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Abstract: In order to simultaneously obtain global optimal model structure and coefficients, this paper
proposes a novel Wiener model to identify the dynamic and static behavior of a gas turbine engine.
An improved kernel extreme learning machine is presented to build up a bank of self-tuning
block-oriented Wiener models; the time constant values of linear dynamic element in Wiener model
are designed to tune engine operating conditions. Reduced-dimension matrix inversion incorporated
with the fast leave one out cross validation strategy is utilized to decrease computational time for
the selection of engine model feature parameters. An optimization algorithm is no longer needed
compared to the former method. The contribution of this study is that a more convenient and
appropriate methodology is developed to describe aircraft engine thermodynamic behavior during
its static and dynamic operations. The methodology is evaluated in terms of computational efforts,
dynamic and static estimation accuracy through a case study involving data that are generated by
general aircraft engine simulation. The results confirm our viewpoints in this paper.

Keywords: gas turbine engine; system identification; block-oriented model; kernel extreme learning
machine; reduced-matrix inversion

1. Introduction

Gas turbines are complicated thermodynamic machines and widely used as the power supply
for commercial and military planes. The modeling and simulation of aircraft engines is a general
methodology for optimization of design, performance and maintenance [1,2]. The engine operating
parameters such as speed, pressure, temperature along the engine flow path are separately measured
by the full authority digital electric control (FADEC) and engine monitoring unit (EMU) for control
and health management [3,4]. An accurate on-board model is capable of providing real-time realistic
estimations of aircraft engine operating parameters. The unmeasurable state parameters representing
the health condition of engine modules can be calculated from the residuals between the real
measurements of these operating parameters and their predicted values from an on-board engine
model [5–7]. In addition, the engine model provides a redundancy channel of operating parameters [8].
For sensor fault tolerant control, this channel value can replace a faulty sensor signal used for feedback
control [9,10]. An engine model with real-time performance and high confidence of both dynamic and
static behavior becomes a key factor in aircraft control methodology and is of great interest.

There are two groups of engine models: physics-based and data-based models. The former
models are established using information about the engine physics, such as characteristic maps,
thermodynamic relationships, mass, momentum and energy balance [11,12]. Numerous studies
have been conducted on the development of these aero-thermodynamic engine models, such as
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Gas turbine Simulation Program (GSP) [13], GasTurb [14], Commercial Modular Aero-Propulsion
System Simulation (CMPASS) [15], Numerical Propulsion System Simulation (NPSS) [16] and GGTS
(general aircraft simulation) [17] on software platforms of C++ 6.0, JAVA 5, MATHEMATICA 8.0 and
Simulink/MATLAB 6.0. The physics-based models sufficiently describe the engine static and dynamic
behavior, but there are drawbacks; performance is easily affected by the engine component maps and
empirical parameters from extensive testing, and the computational efforts are relatively serious [18].
Linearization is introduced to achieve a real-time engine model because of computational complexity
and the time consumption of the aero-thermodynamic model.

The data-based models directly disclose the relationships between engine inputs and outputs
derived from the sensed operating data by mathematical tools. The data-based model parameters
or the functions between the inputs and outputs fit in-service operating data, but do not rely on
any physical concepts of the aircraft engine. Machine learning algorithms [19,20] and polynomial
regressions [21] are well known mathematical approaches to depict the engine static and dynamic
operating process in the data-based modeling field. Polynomial regression has a simpler structure and
less modeling parameters to determine to describe an aircraft’s behavior [5,21]. The machine learning
methods such as neural network (NN) and support vector machine (SVM) can be used for complex
multiple-output system modeling [22,23], while the regression method is limited to single-output
system modeling.

The block-oriented nonlinear model is one of the data-based modeling methods and has had more
attention due to its simplicity and clear structure [24,25]. These models have both linear and nonlinear
parts; the nonlinear static part is usually assumed continuous and differentiable. The block-oriented
model parameters are identified by the polynomial regression method [24]. A number of attempts
have been made to simplify model structure parameters of linear/nonlinear elements and employ
appropriate parameterization methods to improve estimation accuracy and reduce computational
costs [26]. Recently, an enhanced Wiener model (WM) method integrated the NN and optimization
algorithms performed on the gray-box assumption [25], and adapted some linear dynamic coefficients
to operating conditions to better describe the engine model.

This article proposes a novel block-oriented nonlinear model based on a bank of self-tuning
WMs (SWMs) using fast kernel extreme learning machine (FKELM), and performance comparisons
to predict engine operating parameters are carried out. The proposed engine model consists of four
adaptive linear dynamic parts related to each nonlinear static element by a proper aero-thermodynamic
correlation, and it represents the engine static and dynamic behavior in the form of a single input and
multiple outputs (SIMO) system. Each linear dynamic part is reduced to a first-order inertia section,
and the time constant values are tuned to the engine operating state. The goal of the innovation in the
FKELM is to obtain appropriate model feature parameters, including kernel parameters of KELM and
block-oriented regression factors with less running time. The following research is undertaken by the
authors at Nanjing University of Aeronautics and Astronautics, China in collaboration with the lab at
the University of Toronto, Canada. The simulations prove that this methodology is superior to the
existing methods in terms of representing static and dynamic behavior of an engine.

