
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The SFR reactor considered for our calculation has the following characteristics:

• an electrical production capacity of 1450 MWe,
• achieves 40% thermal efficiency with an availability of 85%,
• MOX containing 15.5% of plutonium is used to feed the reactor and the average fuel burn-up is

increased to 100 GWd/tU,
• The lifetime of the reactor is anticipated to be 60 years (conception lifetime).

For producing a similar electrical output of 453 TWhe/y, the modelled fleet is composed of 42 SFR
which have to be fed with 448 t of MOX fuel, requiring the annual use of ~50 t of reprocessed or
depleted uranium from the French stockpile.

3. Presentation of the LCA Methodology and the NELCAS Tool

3.1. Selection of Key Environmental Indicators

The methodology and the selection of the environmental indicators employed is this work has
already been comprehensively described previously [3]. The eight key generic indicators as well as the
five additional potential indicators are displayed on Figure 3. The impact are normalized to the amount
of electricity produced in each considered scenario (e.g., for GHG emissions, GWP 100-gCO2eq/kWhe).
In order to tackle impacts specific to the nuclear industry, radioactive gaseous and liquid emissions
and solid wastes are also reported in this paper.
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3.2. Presentation of the NELCAS LCA Tool

In order to assess key environmental indicators, we used the simulation tool NELCAS [3] that has
been developed for easily assessing environmental indicators based on published data. This tool has
been specifically focused on the French nuclear energy system. It also allows the calculation of future
scenario with Gen III and IV reactors and their comparison with the current nuclear French situation.
NELCAS is supported by data issued from CEA’s reference calculation tools:

• Simplified Evolution Code Applied to Reprocessing (CESAR) is an evolution code developed
in partnership CEA/AREVA-NC which allows a rapid assessment of the isotopic evolution
of 109 actinides, 209 fission products and 146 activation products within SNF, and provides
concentration values, residual power, activities, and sources of penetrating radiation [12].

• COSI [13] like NELCAS simulates a fleet of nuclear power plants with their associated fuel cycle
facilities (enrichment, reprocessing . . . ). The major goal of this code is take into consideration,
for various future scenarios with Gen III and Gen IV reactors deployment, the overall balance
of nuclear materials. This includes in function of time precise nuclear materials fluxes between
facilities, nuclear fuel burn-up, spent nuclear fuel cooling time and reprocessing timeline,
isotopic composition constraints . . .

All the data used in the calculations were taken from the available public data or come from
internal CEA conceptual design study reports for the most advanced fuel cycle options. In particular,
the yearly environmental reports of each of the French nuclear facility were intensively used to get
data about the annual energy and chemicals consumption as well as the production of any type of
waste. Information, references and specific assumptions are given in Table 1.
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Table 1. The different steps of the fuel cycle with assumptions made and references used for building the LCA NELCAS database.

Fuel Cycle Step Site Operation Ref.

Front-end of the fuel cycle

Mines (Areva Production):
Origin of data identical to those already reported for the current French nuclear cycle and
adjusted to the calculated for the EPR scenario [3]

• Canada (26%, underground)
• Niger (33%, open-pit)
• Kazakhstan (41%, ISL)

Malvési (Narbonne) Origin of data identical to those already reported for the current French nuclear cycle and
adjusted to the calculated for the EPR scenario [3]

Tricastin (Pierrelatte) Origin of data identical to those already reported for the current French nuclear cycle and
adjusted to the calculated nuclear material fluxes for the EPR scenario [3]

Romans Origin of data identical to those already reported for the current French nuclear cycle and
adjusted to the calculated for the EPR scenario [3]

Energy production

38 EPR (1600 MWe) fleet
EPR:: Data provided by EDF (report “Flamanville 3 head EPR series—Client Folder” EPR
UK reports, Part of civil engineering data provided by the Quille company, ECOINVENT
data extrapolated from current LWR + CEA expertise for fuel management.

[14–17]

42 SFR (1450 MWe) fleet

SFR: Data provided by EDF and CEA, taking into account both Phenix and Superphenix
reactors experience feedback. Data extrapolated from CEA-Phenix reports concerning the
authorization of discharges and water withdrawals, data from CEA system studies for
technological waste and fuel management.

[18,19]

Back-end of the fuel cycle

La Hague Data from CEA system studies, Data from AREVA TSN reports of La Hague plant [3,20–22]

Tricastin (Pierrelatte) Data from CEA studies or scenarios and AREVA TSN reports [3,20–23]

MELOX plant (Marcoule) Data from CEA studies or scenarios and AREVA TSN reports [23,24]

Storage/Disposal:
Aube (VLLW, ILW-SL) Meuse-Haute Marne (CIGEO project for
an underground long term disposal site for ILW-LL and HLW)

Data from CEA scenario or studies and ANDRA associated reports. [22,25]

Transports Between every sites described above Origin of data identical to those already reported for the current French nuclear cycle [3]

Construction, dismantling Data derived from EcoInvent, CEA system studies, and ANDRA [3,26]
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4. Presentation of the Environmental Indicators for Potential Future Nuclear Energy Systems

4.1. The 100% EPR Case Study

Table 2 presents the results for the different environmental and technological indicators as
well as radioactive releases and wastes for both the current French TTC [3] and the 100% EPR fleet
case study. These data indicate that an EPR reactor fleet would achieve a reduced environmental
footprint (roughly −20% for most of the selected indicators) versus the current PWR French fleet.
These improvements at equal amount of electricity produced are mainly attributed to the improved
reactor characteristics:

• An increase steam pressure (>77 bar) which allows a higher turbine efficiency, up to 37%.
This value is currently lower for PWR: 32–33% for 900 MWe (34 reactors in France) and 34–35%
for 1300 MWe and 1450 MWe (20 reactors);

• The EPR is expected to achieve a higher availability rate of 85% compared to the current PWR
fleet due to the possibility of realizing some maintenance operations during reactor operation
(74% observed in 2010);

• A design lifetime of 60 years, versus 40 years for the current PWR reactors, must also be taken
into consideration since the calculated impacts are averaged on the whole lifetime of a plant.

