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Abstract: Coastal areas are generally characterized by human manufacturing; thus, seismic data
analysis is necessary to characterize the properties of the subsoil, the main purpose of which
is to clarify risk situations. In the case of very shallow water environments, seismic multiple
attenuation becomes a challenge when the reflection of the seafloor is post-critical, so it is not
recorded because of the acquisition parameters. We propose an approach to attenuate the multiples
by using wave equation datuming that does not require the detection of seafloor reflection and avoids
the seafloor reflection prediction and related approximations in the post-critical conditions. Moreover,
this approach allows for the enhancement of higher frequencies, and, consequently, an increase
in resolution, demonstrating that it is a powerful tool to attenuate multiples and reverberations,
especially where other approaches are found to be inefficient. An example of the application of
seismic data acquired in the continental shelf of South Chile is reported.
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1. Introduction

A challenge for seabed industries operating in shallow water is to reduce the risk for the
population living along the coastal area and to clarify the risk situation. In fact, main infrastructures
related to gas and oil exploitation are located in shallow water in close proximity to the coast. It is
clear that a deep knowledge of the seabed and subsoil structures is required for the development of
such infrastructures. The geometry and petrophysical properties of subsoil structures are obtained
from seismic data analysis. In shallow water, the critical point of seismic analysis is the attenuation of
seabed multiples.

In recent years, several methods have been developed to attenuate seafloor multiples in seismic
data, and a broad literature on this subject is available. Schematically, moveout and predictability are
the two properties on which the most used algorithms are based. Algorithms that work in x-t and
tau-p domains are able to separate primaries and multiples if they show different velocities (and thus,
different moveouts). In addition, migration and wave equation approaches have been applied in many
geological contexts to attenuate multiples.

The most-used method is surface-related multiple elimination (SRME), which has been employed
since the pioneering work of Reference [1]. As pointed out by Reference [2], the main advantage of the
SRME method is that it requires no prior information of the subsurface, i.e., the velocity structure or
reflectivity, and it is effective to attenuate water-bottom-related multiples. Another advantage of this
technique is that it works in any geological setting, using only surface data. Thus, this method
is often chosen for multiple attenuation in complex geological settings [3]. On the other hand,
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the SRME method demands high coverage of sources and receivers to give an accurate result. SRME,
though an effective method in deep water demultiple, usually shows limited success in shallow water
situations [4]. In fact, in shallow water environments, problems have been encountered because
the wave-field reconstruction to near offsets is inaccurate. When the offset approaches the distance
where critical reflection occurs, the Normal MoveOut based extrapolation distorts the primaries,
or introduces unwanted energies, such as refractions. So, many efforts have been made to overcome
the disadvantages of the SRME method for shallow water.

In shallow water, short-period multiples have been usually attenuated by using predictive
deconvolution in the x-t or tau-p domains (i.e., [5,6]). However, this approach attenuates all
events with the period close to the water layer, including the primaries and interbed multiples.
In fact, the separation of primaries and multiples can be performed by using Radon transforms,
which are not optimal when complex wave-field propagation occurs in the subsurface; this occurs
mainly because simple functions (parabolic or hyperbolic) do not correctly describe the moveout
of primaries and multiples in such situations [7]. Therefore, the multiple attenuation requires more
sophisticated methods, such as deterministic demultiple methods that design an operator to predict
water layer multiples from the data [8]. The deterministic demultiple method predicts the amplitude
accurately, but struggles with the complex water bottom due to the inaccurate model derived from
the autocorrelation. An inversion-based SRME algorithm to avoid the multiple subtraction from
the data was proposed by Reference [9]. In this instance, the primaries are estimated with the
corresponding multiples to explain the data directly; consequently, the cost could be significantly high.
In addition, model-based methods can be used to handle the near-offset issue properly with limited
prior information, i.e., the Green’s functions of the water bottom [10].

Several authors have proposed a combination of few methods in order to enhance the attenuation
of multiples in shallow water. Recently, an approach that combines the model-based method with the
conventional SRME method to attenuate multiples of broadband data, the so-called shallow-water
multiple elimination (SWME) method, was proposed by Reference [2]. This approach predicts
the multiple model by using a broadband wavelet and proper aperture. The Green’s function is
limited in offset in order to ensure that post-critical energies are not convolved. Two multiple
models from both source- and receiver-sides are adaptively subtracted from the input data with
an enhanced hybrid subtraction method, such that no high-order multiple term is solved explicitly.
After the water-bottom-related amplitude is removed, a conventional SRME is employed to remove
residual surface-related multiples. Finally, a combination of deterministic water-layer demultiple
(as proposed by Reference [11]) and general surface multiple prediction to predict all free-surface
multiples (as proposed by Reference [12]) was suggested by Reference [13]. Following this technique,
the two predictions are subtracted from the data, improving the final result.