The paper is organized as follows: Section 2 presents the self-tuning Wiener model with block
structure and the improved KELM algorithm for SWM. The bank of SWMs is designed, and it is
employed to model aircraft engine identification in Section 3. In Section 4, simulation and analysis
indicate the improved performance of the proposed methodology with regards to estimation accuracy
and computational time. Section 5 draws conclusions and discusses future research directions.

2. Self-Tuning Wiener Model

2.1. Block-Oriented Self-Tuning Wiener Model

Block-oriented models were first proposed by Narenda, and have been extensively applied
to complex nonlinear systems [27]. Linear and nonlinear parts interconnect to form an open-loop
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single branch block-structure model; it makes the description of the dynamic and static behavior
easy [24]. There are three kinds of these block-oriented models, including Hammerstein, Wiener and
Wiener-Hammerstein models [28].

The number of blocks in Wiener-Hammerstein is relatively large, and data to determine the
model parameters of the superimposed model are hard to produce [29]. A Hammerstein model is
often used as an approximate expression for a system where nonlinearity only resulted from the
change of direct-current gain with input amplitude; this model cannot depict aircraft engine operating
process due to the engine dynamics distinctly varied with the input amplitude. Compared to the
Hammerstein model, the Wiener model can show variations of dynamic behavior for different input
amplitudes. The Wiener model has a simpler structure than the Wiener-Hammerstein model, and it
requires fewer model parameters to be computed. Hence, the Wiener model is used to depict engine
dynamic behavior varying with operating conditions and is recommended for engine identification.

The identification of the nonlinear static part in a Wiener model can be determined from the
steady-state relationship of the aircraft engine. The aero-thermodynamic operating data includes
engine physical spool speed, capacity flow, total temperature and total pressure. The dynamic
relationships of these operating data are generally simplified in a first-order delay [6,30]. Therefore,
the linear dynamic block of the Wiener model is expressed in an inertial element of a transfer function:

Gi(s) =
1

τis + 1
(1)

where the coefficient in this linear dynamic part is the time constant τ of the first-order inertial element,
and i represents the i-th linear dynamic part related to the i-th engine model output. For the nonlinear
static element of Wiener models, it is the nonlinear expression y = f (v). The nonlinear static part related
to the nonlinear relationship of the engine operating input- output is represented by a lookup table.

The linear dynamic part is employed to depict system dynamic behavior in a Wiener model;
the time constant τ of the transfer function Equation (1) is unchanged. However, previous experimental
results on gas turbines show that the time constant of a first-order lag for the operating data varies with
different engine operations. This model does not have enough tunable parameters to represent
engine dynamic characteristics, and it is difficult to meet the requirements of engine dynamic
accuracy. Therefore, a self-tuning Wiener model approach is introduced to modify the transfer function
coefficients of the linear dynamic block to system operating conditions to improve flexibility and
estimation accuracy of the Wiener model.

The engine spool speeds, low-pressure spool speed and high-pressure spool speed, are the
important parameters that represent the engine operating state and are added as regression variables
in the NARX (nonlinear auto-regressive exogenous input) model to describe varying time constants of
the nonlinear feature:

τ(t) = F(Y(t− 1), . . . , Y(t− nb), τ(t− 1), . . . , τ(t− na), NH(t− 1), NL(t− 1)) (2)

where Y is the engine operating data to be estimated, and the regression factors na and nb are the
count of output and input terms. NL and NH are high pressure spool speed and low pressure spool
speed, which are defined as the relative regression variable. The time constant can be adaptive to
the engine operations to improve the dynamic description of the engine nonlinearity in Equation (2).
In this aspect, a learning machine (LM) is introduced to perform this NARX in self-tuning WM (SWM).
Figure 1 shows the training schematic of the self-tuning Wiener model; UD indicates unit delay and
Wf is fuel flow.
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Figure 1. The training schematic of self-tuning Wiener model related to one examined engine output. 
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Figure 1. The training schematic of self-tuning Wiener model related to one examined engine output.

The sample interval of the nonlinear static part is 0.02 s with the form of the lookup table.
The regression factors na and nb determining the model structure have an important impact on the
performance of engine identification except for the type of nonlinear estimator [31]. The Enhanced
Wiener Model (EWM) is developed to identify system for a two-shaft industrial gas turbine in [25],
and the regression factors of the LM estimator embedded in the WM are calculated by trial and error.
However, a systematic method to obtain the structure parameters of these Wiener models, especially
in aircraft engine applications, has not been presented due to the problem-specific nature.

In this paper, the GA-KELM is first extended from the EWM framework, where the genetic
algorithm (GA) as a well-known optimization technique is combined with the KELM. The regressor
factors of GA-KELM are gained by trial, and it has the similar training schematic as the EWM. It is
noted that both the invasive weed optimization (IWO) and GA are the population-based optimization
algorithms, and it is hard to reach a steady global optimal result in every searching calculation due to
their stochastic nature. The optimization process needs to be performed several times to generate the
appropriate result. In addition, the optimization algorithm used to tune the LM model parameters
like weighting vector and biases consumes large time. With regards to computational efforts, static
and dynamic estimation accuracy, a novel KELM especially for the SWM is proposed without use of
population-based optimization techniques.