Table 2. NELCAS results for the environmental and technological impact indicators for the French
TTC [3] compared with a 100% EPR fleet (this study).

Impact Indicators Unit TTC EPR Difference%

GHG emissions gCO2 eq/kWhe 5.29 3.97 −24%
Atmospheric pollution SOx g/MWhe 16.3 12.7 −22%
Atmospheric pollution NOx g/MWhe 25.3 21.35 −20%

Land-use m2/GWhe 211.0 161.6 −23%
Natural ressource efficiency kU/TWhe 18.7 15.2 −19%

Water consumption L/MWhe 1507 1437 −5%
Water withdrawal L/MWhe 72,364 70,132 −3%

Acidification potential gSO2 eq/MWhe 35.1 27.7 −21%
POCP gC2H4 eq/MWhe 2.88 2.27 −21%

Ecotoxicity g1,4-DCB eq/MWhe 638.2 499.6 −22%
Human toxicity g1,4-DCB eq/MWhe 1235.1 967.1 −22%
Eutrophication gPO4 eq/MWhe 5.45 4.18 −23%

Liquid chemical effluents kg/GWhe 287.53 225.40 −22%
Technological wastes kg/GWhe 26.38 20.42 −23%

Gaseous radioactive releases MBq/kWhe 1.22 1.14 −7%
Liquid radioactive releases kBq/kWhe 27.2 33.5 23%
Total radioactive releases MBq/kWhe 1.25 1.17 −6%

VLLW m3/TWhe 3217.6 2610 −19%
ILW-SL m3/TWhe 30.21 19.4 −36%
ILW-LL m3/TWhe 1.18 0.767 −35%

HLW m3/TWhe 0.36 0.298 −16%

Figure 4 shows the relative contribution of each step of the fuel cycle to the various environmental
indicators calculated with NELCAS for the 100% EPR case study. On this figure the nuclear
wastes generated by the complete cycle are also reported. As for current French TTC, mining and
reactors are the main contributors to most of the environmental indicators. Hence, SO2 and NOx

emissions, water pollution and land use indicators are driven by the mining operations whereas
water consumption and withdrawal and technological waste indicators are driven by the reactor
operation. However, GHG emissions mainly come from mining, reactors operation and enrichment.
Very-low-level waste (VLLW) mainly come from mining operations, low and intermediate level
short-lived or long-lived waste (LILW-SL and LILW-LL) are balanced between reactor and spent
nuclear fuel (SNF) reprocessing activities, whereas high-level waste (HLW) are mainly incorporated in
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glass at the reprocessing plant. Our results are somehow of the same order of magnitude than the one
published in 2007 by the NEEDS project [27].
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In this study (see Natural resource efficiency in Table 2), the EPR performances allow saving 19%
of fuel per kWhe (861 t/y for EPR vs. 1053 t/y for current PWR) in good agreement with the 17% value
published by EDF on the basis of a comparison with 1300 MWe reactors [28]. This higher efficiency
obviously improves the numerous indicators which are mainly governed by the front-end operations,
such as SOx, NOx, water pollution, land-use, acidification, eutrophication, POCP, ecotoxicity and
human toxicity (Figure 5). The higher efficiency also leads to a lower flux in the back-end of the fuel
cycle and to a decrease of the waste volumes whatever the category considered (Figure 5).

The only indicators which are degraded are the tritium releases and the other radionuclides
liquid releases. Globally, the total radioactive releases of the EPR scenario (1.14 MBq/kWhe) are only
decreased by 6% compared to the TTC (see Table 2) in relative agreement with the reduced nuclear
fuel needs (−19%). The gaseous emissions which account for more than 97% of the total releases are
reduced by 7% whereas the liquid releases are increased by 23% (33.5 kBq/kWhe). To understand this
last value, the assumption used for the calculations as well as the main contributors to gaseous and
liquid radioactive releases (Figures 6 and 7) must be considered.

The main contribution to gaseous radioactive releases are rare gas emissions coming from the
spent fuel dissolution in the reprocessing plant (63.3%) and radon emitted during mining operations
(36.5%). The yearly rare gas emissions in the reprocessing plant (mainly 85 Kr) in the EPR scenario
was assessed by taking into account the fuel composition after irradiation (55 GWd/t) and five years
cooling time using the CESAR code, assuming that 100% of those gases are released during the spent
fuel dissolution step.



Energies 2017, 10, 1445 10 of 19

Energies 2017, 10, 1445  9 of 18 

 

in glass at the reprocessing plant. Our results are somehow of the same order of magnitude than the 
one published in 2007 by the NEEDS project [27]. 

 
Figure 4. Relative contribution of each step of the fuel cycle to the environmental and technological 
impact indicators for the French EPR case study. 

In this study (see Natural resource efficiency in Table 2), the EPR performances allow saving 
19% of fuel per kWhe (861 t/y for EPR vs. 1053 t/y for current PWR) in good agreement with the 17% 
value published by EDF on the basis of a comparison with 1300 MWe reactors [28]. This higher 
efficiency obviously improves the numerous indicators which are mainly governed by the front-end 
operations, such as SOx, NOx, water pollution, land-use, acidification, eutrophication, POCP, 
ecotoxicity and human toxicity (Figure 5). The higher efficiency also leads to a lower flux in the back-
end of the fuel cycle and to a decrease of the waste volumes whatever the category considered (Figure 5). 