Several authors have proposed the usage of the pre-stack depth migration to discriminate coherent
noise in offset gathers (i.e., [14]). For example, in the angle domain, only the primaries are flat as
suggested by Reference [15]. Therefore, they proposed to transform the migrated data in that domain.
Then, the data sorted in angle gathers are mapped using a Radon transform in order to separate
the signal from the noise. Other migration methods use free-surface-related multiples, but most
approaches need to predict multiples (i.e., [16]). In order to avoid multiple prediction, a pre-stack
reverse time migration (RTM) approach that uses the primaries and the free-surface-related multiples
simultaneously can be applied as recently suggested by Reference [17]; in this way, the imaging is
improved in the complex geometry cases. A similar approach was proposed by other authors, such as
Reference [18], obtaining successful results.

In the case of a very shallow water environment, the challenge in multiple attenuation arises
when primary water-bottom reflection is not recorded because acquisition parameters allow for the
detection of only post-critical reflection. When water-bottom reflections are missed, different authors
demonstrated that a good solution to attenuate multiples is to estimate primaries from those
multiples [19,20]. For instance, a multichannel prediction operator can be adopted to estimate the
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water-bottom reflections from the water-layer multiples [21]. Then, the modeled seafloor reflection
is added to the recorded seismic data and the SRME method can be applied to attenuate multiples
(i.e., [22,23]).

Here, we propose an approach to attenuate multiples by using wave equation datuming
(WED; i.e., [24]) that does not require the presence of seafloor reflection and avoids the seafloor
reflection prediction and related approximations in post-critical conditions. Compared with other
methods used in the literature for multiple attenuation, WED allows for the attenuation of incoherent
and coherent noises, and is particularly strong in the case of shallow water environments, independent
of acquisition parameters. Note that there are no restrictions in the case of post-critical water-bottom
reflection. Moreover, this approach allows for the enhancement of higher frequencies, consequently
increasing resolution and the final imaging of the subsoil.

2. Materials and Methods

In this study, we applied our proposed procedure on seismic data acquired in the continental shelf
of South Chile, where the average water depth is about 20 m. This line, located in the Arauco Basin,
was already partially processed by Reference [25] in order to characterize the gas reservoir located in
this area. It is important to notice that gas reservoirs are present in the Arauco Basin. So, it is important
to have a good image of the subsoil in this area in order to preserve the built infrastructures and
evaluate the related risks for the coastal population.

This line was previously acquired by the project “Subduction Processes Off Chile (SPOC)” [25].
The near offset is equal to 150 m, while 120 hydrophones, spaced every 25 m, were used; the shooting
was every 25 m. As already mentioned, the very shallow water is very critical because the bottom
reflection is post-critical. So, we decided to apply WED in order to improve the signal-to-noise ratio,
attenuate multiples, and enhance higher frequencies, so increasing the resolution.

WED is a powerful method that can be used to increase the signal-to-noise ratio and the resolution
of marine and land seismic data. In the terrestrial environment, it has been used to improve the static
corrections on crustal (i.e., [24]) and high resolution (i.e., [26]) seismic data; recently, it was applied
successfully to process S-wave data [27]. In the marine environment, WED was used to process sparse
ocean bottom seismometer (OBS) data for deep crustal prospecting [26]. After WED, shots and OBSs
were relocated at the same datum (sea level), allowing for processing with the use of commercial
software, and improving the final result with respect to the conventional approach.

In essential, WED is based on Kirchhoff integral solution to the scalar wave equation (using both
near-field and far-field terms), as described in the literature [28–31]. It is important to recall that
because of the use of Kirchhoff method, WED cannot be used if amplitude analysis is planned, such as
amplitude versus offset analysis. One of the main requirements of the WED method is a regular
acquisition geometry, i.e., constant distances between receivers and seismic sources. In a marine
environment, this request is almost always satisfied; if not, it is necessary to add shots with zero
traces and/or zero traces if receivers are missed. For details about the practical use of WED,
see References [24,26] and the references therein.