2.2. Improved KELM for Self-Tuning Wiener Model

Neural networks play an important role in machine learning field and have been widely applied
in engineering. In the last decade, the ELM algorithm is developed by Huang from the NN [32].
The input weight and biases related to ELM hidden layer nodes are randomly generated, and thus less
model parameters to be calculated leads to much faster learning speed. The kernel function mapping
from input space to feature space by the kernel transformation is then introduced into the ELM to form
the KELM, and it brings better steady calculation [33].

Given N samples {(xi, yi)|i = 1, 2, . . . , N} , wherein xi = [xi1, xi2, . . . , xin]
T ∈ Rn is the input and

yi is the output. The learning problem is to search an optimal function F : xi → yi , and it is presented
by F(xi) ≈ yi. Once the number of hidden layer node is L, the function F is expressed as:

F(xi) =
L

∑
j=1

β jg(aj · xi + bj) i = 1, 2, . . . , N (3)
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where aj = [a1j, a2j, . . . , anj]T is the input weighting vector between the j-th hidden and input nodes,
bj is the bias of the j-th hidden node, βj is the output weighting vector between the j-th hidden and
output nodes. The expression ajxi indicates the vector inner product and g( ) is activation function of
hidden layer node.

A regularization factor C referred to SVM algorithm [33] is to produce a new risk functional
R = ||β|| + C||Hβ − y||, and thus the learning problem is:

min
β

1
2‖β‖

2
2 +

C
2

N
∑

i=1
ε2

i

s.t. hT(xi)β = yi − εi, i = 1, 2, . . . , N
(4)

The factor C is the weight assignment of empirical risk and structural risk. The slack variable
εi implies the differences between the predicted and actual value. The optimal output weight of
Equation (4) is

β = HT
(

1
C IN + HHT

)−1
y

H(ai, . . . , aL, bi, . . . bL) =

 g(a1
Tx1 + b1) . . . g(aL

Tx1 + bL)
... . . .

...
g(a1

TxN + b1) . . . g(aL
TxN + bL)


N×L

(5)

Compared to the ELM, the KELM adds a regularization term IN/C. In addition, the kernel
transformation k(xi, xj) replaces an explicit expression in the input space of the ELM.

K = HHT : Ki,j = h(xi) · h
(
xj
)
= k

(
xi, xj)

k(xi, xj) = exp(−γ‖xi − xj‖2)
(6)

where the kernel parameter γ indicates the kernel distribution width. The output function in
Equation (3) can be calculated

F(x) = hT(x)β = hT(x)HT( 1
C IN + HHT)−1y

=

 k(x, x1)
...
k(x, xN)


T(

1
C IN + K

)−1
y = k(x)α

α =
(

1
C IN + K

)−1
y

(7)

where α is the KELM output weight. The detailed KELM algorithm can be referred to [34].
The model feature parameters such as regressor factors and KELM kernel parameter γ should be

given before the SWM implementation in engine model, which the keys to affecting SWM performance.
Some Cross validation methods are employed to select these parameters, which essentially include
hold-out, K-cross validation (KC) and leave one out cross validation (LOOC) methods. Among
the methods above, the LOOC brings a better generalization performance, but computational time
dramatically increases in the case of a large dataset [35].

For this purpose, an FKELM method is put forward where Fast LOOC is to improve the
computational efforts in the framework of KELM theory. This methodology relies on block matrix
inversion and the LOOC strategy. Provided the effects of p-th training sample is neglected, the estimate
ỹp and weighting vector αp of output can be written as:

ỹp = Fp(x) = F(x) =
L
∑

j=1
β jg(αj · x + bj) = k(x)αp p = 1, · · · , N

αp = Ap
−1Y

(8)
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where Ap is the one-dimension simplified matrix compared to original matrix A, and it is that the
p-th column elements of A are zero but the p-th row element in this column invariant. That is to
say, the contribution of the p-th sample to KELM output weighting vector can be almost neglected.
The expression of these two matrices are given:

A =



a11 · · · a1p · · · a1N
...

...
...

...
...

ap1 · · · app · · · apN
...

...
...

...
...

aN1 · · · aNp · · · aNN


Ap =



a11 · · · 0 · · · a1N
...

...
...

...
...

ap1 · · · app · · · apN
...

...
...

...
...

aN1 · · · 0 · · · aNN


(9)

Define two vectors u = [a1p, . . . ,a(p-1)p,0,a(p + 1)p, . . . ,aNp]T and v = [0, . . . ,0,−1,0, . . . ,0]T. The p-th
element of v is −1, and the p-th element of u is 0. We can obtain the following expression:

Ap = A + uvT (10)

The Sherman-Morrison-Woodbury equation is introduced:

(
A + uvT)

−1
= A−1 − A−1uvTA−1

1 + vTA−1u
(11)

The Equation (8) can be rewritten as follows using the conclusions of Equations (10) and (11):

αp = (A−1 − A−1uvTA−1

1 + vTA−1u
)Y = α− A−1uvTA−1Y

1 + vTA−1u
(12)

Furthermore, we can obtain the following two equations:

1 + vTA−1u = appapp (13)

A−1uvTA−1Y = Lappα(p) (14)

where the vector L = [a1p, a2p, . . . , (app · app − 1)/app, . . . aNp]
T , and aip(i = 1, 2, . . . , N) is the

corresponding subscript element of A−1. α(p) is the p-th element of α, and the simplified output
weight is calculated:

αp = α− Lα(p)
app

(15)

Therefore, the inverse of simplified output weight vector can be reached directly by Equation (15),
and no additional calculation about matrix inversion is needed. It implies that the number of inversion
calculation can be reduced from N to 1, and the FKELM is obtained from the KELM combined with
FLOOC (Fast LOOC) validation method. As we know, the matrix inversion calculation occupies the
most calculation time, the reduction of matrix inversion count save lots of computational time in the
training phase. It leads to greatly less computational efforts for selection of feature parameters by the
FKELM. The detailed steps of this methodology are presented as follows:

Step 1: Initialize model parameters, Let p = 1; Empirically produce a set of M candidates including
the regressor factors na, nb, and kernel parameter γ; Select the KELM feature parameter
combination (na, nb, γ)k from candidate set, and k = 1.