 
Figure 5. Comparison of the environmental indicators for the 100% EPR case study relative to the 
current French TTC [3]. 
Figure 5. Comparison of the environmental indicators for the 100% EPR case study relative to the
current French TTC [3].

Energies 2017, 10, 1445  10 of 18 

 

The only indicators which are degraded are the tritium releases and the other radionuclides 
liquid releases. Globally, the total radioactive releases of the EPR scenario (1.14 MBq/kWhe) are only 
decreased by 6% compared to the TTC (see Table 2) in relative agreement with the reduced nuclear 
fuel needs (−19%). The gaseous emissions which account for more than 97% of the total releases are 
reduced by 7% whereas the liquid releases are increased by 23% (33.5 kBq/kWhe). To understand this 
last value, the assumption used for the calculations as well as the main contributors to gaseous and 
liquid radioactive releases (Figures 6 and 7) must be considered. 

 

Figure 6. Main contributions associated to gaseous releases (1.14 MBq/kWhe) for the 100% EPR case 
study. 

 
Figure 7. Main contributions associated to liquid releases (33.5 kBq/kWhe) for the 100% EPR case 
study. 

The main contribution to gaseous radioactive releases are rare gas emissions coming from the 
spent fuel dissolution in the reprocessing plant (63.3%) and radon emitted during mining operations 
(36.5%). The yearly rare gas emissions in the reprocessing plant (mainly 85 Kr) in the EPR scenario 
was assessed by taking into account the fuel composition after irradiation (55 GWd/t) and five years 
cooling time using the CESAR code, assuming that 100% of those gases are released during the spent 
fuel dissolution step. 

For the liquid radioactive releases, the main contributors are the tritium coming from the 
reprocessing step (80.1%) and from reactors (19.7%). The first value was obtained by using the CESAR 
code (five years cooling) and assuming that 65% of the tritium generated during the irradiation time 
(55 GWd/t), according to CEA expertise, is transferred to nitric acid during the spent fuel dissolution 
step. The tritium contribution to liquid radioactive releases for EPR taken for this study (75 TBq) is 
the maximum annual radioactive discharges given by EDF [14] for a single EPR. The maximum value 
given by AREVA-EDF [29] for the UK EPR project at Hinkley Point is in a similar range (52–75 TBq/y) 
but this report mentions that these limits need to be further investigated. The conservative value 
retained in this study, 75 TBq for a single EPR (1600 MW), is thus overestimated when compared for 
example with the current PWR yearly tritium discharge: 60 TBq [30] for two 1300 MW PWR 
(Flamanville 1&2 site where the EPR is under construction). Changing in the NELCAS tool the EPR 

Figure 6. Main contributions associated to gaseous releases (1.14 MBq/kWhe) for the 100% EPR
case study.

Energies 2017, 10, 1445  10 of 18 

 

The only indicators which are degraded are the tritium releases and the other radionuclides 
liquid releases. Globally, the total radioactive releases of the EPR scenario (1.14 MBq/kWhe) are only 
decreased by 6% compared to the TTC (see Table 2) in relative agreement with the reduced nuclear 
fuel needs (−19%). The gaseous emissions which account for more than 97% of the total releases are 
reduced by 7% whereas the liquid releases are increased by 23% (33.5 kBq/kWhe). To understand this 
last value, the assumption used for the calculations as well as the main contributors to gaseous and 
liquid radioactive releases (Figures 6 and 7) must be considered. 

 

Figure 6. Main contributions associated to gaseous releases (1.14 MBq/kWhe) for the 100% EPR case 
study. 

 
Figure 7. Main contributions associated to liquid releases (33.5 kBq/kWhe) for the 100% EPR case 
study. 

The main contribution to gaseous radioactive releases are rare gas emissions coming from the 
spent fuel dissolution in the reprocessing plant (63.3%) and radon emitted during mining operations 
(36.5%). The yearly rare gas emissions in the reprocessing plant (mainly 85 Kr) in the EPR scenario 
was assessed by taking into account the fuel composition after irradiation (55 GWd/t) and five years 
cooling time using the CESAR code, assuming that 100% of those gases are released during the spent 
fuel dissolution step. 

For the liquid radioactive releases, the main contributors are the tritium coming from the 
reprocessing step (80.1%) and from reactors (19.7%). The first value was obtained by using the CESAR 
code (five years cooling) and assuming that 65% of the tritium generated during the irradiation time 
(55 GWd/t), according to CEA expertise, is transferred to nitric acid during the spent fuel dissolution 
step. The tritium contribution to liquid radioactive releases for EPR taken for this study (75 TBq) is 
the maximum annual radioactive discharges given by EDF [14] for a single EPR. The maximum value 
given by AREVA-EDF [29] for the UK EPR project at Hinkley Point is in a similar range (52–75 TBq/y) 
but this report mentions that these limits need to be further investigated. The conservative value 
retained in this study, 75 TBq for a single EPR (1600 MW), is thus overestimated when compared for 
example with the current PWR yearly tritium discharge: 60 TBq [30] for two 1300 MW PWR 
(Flamanville 1&2 site where the EPR is under construction). Changing in the NELCAS tool the EPR 

Figure 7. Main contributions associated to liquid releases (33.5 kBq/kWhe) for the 100% EPR case study.