WED was applied first in the common-source domain (moving the receivers to the datum plane;
in our case, 50 m above sea level) and, successively, in the common-receiver domain (moving the shots
to the datum plane; i.e., 50 m above sea level) by using the velocity model obtained from velocity
analysis. Operating on a common-source domain has the effect of extrapolating receivers from sea
level to 50 m above it. Also, because of reciprocity, operating on a common-receiver domain changes
the datum of the source to 50 m above sea level. Basically, WED is a process of upward or downward
continuation of the wave-field between two arbitrarily shaped surfaces. Recalling the main principles
of the theory, we should consider the importance of distinguishing between migration and WED
(e.g., [28–31] and the references therein). WED produces an un-migrated time section at a specified
datum plane; migration involves computing the wave-field at all depths from the wave-field at the
surface. In addition to downward continuation, migration requires the imaging principle. In this
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respect, WED is an ingredient of migration, when we apply migration as a downward-continuation
process. Seismic Unix package, a free software developed at the Colorado School of Mines, and in
particular the code developed by Reference [32], and home codes were used to perform WED.

Before applying WED, we recovered the amplitudes and deleted partial or total noise traces.
Moreover, the mute of the refracted events was applied before WED. Along the analyzed line,
we selected some shots to show the improvement obtained by WED (Figure 1), as will be discussed in
the following section. A band-pass filter was applied to all shots.
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Figure 1. An example of three shot gathers and their amplitude spectra (insets) (panel (A–C)) before
(left panels) and after WED (right panels) along the seismic lines. The black arrows indicate the main
reflections, while the black dotted arrows indicate the attenuated noises as discussed in the text.

3. Discussion

WED is proven to be a very flexible and useful tool to increase the signal-to-noise ratio and,
consequently, improve the seismic imaging in many contexts of geophysics, including shallow water
environments where multiples dominate the record and the water-bottom reflection is post-critical.
In Figure 1, some examples of analyzed shots without and with the application of WED are reported,
while, in the insets, their amplitude spectra are included.

The shots show an improvement of the signal-to-noise ratio with a strong attenuation of the
multiples and the increase of the resolution, as shown on the amplitude spectrum. For example,
in Figure 1A, the reflection at about 500 ms Two Way-Time (TWT), indicated by black arrows, is more
recognizable after the WED application (right panel). In Figure 1B at about 700 ms TWT, it is possible
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to identify the same reflector indicated by black arrows. Moreover, dip events below 1 s TWT,
more evident between channel 21 and 61, are attenuated, and some are indicated by black dotted
arrows. Comparing the two spectra of the shots, it is clear that another advantage of the WED
application is the increase of resolution due to the relative increase of high frequencies. Also in this
case, the multiples are strongly attenuated. The last example (Figure 1C) shows the same results,
i.e., a strong attenuation of the multiples (see black dotted arrows) and an increase of the resolution
highlighted by the amplitude spectra.

In order to show the advantage of this technique, we reported the stack sections without (panel A
in Figure 2) and with (panel B in Figure 2) the application of WED. The strong reflector emerging
westwards at about 500 ms represents the base of late Pliocene-Quaternary deposits, as interpreted in
the literature (i.e., [33]). This reflector is affected by reverse faults, as confirmed by different authors
(i.e., [33]).
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Figure 2. Stack section without (panel (A)) and with (panel (B)) the application of WED.

The comparison of the two stack sections shows that the reflector associated with the
Pliocene-Quaternary deposits is better resolved in panel B. Moreover, the faults affecting the reflector
and their trends are better imaged. In the shallow portion of the stack section in panel A, it is not
possible to recognize reflections because the presence of multiples related to the seafloor. On the
contrary, on the stack section in panel B, it is possible to clearly recognize some reflections because
multiples are strongly attenuated by the WED.

Below the base of late Pliocene-Quaternary deposits, the multiples are strongly attenuated, so it is
possible to recognize the reflections related to deeper deposits. In conclusion, WED is a powerful tool to
attenuate multiples and reverberations, especially where other approaches are found to be inefficient.

4. Conclusions

In this paper, we demonstrated that WED is a very flexible method that can be used in many
contexts to attenuate incoherent and coherent noises. In fact, it can be applied successfully not only
to land or OBS data, as demonstrated in the literature (i.e., [24,26]), but also in the case of marine
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seismic data. It is worth underlining that one of the main requirements of WED (i.e., constant distances
between receivers and seismic sources) is satisfied in this last case. In this paper, we analyzed seismic
data acquired in very shallow water, considering a case when primary water-bottom reflection was
not recorded because the reflection was post-critical due to the acquisition parameters. In conclusion,
WED gives good results, allowing for a better interpretation and better imaging of the subsoil.
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