Step 2: Train the KELM using N samples to generate the matrices A and A−1 with full dimensions
as the KELM parameter combination (na, nb, γ)k.

Step 3: Calculate the simplified output weight vector αp by Equation (15) and ỹp by Equation (8).
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Step 4: If p < N, then p = p + 1 and return to step 3; otherwise, compute the generalization
performance index of KELM: align

RMSEk =

√√√√√ N
∑

p=1
(yp − ỹp)

2

N
(16)

Step 5: If k < M, then k = k + 1 and go back to step 2; otherwise, stop the procedure and select the
optimal KELM feature parameter combination (na, nb, γ) and the output weight vector α
who has the minimum value of RMSEk.

The FKELM is used as the regression estimator to tune the model coefficients of linear dynamic
part to engine operation for the SWM. The optimal model feature parameters and output weight in
the SWM framework is obtained by the FKELM, and population-based optimization algorithm is no
longer needed as the EWM.

3. Aircraft Engine Identification by Self-Tuning Wiener Models

The proposed methodology is tested on a virtual aircraft engine created from GGTS that is based
on thermodynamic physical theory and with the architecture of engine component level model [11,36].
The GGTS is similar to CMAPSS, which is not available to Chinese now. GGTS provides various kinds
of aircraft engine model, like turbojet, turbofan and turboshaft engine model and their simulation
data, which has been well used in aviation industry corporation of China. The engine component
characteristic maps and design operation data are loaded to GGTS to create a turbofan engine model
(TEM) [14,37], which is coded using C language and packaged with a dynamic link library (DLL) for
simulation in Matlab environment.

The TEM produces engine-sensed data comprising of snapshot measurements for dynamic
behavior collected around design point. The available instrumentation at design operation is reported
in Table 1, where the first four measurements define the engine operation and the rest flow path sensors
could be used for FADEC or EMU. The examined engine operates at the condition of the International
Standard Atmosphere (ISA).

A bank of self-tuning Wiener models is employed to identify the engine instead of conventionally
a single stochastic model. There are one input (Wf ) and four outputs (NL, NH, W3, and Exhaust
Gas Temperature (EGT)) considered in the examined engine model. The variables like H, Ma and
atmosphere condition are not included in the model inputs as in the International Standard Atmosphere
condition at ground. Thus this engine model is a SIMO system, and consists of four SWMs related to
four outputs. Each SWM is developed based on the blocked-oriented Wiener model, time constant of
which is self-tuned to operating conditions by the FKELM. Figure 2 shows a bank of SWMs for low
bypass ratio aircraft engine.

Table 1. Design point specifications of the examined engine.

Label Description Value

H Altitude 0 m
Ma Mach number 0
Wf Fuel flow 2.48 kg/s
A8 Throttle area 0.2597 m2

NL Physical low pressure spool speed 10,302 r/min
NH Physical high pressure spool speed 13,340 r/min
W3 Air flow 75.6594 kg/s

EGT Exhaust gas temperature 1157.34 K
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Aircraft engine spool speeds NL and NH are the most important parameters representing its
operating state [36]. Besides, the nature of speed sensors installed in the engine is high accuracy
and quick response, and there is far less time lag than flow and temperature sensors. Hence, the
last step of spool speeds act as the regression inputs not only for the speed SWMs themselves but
also for the SWMs of W3 and EGT. The fuel air ratio (FAR) is employed as the input for the SWM of
EGT, which is different from the other SWMs using Wf. The FAR serves as control variable of the
speed control loop in the FADEC, which can effectively reduce engine surge probability and lead to
change the specific exhaust gas emissions. Hence, FAR is recognized as one of the inputs in the EGT
SWM. The Quasi-amplitude-modulated pseudo random binary sequence (APRBS) data is loaded to
learn each SWM [38], which is developed from a well-used excitation signal for nonlinear system
identification [39].
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Figure 2. The bank of self-tuning Wiener models for the examined engine.

The procedure schematic to engine identification by the proposed methodology is presented
in Figure 3. The TEM is to generate the data for both of training and testing, which is developed
from GGTS using the design point data and component maps. The training data are excited using
Quasi-APRBS to the TEM, and then sorted and removes one sample out to obtain yp for training each
FKELM. The initial combinations of model feature parameters are fed into each FKELM corresponding
to its SWM to obtain the optimal model structure, kernel parameter and output weighting vector.
The linear dynamic element with tuned time constant and the nonlinear static part are together formed
the SWM related to each model output. Then the identified engine model represented by the bank of
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SWMs is created based on the integration of four SWMs as given in Figure 2. In the testing process,
the test data brought from the TEM is to evaluate performance of the established engine model.Energies 2017, 10, 1363 9 of 17 
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Figure 3. The procedure schematic of the methodology for aircraft engine identification.