For the liquid radioactive releases, the main contributors are the tritium coming from the
reprocessing step (80.1%) and from reactors (19.7%). The first value was obtained by using the CESAR
code (five years cooling) and assuming that 65% of the tritium generated during the irradiation time
(55 GWd/t), according to CEA expertise, is transferred to nitric acid during the spent fuel dissolution
step. The tritium contribution to liquid radioactive releases for EPR taken for this study (75 TBq) is
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the maximum annual radioactive discharges given by EDF [14] for a single EPR. The maximum value
given by AREVA-EDF [29] for the UK EPR project at Hinkley Point is in a similar range (52–75 TBq/y)
but this report mentions that these limits need to be further investigated. The conservative value
retained in this study, 75 TBq for a single EPR (1600 MW), is thus overestimated when compared
for example with the current PWR yearly tritium discharge: 60 TBq [30] for two 1300 MW PWR
(Flamanville 1&2 site where the EPR is under construction). Changing in the NELCAS tool the EPR
tritium liquid release from 75 TBq to 52 TBq leads to a 16% increase of the radioactive liquid emissions
instead of 23% when switching from the current TTC to the EPR scenario (see Table 2). Moreover,
both tritium and 85 Kr which dominate liquid and gaseous radioactive releases are short half-life
radionuclides (12.32 and 10.76 years respectively) which means that the spent nuclear fuel cooling
time influences these releases. By assuming a five years cooling time for the SNF, the radioactive liquid
release is increased by 23% between TTC and EPR scenario (see Table 2). With a seven years cooling
time, this increase is cut down to 8% and to 1% by combining both a longer cooling time (7 years)
and a more reasonable value for the EPR liquid tritium release (52 TBq instead of 75 TBq). This quick
sensitivity analysis is a typical case for which we have chosen to develop a home-made tool in which
we can master data representative to the French nuclear cycle. It further underlines the difficulty in
comparing the reported radioactive releases of the current fleet with future scenarios.

4.2. Environmental Indicators for a 100% SFR Case Study

Environmental indicators for the 100% SFR case study and the comparison with the environmental
footprint of current French TTC are given in Table 3, Figures 8 and 9.

By comparison to the current fuel cycle, these results demonstrate that a FNR fleet allows
a significant improvement of the overall environmental footprint: for instance, greenhouse gas
emissions are cut down to 2.33 g/kWhe (−55%), SO2 and NOx emissions as well as land use which are
predominantly driven by mining operations are drastically lowered (−96% and −86% respectively).
A less marked reduction is observed for water withdrawal and water consumption (−17%) and
technological wastes (−29%) since these impact indicators are governed by reactors. The additional
potential impact indicators driven by SO2, NOx and water pollution mainly associated to the mining
operation (see Figure 4) are thus also decreased: acidification potential (−91%), eutrophication (−67%),
POCP (−94%), human toxicity and ecotoxicity (almost −100%). These significant decreases are due to
two main reasons:

• The SFR reactors can completely be fed by recycled U and Pu and a limited amount of depleted
uranium (less than 50 t/y from the huge French stockpile, higher than 400,000 t) and theoretically,
no additional uranium ore is needed. This allows us to skip (for a very long period of time) the
use of uranium mines which have a predominant role for many impact indicators as previously
shown on Figure 4. In the absence of any front-end activities, the impacts become dominated by
reactors operation and SNF reprocessing as shown on Figure 8.

• The SFR reactors have a higher thermal efficiency (in the range of 40% to be compared to 33% for
the classical LWR). Therefore, it also allows decreasing the indicators which are dominated by the
reactors operation, such as water withdrawal and consumption.

These results illustrate the strong potential of Generation IV nuclear energy systems to provide
sustainable energy generation that not only meet low GHG emissions but also efficiently use natural
resource and preserve the environment. Our results are somehow of the same order of magnitude than
the one published in 2007 by the NEEDS project but for the GHG that looks quite low in the NEEDS
report (<1 gCO2eq/kWhe) [27].
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Table 3. NELCAS results for the environmental indicators for the 100% SFR case study compared to
the reference current French TTC [3].

Impact Indicators Unit SFR Scenario Difference vs. TTC

GHG emissions gCO2 eq/kWhe 2.33 −55.3%
SOx emissions g/MWhe 0.59 −96.3%
NOx emissions g/MWhe 3.83 −85.7%

Land-use m2/GWhe 50.2 −76.2%
Water consumption L/MWhe 1237 −17.9%
Water withdrawal L/MWhe 60,336 −16.6%

Acidification gSO2 eq/MWhe 3.3 −90.7%
POCP gC2H4 eq/MWhe 0.18 −93.8%

Ecotoxicity g1,4-DCB eq/MWhe 0.07 −100.0%
Human toxicity g1,4-DCB eq/MWhe 4.8 −99.6%
Eutrophication gPO4 eq/MWhe 1.8 −67.1%

Liquid chemical effluents kg/GWhe 12.6 −95.6%
Technological waste kg/GWhe 18.70 −29.1%

Gaseous radioactive release kBq/kWhe 528 −56.8%
Liquid radioactive release Bq/kWhe 3557 −86.9%

VLLW m3/TWhe 72.4 −97.8%
LILW-SL m3/TWhe 18.2 −39.7%
LILW-LL m3/TWhe 1.4 21.0%

HLW m3/TWhe 0.30 −16.6%Energies 2017, 10, 1445  12 of 18 
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Regarding the specific radioactive releases, the radioactive gaseous emissions represent nearly
99.3% of the total radioactive emissions, which is very similar to the EPR case (almost 97%) and the
current French TTC (nearly 98%). The absence of any mining operation in SFR removes the large
contribution of radon leading to an important decrease in radioactive gaseous emissions against the
current TTC (−57%). As shown in Figure 10, the radioactive gaseous emissions are therefore mainly
coming from rare gases emitted during the SNF dissolution in the reprocessing plant. The radioactive
release at a potential SFR reprocessing plant is expected to be significantly different from the LWR
reprocessing. Indeed, in LWR fuels, tritium produced remains mainly trapped in fuel pins thanks to
Zircaloy cladding and is thus maintained in the liquid phase and released within the liquid radioactive
release. For LWR reprocessing plant, tritium hence represents 80 to 90% of the total radioactive liquid
release as shown before. The situation is quite different in SFR where 99% of tritium migrates from
the fuel material to the sodium coolant through the steel cladding during the reactor operation as
evidenced from the operation of the PHENIX reactor in Marcoule (France). Tritium transferred to
the sodium coolant is further trapped as sodium hydrides by a range of traps (metallic frits, liquid
nitrogen cooled activated charcoal traps . . . ), limiting its release as gas at the reactor level and also
strongly preventing its subsequent release during SFR fuel reprocessing [18]. As a conclusion, the total
radioactive releases are expected to be significantly decreased in 100% SFR case study by comparison
to the current French TTC (−98%).