4. Simulation and Analysis

4.1. FKELM Performance Evaluation

The FKELM is compared against LOOC-KELM and KC-KELM [36] in this section. The involved
algorithms run in Matlab Software R2016b, and the computer hardware used for simulation is
configured as follows: CPU i3-550 @ 3.20 GHz and RAM 4GB. The computational efforts of three
cross validation methods are first assessed using the benchmark data set of “sinc”. The expression of
artificial data set “sinc” is:

f (x) =

{
sin x/x, x 6= 0

1, x = 0
(17)

There are M training samples generated in the range of (−10, 10), and the scales of these samples
are separately 500, 1000, 1500, 2000, 2500, 3000. The regularization factor C is 0.5. Table 2 gives the
computational efforts comparisons of the three methods. We can see that the computational time of
LOOC is 0.75 s as data size 500 and 277.29 s as size 3000, and it adds evidently as dataset scale increases.
Both of the FLOOC and KC consume less time than the LOOC especially in large data size cases, while
the FLOOC is about half of that of KC in all cases. Hence, the FLOOC method is the best one for fast
computational evaluation in the large scale dataset.

Table 2. The computational efforts of three cross validation method to benchmark dataset “sinc” (s).

Method 500 1000 1500 2000 2500 3000

LOOC 0.7491 7.7227 33.8026 74.1476 151.0138 277.2857
KC 0.1641 0.7006 3.1656 2.9968 5.1389 8.0324

FLOOC 0.0851 0.2268 1.2960 1.4037 2.5874 3.8879

The generalization performance of proposed FKELM is compared with those of LOOC-KELM
and KC-KELM using two benchmark datasets “Boston housing” and “Abalone”, which are taken from
UCI Machine Learning Repository. The sample scales of the “Boston housing” and “Abalone” are
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separately 455 and 1000, and the data are normalized to the range of [−1, 1]. Two kernel functions,
namely Gaussian kernel in Equation (6) and asymptotic kernel in Equation (18) [34], are discussed:

k(x, y) =
2
π

arcsin
1+ < x, y >√

(1/γ2 + 1+ < x, x >)(1/γ2 + 1+ < y, y >)
(18)

The kernel parameter γ are empirically selected 10−2, 10−1, 100, 101 and 102. The RMSE used as
generalized performance indices of these KELM algorithms defined by Equation (16), and the results
are shown in Table 3.

Table 3. The RMSE of various KELMs to benchmark dataset “Boston housing” and “Abalone”.

Dataset γ Gaussian Kernel Asymptotic Kernel

LOOC-KELM KC-KELM FKELM LOOC-KELM KC-KELM FKELM

Boston housing

10−2 0.41620 0.43200 0.45100 0.20877 0.19978 0.22111
10−1 0.26079 0.37001 0.27346 0.10276 0.11424 0.11406
100 0.09068 0.16412 0.09078 0.08604 0.10308 0.07717
101 0.07475 0.10137 0.07676 0.07375 0.10302 0.07170
102 0.10673 0.11301 0.10885 0.07493 0.10328 0.07259

Abalone

10−2 0.26021 0.26153 0.26066 0.17534 0.18383 0.18874
10−1 0.12178 0.12364 0.11851 0.09174 0.09939 0.09623
100 0.09149 0.09912 0.09316 0.08744 0.09720 0.09188
101 0.08934 0.09720 0.09218 0.08961 0.09930 0.09215
102 0.09441 0.09888 0.09493 0.09367 0.09941 0.09308

In Table 3, the RMSE of LOOC-KELM is 0.07475 and the minimum in the case of the dataset
“Boston housing” when the Gaussian kernel γ is 10. The minimal RMSE in the same dataset is also
generated as the Asymptotic kernel γ = 10. The KC-KELM and FKELM produce the minimal RMSEs as
γ = 10 as the Gaussian and Asymptotic kernel used. As was mentioned earlier, LOOC-KELM has the
best generalization performance once the number of train sample being infinite, and the FKELM is an
approximate to LOOC-KELM whose p-th row element effect to inversed matrix is ignored. The RMSE
by FKELM is much closer to that by LOOC-KELM compared to KC-KELM. In the benchmark dataset
“Abalone”, the similar conclusion can be gained. Consequently, the proposed FKELM is the best
choice among the examined KELM algorithms in terms to the computational efforts and generalized
performance, and it will be applied to tune the linear dynamic part of SWM.

4.2. Engine Identification Application of the Methodology

Aircraft engine dynamic and static behavior is identified by the self-tuning Wiener model (FSWM),
and the dynamic performance of the FKELM self-tuning Wiener model (FSWM) is compared to the
WM, NN-WM, EWM and GA-SWM, while the static performance of FSWM is tested against the
NN. The basic WM has the fixed time constant of linear dynamic part. The NN-WM has the similar
architecture as the EWM, and the difference is that the EWM parameters is adjusted by the IWO
algorithm but no optimization algorithm is employed to tune those of the NN-WM in training phase.
The design parameters of the involved algorithms are given as [25]. The FKELM and basic KELM are
separately used as regression estimators to yield the time constant of linear dynamic element in FSWM
and GA-SWM, and the GA is no longer to tune the model parameters for the FSWM which is different
from the GA-SWM.