For radioactive solid waste, a strong reduction (−98%) is observed for VLLW due to the
suppression of the mining operation. Improvements are also observed to a lesser degree for
ILW-SL (−40%) as for ILW-LL (−21%) and HLW (−17%), since they are dependent on reactors and
reprocessing step.

4.3. Environmental Indicators for a Case Study of the Am-Sole Recycling in FNR

In addition to the sole Pu-multi-recycling in FNR detailed in the previous section, an additional
case-study was considered in which Am is recovered in the reprocessing plant and is included in
Am-bearing radial blankets to allow its transmutation in heterogeneous mode [31]. The nuclear
material fluxes implemented in this scenario are given in Figure 11. Compared to SFR fuel cycle,
this scenario requires an additional workshop for the separation of Am in the reprocessing plant and
a fuel manufacturing plant able to produce Am bearing fuels.



Energies 2017, 10, 1445 14 of 19

Energies 2017, 10, 1445  13 of 18 

 

• The SFR reactors can completely be fed by recycled U and Pu and a limited amount of depleted 
uranium (less than 50 t/y from the huge French stockpile, higher than 400,000 t) and theoretically, 
no additional uranium ore is needed. This allows us to skip (for a very long period of time) the 
use of uranium mines which have a predominant role for many impact indicators as previously 
shown on Figure 4. In the absence of any front-end activities, the impacts become dominated by 
reactors operation and SNF reprocessing as shown on Figure 8. 

• The SFR reactors have a higher thermal efficiency (in the range of 40% to be compared to 33% for 
the classical LWR). Therefore, it also allows decreasing the indicators which are dominated by 
the reactors operation, such as water withdrawal and consumption. 

These results illustrate the strong potential of Generation IV nuclear energy systems to provide 
sustainable energy generation that not only meet low GHG emissions but also efficiently use natural 
resource and preserve the environment. Our results are somehow of the same order of magnitude 
than the one published in 2007 by the NEEDS project but for the GHG that looks quite low in the 
NEEDS report (<1 gCO2eq/kWhe) [27]. 

Regarding the specific radioactive releases, the radioactive gaseous emissions represent nearly 
99.3% of the total radioactive emissions, which is very similar to the EPR case (almost 97%) and the 
current French TTC (nearly 98%). The absence of any mining operation in SFR removes the large 
contribution of radon leading to an important decrease in radioactive gaseous emissions against the 
current TTC (−57%). As shown in Figure 10, the radioactive gaseous emissions are therefore mainly 
coming from rare gases emitted during the SNF dissolution in the reprocessing plant. The radioactive 
release at a potential SFR reprocessing plant is expected to be significantly different from the LWR 
reprocessing. Indeed, in LWR fuels, tritium produced remains mainly trapped in fuel pins thanks to 
Zircaloy cladding and is thus maintained in the liquid phase and released within the liquid 
radioactive release. For LWR reprocessing plant, tritium hence represents 80 to 90% of the total 
radioactive liquid release as shown before. The situation is quite different in SFR where 99% of tritium 
migrates from the fuel material to the sodium coolant through the steel cladding during the reactor 
operation as evidenced from the operation of the PHENIX reactor in Marcoule (France). Tritium 
transferred to the sodium coolant is further trapped as sodium hydrides by a range of traps (metallic 
frits, liquid nitrogen cooled activated charcoal traps…), limiting its release as gas at the reactor level 
and also strongly preventing its subsequent release during SFR fuel reprocessing [18]. As a 
conclusion, the total radioactive releases are expected to be significantly decreased in 100% SFR case 
study by comparison to the current French TTC (−98%). 

 
Figure 10. Main contribution associated to gaseous (528 kBq/kWhe) and liquid releases (3557 
Bq/kWhe) for the 100% SFR case study. 

Figure 10. Main contribution associated to gaseous (528 kBq/kWhe) and liquid releases
(3557 Bq/kWhe) for the 100% SFR case study.

Energies 2017, 10, 1445  14 of 18 

 

For radioactive solid waste, a strong reduction (−98%) is observed for VLLW due to the 
suppression of the mining operation. Improvements are also observed to a lesser degree for ILW-SL 
(−40%) as for ILW-LL (−21%) and HLW (−17%), since they are dependent on reactors and reprocessing 
step. 

4.3. Environmental Indicators for a Case Study of the Am-Sole Recycling in FNR 

In addition to the sole Pu-multi-recycling in FNR detailed in the previous section, an additional 
case-study was considered in which Am is recovered in the reprocessing plant and is included in 
Am-bearing radial blankets to allow its transmutation in heterogeneous mode [31]. The nuclear 
material fluxes implemented in this scenario are given in Figure 11. Compared to SFR fuel cycle, this 
scenario requires an additional workshop for the separation of Am in the reprocessing plant and a 
fuel manufacturing plant able to produce Am bearing fuels. 