The fuel flow is generated using Quasi-APRBS, and flown into the TEM to produce the I/O data
for engine identification given in Figure 4. The input data are given in the first plot and the output
data in the rest plots in Figure 4. Wf change context is from 0.55 to 1, and the dwell time is randomly
selected between 10 and 24.
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Figure 4. The input and output data from TEM for aircraft engine identification.

The Quasi-APRBS engine data totally 1000 s are divided into two subsets, which are the former
800 s for training samples and the remaining 200 s for testing samples. The performance evaluation
function of the engine models for the purpose to search the optimal structure parameters is given:

J =
(

1
w1+w2

)(
w1

(|PC|)−1

N1
+ w2

EPmax
N2

)
PC =

(
1− ‖Y−Ŷ‖

‖Y−Y‖

)
× 100

EPmax = max
1≤i≤D

(∣∣∣Y(i)−Ŷ(i)
Y(i)

∣∣∣× 100
)

EPmean =
D
∑

i=1

(∣∣∣Y(i)−Ŷ(i)
Y(i)

∣∣∣× 100
)

/D

(19)

where the PC is percentage of compliance, EPmax is maximum error percentage, EPmean is mean error
percentage, and D is Y dimension. The weighting coefficient wi determines the contribution of different
error indices (PC and EPmax) to the objective function, and w1 and w2 are 0.5 in this study. Two vectors
Y and Ŷ are separately the desired and estimated of the engine outputs, and Y is the mean of vector Y.

The optimal estimator regressor factors na, nb of the NNWM, EWM, GA-SWM are calculated with
the minimal evaluation function as Equation (19) by several tries. The number of regressor factors
na and nb are separately changed in the intervals [1, 5] and [0, 5] by 1. The specification results of
the optimal structure for different Wiener models are reported in Table 4, and the basic WM is not
included because of no regression estimator used. It is noted that the FSWM structure parameters are
obtained in the FKELM training phase, and at the same time the output weighting vector and kernel
parameter are gained. In the FKELM training process, the evaluation function Equation (19) replaces
Equation (16) as new generalization performance index. The kernel parameter varies in an interval as
given in Section 4.1.

Table 4. Specifications of the optimal structure for Wiener models.

Model Type
Number of Regressors (na, nb)

NL NH W3 EGT

NN-WM (1, 1) (1, 1) (1, 2) (0, 2)
EWM (1, 1) (1, 1) (1, 1) (0, 2)

GA-SWM (1, 1) (1, 2) (1, 1) (0, 2)
FSWM (1, 1) (1, 2) (1, 2) (1, 1)
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The time constant of linear dynamic part in each SWM is continuously varied with aircraft engine
operations, which are presented in Figure 5. The time constant variation indicates that the tunable
dynamic characteristics in the linear part make the block-oriented Wiener model more flexible.
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Table 5 gives the dynamic performances of five model identification methods against the training
and testing data with regards to the performance indices (PC, EPmax, EPmean, Ttrain and Ttest).

Table 5. The dynamic performance indices of train and test mode by five Wiener models.

Outputs Methods
Train Mode Test Mode

PC % EPmean % EPmax % Ttrain (s) PC % EPmean % EPmax % Ttest (s)

NL

WM 89.3425 1.2931 3.1574 6.5430 89.1452 1.3952 4.6521 0.0666
NN-WM 91.6513 0.7611 3.2982 13.6896 91.0735 0.8211 3.3837 0.0980

EWM 91.8945 0.6088 3.5432 25.4344 91.5883 0.6401 3.5615 0.1830
GA-SWM 92.1245 0.5042 2.3628 19.5433 91.9654 0.5942 2.5627 0.0790

FSWM 92.0860 0.4948 2.4983 12.5448 92.9837 0.5401 2.5875 0.0772

NH

WM 91.5461 0.1288 1.3294 6.8910 91.5142 0.2547 1.9017 0.0762
NN-WM 92.8771 0.1093 1.0712 13.8384 92.0011 0.3223 1.4396 0.0991

EWM 93.1091 0.0412 0.9093 26.0196 92.7981 0.2198 1.3015 0.1855
GA-SWM 93.2503 0.0461 0.8872 20.3589 93.0218 0.2021 1.0637 0.0903

FSWM 93.3025 0.0485 0.9016 13.0118 92.9824 0.1977 1.1174 0.0896

W3

WM 91.3657 1.8426 3.1154 7.0230 90.7521 2.3594 5.4214 0.0649
NN-WM 94.1293 1.4875 3.5860 14.0188 93.3703 2.3100 4.8191 0.0973

EWM 94.4033 1.2421 3.0077 25.8054 93.1342 1.9801 4.8994 0.1896
GA-SWM 95.4259 1.2543 2.6931 19.7997 94.6555 1.8224 4.2287 0.0815

FSWM 95.3912 1.2104 2.8706 12.3192 94.7123 1.8753 4.0411 0.0797

EGT

WM 89.5422 2.5423 6.3922 6.5970 88.2763 3.2452 7.4682 0.0674
NN-WM 90.3145 1.5593 4.7812 14.1670 89.8872 1.8557 5.9163 0.0986

EWM 90.6713 1.2431 4.0913 26.0361 90.2201 1.7411 5.0617 0.1879
GA-SWM 91.1222 1.2933 3.7534 20.1074 90.1244 1.8875 4.9018 0.0833

FSWM 91.0479 1.2706 3.7921 13.0536 90.1975 1.9452 4.9533 0.0819
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The Wiener models with tuned time constant have obviously better estimation accuracy than
the basic WM from three former indices in Table 5. The block-oriented Wiener model using
KELM including GA-SWM and FSWM, have superior estimation accuracy to NNWM and EWM.
The GA-SWM and FSWM have almost the same dynamic estimation performance.

When computational efforts are concerned, WM’s train time is the least, and the same conclusion
is to the test time. There are no regression estimator parameters to be tried or trained in the basic
WM. The FSWM is the best one among four Wiener models with tuned time constant. All FSWM
parameters are generated in training stage of FKELM, and no optimization algorithm is involved.
In the FSWM, the model feature parameters selection and FKELM output weight vector tuning are
not stepwise performed. These indicate that the proposed FSWM strategy is an effective way to gain
system parameters.

The NN performance indices are not presented, since the conclusion that NN’s dynamic estimation
performance inferior to EWM had been proved in [25]. The averages of engine model outputs in terms
to three indices (PC, EPmax, and EPmean) are shown in Figure 6, where PC is defined by PC = 1− PC.
The Wiener models with tuned time constant have obviously less estimation error percentage than the
basic WM both in the train mode and test mode as seen from Figure 6.
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The steady estimation error is another key index to evaluate performance of proposed modeling 
approach. Fifteen operating points above the idle condition are used, at which the steady errors are 
calculated. Figure 7 gives the steady estimation errors of the NN and block-structured FSWM 
methods. The FSWM brings few steady errors while NN produces maximum errors close to 3% for 
NL, NH, W3, and EGT estimation around the idle from Figure 7. The NN’s steady error approaches to 
that of FSWM at the engine operation near design point. 

Figure 6. Comparisons of five Wiener models using the average performance indices: (a) Train mode;
(b) Test mode.

The steady estimation error is another key index to evaluate performance of proposed modeling
approach. Fifteen operating points above the idle condition are used, at which the steady errors are
calculated. Figure 7 gives the steady estimation errors of the NN and block-structured FSWM methods.
The FSWM brings few steady errors while NN produces maximum errors close to 3% for NL, NH, W3,
and EGT estimation around the idle from Figure 7. The NN’s steady error approaches to that of FSWM
at the engine operation near design point.

The basic WM and other tunable Wiener models developed on the basis of block structure, which
have nonlinear static part to represent static behavior. Hence, the block-oriented Wiener models have
almost the same steady performance, and only FSWM is given to compare the NN in Figure 7.
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Figure 7. The steady error comparisons of identified engine model between the NN and FSWM: (a) NL;
(b) NH; (c) W3; (d) EGT.

Since the identified engine model is a SIMO system, it runs with an architecture of the bank of
SWMs. In order to further evaluate the engine model identified by FSWM, the static and dynamic
behavior joint tests are carried out. The time constant of all linear dynamic elements are simultaneously
modified by regression estimator. Figure 8 indicates a more detailed FSWM performance compared
to the EWM for the NL, NH, W3 and EGT estimation, and the simulation time is 200 s on the joint
test. The engine models identified by both of the EWM and FSWM have acceptance agreement with
the target TEM. Compared to the EWM, the model outputs by the FSWM is more close to the TEM
outputs in Figure 8. It indicates that the FSWM produces less modeling errors, and the FSWM has
better dynamic estimation accuracy than the EWM. The FSWM produces similar steady estimation
accuracy as the EWM, and it coincides with the previous ones in module tests.
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Figure 7. The steady error comparisons of identified engine model between the NN and FSWM:  
(a) NL; (b) NH; (c) W3; (d) EGT. 

The basic WM and other tunable Wiener models developed on the basis of block structure, which 
have nonlinear static part to represent static behavior. Hence, the block-oriented Wiener models have 
almost the same steady performance, and only FSWM is given to compare the NN in Figure 7. 

Since the identified engine model is a SIMO system, it runs with an architecture of the bank of 
SWMs. In order to further evaluate the engine model identified by FSWM, the static and dynamic 
behavior joint tests are carried out. The time constant of all linear dynamic elements are 
simultaneously modified by regression estimator. Figure 8 indicates a more detailed FSWM 
performance compared to the EWM for the NL, NH, W3 and EGT estimation, and the simulation time 
is 200 s on the joint test. The engine models identified by both of the EWM and FSWM have 
acceptance agreement with the target TEM. Compared to the EWM, the model outputs by the FSWM 
is more close to the TEM outputs in Figure 8. It indicates that the FSWM produces less modeling 
errors, and the FSWM has better dynamic estimation accuracy than the EWM. The FSWM produces 
similar steady estimation accuracy as the EWM, and it coincides with the previous ones in module 
tests. 

0 50 100 150 200
0.80

0.84

0.88

0.92

0.96

1.00  TEM
 EWM
 FSWM
 EWM error
 FSWM error

t/s

N
L

-0.02

0.00

0.02

0.04

0.06

0.08

 N
L 

e
rr

or

 
(a) 

0 50 100 150 200
0.92

0.94

0.96

0.98

1.00  TEM
 EWM
 FSWM
 EWM error
 FSWM error

t/s

N
H

-0.009

0.000

0.009

0.018

0.027

0.036

 N
H

 e
rr

or

 
(b) 

Figure 8. Cont.