Globally, this new recycling scenario does not bring any noticeable changes vs. the previous 
100% SFR case-study for most of the environmental impact indicators, the difference being <10%. 

The only significant differences concern the radioactive waste, namely the VLLW, LILW-SL and 
LILW-LL which are respectively reduced by 27%, 8% and increased by 7%. These differences are 
related to the implementation additional recycling plants to handle and manage the Am. Due to the 
specific radioactivity of Am, this plant needs to be operated remotely in shielded lines, and therefore 
produces additional LILW-LL. 

 
Figure 11. SFR fuel cycle including americium transmutation and its representative streams. 

5. Fuel Cycle Evolutions and Comparison 

This study allows the assessment of the environmental footprint of various types of potential 
future fuel cycles, from the 100% EPR case study which only differs from the current French TTC by 
the replacement of GEN II PWR reactors by GEN III EPR reactors, and the 100% SFR case study (+/− 
Am recycling) which requires a deeper modification with the implementation of Fast Neutron 
Reactors, the suppression of the front-end activities and the increase of the back-end activities (Table 
4). Such an evolution from GEN II to GEN III, then GEN III to GEN IV reactors corresponds to the 
reference strategy in many nuclear countries such as France. It implies an increasing role of the back-
end activities, and especially the recycling operations. It is therefore interesting to see what are the 

Figure 11. SFR fuel cycle including americium transmutation and its representative streams.

Globally, this new recycling scenario does not bring any noticeable changes vs. the previous
100% SFR case-study for most of the environmental impact indicators, the difference being <10%.

The only significant differences concern the radioactive waste, namely the VLLW, LILW-SL and
LILW-LL which are respectively reduced by 27%, 8% and increased by 7%. These differences are
related to the implementation additional recycling plants to handle and manage the Am. Due to the
specific radioactivity of Am, this plant needs to be operated remotely in shielded lines, and therefore
produces additional LILW-LL.
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5. Fuel Cycle Evolutions and Comparison

This study allows the assessment of the environmental footprint of various types of potential
future fuel cycles, from the 100% EPR case study which only differs from the current French TTC
by the replacement of GEN II PWR reactors by GEN III EPR reactors, and the 100% SFR case study
(+/− Am recycling) which requires a deeper modification with the implementation of Fast Neutron
Reactors, the suppression of the front-end activities and the increase of the back-end activities (Table 4).
Such an evolution from GEN II to GEN III, then GEN III to GEN IV reactors corresponds to the
reference strategy in many nuclear countries such as France. It implies an increasing role of the
back-end activities, and especially the recycling operations. It is therefore interesting to see what
are the generic trends governing the evolution of the various environmental indicators. Figure 12
depicts the evolution of the various environmental indicators for these different types of reactors and
fuel cycles.

Table 4. Comparison of the different environmental indicators for the 100% SFR and 100%
SFR + Am-sole recycling case-studies.

Impact Indicators Unit 100% SFR Case-Study 100% SFR Case Study + Am-Sole
Recycling Difference%

GHG emissions gCO2 eq/kWhe 2.33 2.39 2.7%
SOx emissions g/MWhe 0.59 0.61 2.9%
NOx emissions g/MWhe 3.83 3.86 0.7%

Landuse m2/GWhe 50.2 50.4 0.4%
Water consumption L/MWhe 1237 1237 0.0%
Water withdrawal L/MWhe 60,336 60,337 0.0%

Acidification gSO2 eq/MWhe 3.27 3.31 1.1%
POCP gC2H4 eq/MWhe 0.18 0.18 0.1%

Ecotoxivity g1,4-DCB eq/MWhe 0.071 0.077 7.8%
Human toxicity g1,4-DCB eq/MWhe 4.8 4.8 0.8%
Eutrophication gPO4 eq/MWhe 1.8 1.9 6.8%

Liquid chemical effluents kg/GWhe 13 14 9.9%
Technological waste kg/GWhe 18.7 18.4 −1.8%

Gaseous radioactive release kBq/kWhe 528 568 7.8%
Liquid radioactive release Bq/kWhe 3557 3597 0.1%

VLLW m3/TWhe 72 53 −27.0%
LILW-SL m3/TWhe 18.22 16.84 −7.6%
LILW-LL m3/TWhe 1.42 1.53 7.4%

HLW m3/TWhe 0.30 0.28 −5.4%
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implementation of the recycling. These findings are important for two reasons: 

• The repository surface is a given characteristic of a repository site, and it cannot a priori be easily 
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such a repository for much longer time. Considering the complexity and time needed to find a 
suitable site and get it approved, it is a substantial gain. 
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It clearly demonstrates that implementing increasing recycling activities, from OTC to TTC,
then to 100% SFR, then to 100% SFR + Am-recycling, yields to improving the environmental indicators.
Recycling activities have therefore a very beneficial impact on the overall environmental footprint,
since their impact are relatively low by comparison to the front-end activities.
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Finally, Figure 13 presents the anticipated evolution of the volumes of the different categories of
waste which are supposed to be disposed of in the deep underground geological repository, and the
respective repository surface and volume required. This figures shows that the implementation of the
recycling does not significantly modify the total volume of waste, but strongly reduces the HLW which
require most of the repository surface due to their high residual thermal power. It therefore leads to
a significant decrease of the repository surface and volume with the increasing implementation of the
recycling. These findings are important for two reasons:

• The repository surface is a given characteristic of a repository site, and it cannot a priori be easily
extended. Reducing the surface needed for a given electricity production would allow operating
such a repository for much longer time. Considering the complexity and time needed to find
a suitable site and get it approved, it is a substantial gain.

• The repository volume corresponds to the volume of materials to be excavated, which influences
directly the cost of construction of the repository. Reducing the repository volume means hence
reducing the repository cost.
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6. Conclusions

By using NELCAS and a specific database describing different fuel cycle options based on GEN II,
GEN III and GEN IV reactor systems, this study shows that the EPR already brings an improvement
to the current fuel cycle (about 20%) thanks to a higher efficiency of the energy transformation and
a higher burn-up of the nuclear fuel whereas the introduction of the GEN IV fast reactors will bring
a significant breakthrough by suppressing the current front-end of the fuel cycle (from 20 to 99%
depending on the indicator). The specific case of the radioactive waste management is also studied,
showing that only the partitioning and transmutation of the americium in the blanket fuel of the SFR
can reduce the footprint of the geological disposal.

Having now at disposition five models (open fuel cycle, current French twice through fuel cycle,
EPR twice through fuel cycle, multi-recycling SFR fuel cycle and at a longer term, multi-recycling SFR
fuel cycle including americium transmutation), it is possible to model the environmental impact of
any fuel cycle combining these technologies. In the next step, these models will be combined with
those of other carbon-free energies (wind, solar, biomass . . . ) in order to estimate the environmental
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impact of future energy mixes and also to analyze the impact on the way these scenarios are deployed
(transition pathways).

The authors acknowledge that such a work is only one contribution to the debate on the energy
transition, addressing specifically the different nuclear fuel cycle options and their environmental
impacts under normal operation. It does not prevent a debate on the politics and economic issues
and a debate on the nuclear accident risk and impacts. However, it delivers clear information on the
advantages and drawbacks of one or the other options in future energy mixes, demonstrating the
interest to keep nuclear energy in these carbon-free mixes together with renewable energies.
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Abbreviations

COP21 21st Conference of Parties, December 2015, Paris
LCA Life Cycle Assessment
NELCAS Nuclear Energy Life Cycle Assessment Simulation tool, bespoke LCA CEA code
SNF Spent Nuclear Fuel
OTC Once-Through Cycle
TTC Twice-Through Cycle
MTC Multi-Through Cycle
UOX Uranium Oxide Fuel
MOX Mixed uranium/plutonium Oxide Fuel
URE Uranium re-enriched Fuel (nuclear fuel made from re-enriched-reprocessed uranium)
BWR Boiling Water Reactor
LWR Light Water Reactors
PWR Pressurized Water Reactor
EPR European Pressurized Reactor
FNR Fast Neutron Reactor
SFR Sodium cooled Fast Reactor
P&T Partitioning and Transmutation
GWd/tU GigaWatt Day per ton of uranium
kWe, MWe, GWe, TWe Kilo, Mega, Giga or Tera Watt electric
kWhe, MWhe, GWhe,
TWhe

Kilo, Mega, Giga or Tera Watt hour electric

GB I Georges Besse I (French enrichment plant based on gaseous diffusion)
GB II Georges Besse II (French enrichment plant based on ultra-centrifugation)
SWU Separative Work Units
CESAR Simplified Evolution Code Applied to Reprocessing developed by CEA
COSI Commelini-Sicard Code for Nuclear Fuel Cycle Simulation developed by CEA
VLLW Very-low-level waste
LILW-SL Low and Intermediate Level Waste, Short-Lived
LILW-LL Low and Intermediate Level Waste, Long-Lived
HLW High Level Waste
POCP Photochemical Ozone Creation Potential
GHG Green House Gases



Energies 2017, 10, 1445 18 of 19

References

1. International Organization for Standardization. ISO 14040: Environmental Management—Life Cycle
Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006.

2. International Organization for Standardization. ISO 14044: Environmental Management—Life Cycle
Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva,
Switzerland, 2006.

3. Poinssot, C.; Bourg, S.; Ouvrier, N.; Rostaing, C.; Bruno, J. Assessment of the environmental footprint
of nuclear energy systems. Comparison between closed and open fuel cycles. Energy 2014, 69, 199–211.
[CrossRef]

4. Kadiyala, A.; Kommalapati, R.; Huque, Z. Quantification of the Lifecycle Greenhouse Gas Emissions from
Nuclear Power Generation Systems. Energies 2016, 9, 863. [CrossRef]

5. Cerullo, N.; Lomonaco, G. Generation IV reactor designs, operation and fuel cycle. In Nuclear Fuel Cycle
Science and Engineering; Woodhead Publishing Limited: Cambridge, UK, 2012; Chapter 13.

6. GEN IV International Forum. Available online: https://www.gen-4.org/gif/jcms/c_9373/publications
(accessed on 15 September 2017).

7. Chersola, D.; Lomonaco, G.; Marotta, R. The VHTR and GFR and their use in innovative symbiotic fuel
cycles. Prog. Nucl. Energy 2015, 83, 443–459. [CrossRef]

8. Vezzoni, B.; Cerullo, N.; Forasassi, G.; Fridman, E.; Lomonaco, G.; Romanello, V.; Shwageraus, E.
Preliminary Evaluation of a Nuclear Scenario Involving Innovative Gas Cooled Reactors.
Sci. Technol. Nucl. Install. 2009, 2009, 1–16. [CrossRef]

9. Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Brovchenko, M.; Ghetta, V.; Rubiolo, P. Towards the thorium fuel
cycle with molten salt fast reactors. Ann. Nucl. Energy 2014, 64, 421–429. [CrossRef]

10. Agence Nationale Pour la Gestion des Déchets Radioactifs (ANDRA). Inventaire National des Matières et
Déchets Radioactifs, Les Essentiels 2015; ANDRA: Châtenay-Malabry, France, 2015.

11. Yue, Q.; He, J.; Stamford, L.; Azapagic, A. Nuclear Power in China: An Analysis of the Current and
Near-Future Uranium Flows. Energy Technol. 2017, 5, 681–691. [CrossRef]

12. Ritter, G.; Eschbach, R.; Girieud, R.; Soulard, M. CESAR5.3: Isotopic depletion for research and testing
reactor decommissioning. In Proceedings of the European Research Reactor Conference (RRFM), Rotterdam,
The Netherlands, 14–18 May 2017.

13. Coquelet-Pascal, C.; Tiphine, M.; Krivtchik, G.; Freynet, D.; Cany, C.; Eschbach, R.; Chabert, C. COSI6: A tool
for nuclear transition scenario studies and application to sfr deployment scenarios with minor actinide
transmutation. Nucl. Technol. 2015, 192, 91–110. [CrossRef]

14. Electricite De France (EDF). Flamanville 3—Tête de Série EPR—Dossier du Maître d’Ouvrage, 18/07/2005; EDF:
Paris, France, 2005.

15. Quille Industrie, Centrale Electronucléaire de Flamanville—Fiche Terrassements et Génie Civil.
Available online: www.infociments.fr/telecharger/CM-OA-2010.pdf (accessed on 19 September 2017).

16. Dones, R.; Bauer, C.; Bollinger, R.; Faist Emmenegger, M.; Frischknecht, R. Life Cycle Inventory of Energy
Systems in Switzerland and Other UCTE Countries, Data V2.0; PSI: Villigen, Switherland; Ecoinvent Centre:
Zurich, Switzerland, 2007.

17. Electricite De France (EDF). Dossier de Presse: Creys-Malville, Site Industriel, Territoire d’Avenir, Février 2011;
EDF: Paris, France, 2011.

18. Guidez, J. Phénix: Le Retour D’expérience; EDP Sciences: Les Ulis, France, 2013.
19. Guidez, J.; Prêle, G. Superphenix: Les Acquis Techniques et Scientifiques; Atlantis Press: Amsterdam,

The Netherlands, 2016.
20. AREVA. Document de Référence; AREVA: Paris, France, 2010.
21. AREVA. Rapport de Sûreté Nucléaire et Radioprotection du Site de La Hague; AREVA: Paris, France, 2010.
22. Agence Nationale Pour la Gestion des Déchets Radioactifs (ANDRA). Catalogue Descriptif des Familles de

Déchets Radioactifs; ANDRA: Châtenay-Malabry, France, 2006.
23. AREVA. Données Chiffrées et Informations sur la Sûreté Nucléaire et la Radioprotection du Site AREVA Tricastin,

2008–2010; AREVA: Paris, France, 2010.
24. AREVA. Rapport D’information sur la Sûreté Nucléaire et la Radioprotection de MELOX; AREVA: Paris,

France, 2010.

http://dx.doi.org/10.1016/j.energy.2014.02.069
http://dx.doi.org/10.3390/en9110863
https://www.gen-4.org/gif/jcms/c_9373/publications
http://dx.doi.org/10.1016/j.pnucene.2014.12.005
http://dx.doi.org/10.1155/2009/940286
http://dx.doi.org/10.1016/j.anucene.2013.08.002
http://dx.doi.org/10.1002/ente.201600444
http://dx.doi.org/10.13182/NT15-20
www.infociments.fr/telecharger/CM-OA-2010.pdf


Energies 2017, 10, 1445 19 of 19

25. Agence Nationale Pour la Gestion des Déchets Radioactifs (ANDRA). Inventaire National des Matières et des
Déchets Radioactifs; ANDRA: Châtenay-Malabry, France, 2009.

26. Électricité de France (EDF). La Déconstruction de Superphénix du 28/09/2010; EDF: Paris, France, 2010.
27. Lecointe, C.; Lecarpentier, D.; Maupu, V.; Le Boulch, D.; Richard, R. Final Report on Technical Data, Costs and

Life Cycle Inventories of Nuclear Power Plants (Report D14.2-RS 1a). 2007. Available online: http://www.
needs-project.org/2009/Deliverables/RS1a%20D14.2%20Final%20report%20on%20nuclear.pdf (accessed on
19 September 2017).

28. Électricité de France (EDF). Dossier de Presse EDF, Le Projet EPR (European Pressurized Water Reactor) à
Flamanville 3; EDF: Paris, France, 2007.

29. Électricité de France (EDF); AREVA. UK EPR GDA Project—Instruction, Reference Design Configuration,
06/12/2012; EDF; AREVA: Paris, France, 2012.

30. Électricité de France (EDF). Rapport annuel 2012 de Surveillance de l’Environnement-FLAMANVILLE; EDF:
Paris, France, 2012.

31. Poinssot, C.; Gin, S. Long-term Behavior Science: The cornerstone approach for reliably assessing the
long-term performance of nuclear waste. J. Nucl. Mater. 2012, 420, 182–192. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.needs-project.org/2009/Deliverables/RS1a%20D14.2%20Final%20report%20on%20nuclear.pdf
http://www.needs-project.org/2009/Deliverables/RS1a%20D14.2%20Final%20report%20on%20nuclear.pdf
http://dx.doi.org/10.1016/j.jnucmat.2011.09.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Presentation of the Various Scenarios under Study 
	Case Study of a 100% EPR Fleet 
	Theoretical Case Study of a 100% SFR Fleet 

	Presentation of the LCA Methodology and the NELCAS Tool 
	Selection of Key Environmental Indicators 
	Presentation of the NELCAS LCA Tool 

	Presentation of the Environmental Indicators for Potential Future Nuclear Energy Systems 
	The 100% EPR Case Study 
	Environmental Indicators for a 100% SFR Case Study 
	Environmental Indicators for a Case Study of the Am-Sole Recycling in FNR 

	Fuel Cycle Evolutions and Comparison 
	Conclusions 