Energies 2017, 10, 1363 15 of 17

Energies 2017, 10, 1363 15 of 17 

 

0 50 100 150 200
0.70

0.75

0.80

0.85

0.90

0.95

1.00

t/s

W
3

W
3
 e

rr
or

 TEM
 EWM
 FSWM
 EWM error
 FSWM error

-0.03

0.00

0.03

0.06

0.09

0.12

(c) 

0 50 100 150 200
0.84

0.88

0.92

0.96

1.00  TEM
 EWM
 FSWM
 EWM error
 FSWM error

t/s

E
G

T

E
G

T
 e

rr
o

r

-0.015

0.000

0.015

0.030

0.045

 
(d) 

Figure 8. Variations of aircraft engine model outputs in joint test: (a) NL; (b) NH; (c) W3; (d) EGT. 

5. Conclusions 

This paper develops a systematic approach which includes model structure selected, parameter 
tuned and model integrated steps that lead to an improved model identification. The novelty of this 
methodology lies in the development of FKELM algorithm and the SWMs bank architecture, and the 
combination of these techniques for aircraft engine modeling named the FSWM is proposed. One 
advantage of this methodology is that the dynamic estimation performance becomes more accurate 
as the tunable time constant of linear dynamic element compared with the fixed value in the basic 
WM. The steady estimation accuracy of FSWM is superior to the traditional machine learning method 
due to the nonlinear static element held in the block-oriented WM. Another advantage of this 
methodology is that the global optimal model feature parameters and weighting vector obtained 
directly by the training phase can evidently reduce computational time-consuming, and no 
population-based optimization algorithm is employed to tune the model parameters compared to the 
EWM. This indicates the bank of SWMs could be a more potential model-based tool for on-board real 
time control and fault diagnosis. 

The methodology is tested and validated using the measurement data of a low-bypass ratio 
aircraft engine which are established from GGTS. Both of the SWM related to each engine output and 
the bank of SWMs as an entire engine outputs are numerically evaluated against the engine 
simulation data. The methodology developed in this paper is not limited to dual-spool engine, but 
also can be applied to other engine types. The model feature parameters including structure 
parameters of regressor and kernel parameters of KELM are the key elements to affect the FSWM 
performance to the aim of aircraft engine system identification. The proposed FKELM brings an 
effective way to rapidly select these model parameters altogether with the output weighting vector 
during the training process.  

This research points out a new direction in block-oriented Wiener model identification by 
proposing an appropriate bank of SWMs using FKELM technique that is specifically beneficial for 
aircraft engine modeling applications. Although the FKELM produces less dynamic modeling errors 
than the EWM in dynamic tracking simulation, the maximum dynamic errors still more than 0.01 in 
Figure 8. There are several important topics for further study related to this research. First, the 
transfer functions for four outputs are all simplified to one-order inertial expressions, and it is better 
to utilize a two-order function to approximate a two-spool gas turbine engine. Further works can be 
performed to investigate the performance when the order of linear dynamic element is increased and 
each SWM has different transfer function order. Second, although this paper focuses on the SIMO 
system identification for gas turbine engine at ground, extensions to the cases that have more than 
the examined aero-thermodynamic parameters in this study or more wide operational condition in 
flight envelope are worthy of future exploration. 
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5. Conclusions

This paper develops a systematic approach which includes model structure selected, parameter
tuned and model integrated steps that lead to an improved model identification. The novelty of
this methodology lies in the development of FKELM algorithm and the SWMs bank architecture,
and the combination of these techniques for aircraft engine modeling named the FSWM is proposed.
One advantage of this methodology is that the dynamic estimation performance becomes more accurate
as the tunable time constant of linear dynamic element compared with the fixed value in the basic WM.
The steady estimation accuracy of FSWM is superior to the traditional machine learning method due to
the nonlinear static element held in the block-oriented WM. Another advantage of this methodology is
that the global optimal model feature parameters and weighting vector obtained directly by the training
phase can evidently reduce computational time-consuming, and no population-based optimization
algorithm is employed to tune the model parameters compared to the EWM. This indicates the bank of
SWMs could be a more potential model-based tool for on-board real time control and fault diagnosis.

The methodology is tested and validated using the measurement data of a low-bypass ratio
aircraft engine which are established from GGTS. Both of the SWM related to each engine output and
the bank of SWMs as an entire engine outputs are numerically evaluated against the engine simulation
data. The methodology developed in this paper is not limited to dual-spool engine, but also can
be applied to other engine types. The model feature parameters including structure parameters of
regressor and kernel parameters of KELM are the key elements to affect the FSWM performance to the
aim of aircraft engine system identification. The proposed FKELM brings an effective way to rapidly
select these model parameters altogether with the output weighting vector during the training process.

This research points out a new direction in block-oriented Wiener model identification by
proposing an appropriate bank of SWMs using FKELM technique that is specifically beneficial for
aircraft engine modeling applications. Although the FKELM produces less dynamic modeling errors
than the EWM in dynamic tracking simulation, the maximum dynamic errors still more than 0.01 in
Figure 8. There are several important topics for further study related to this research. First, the transfer
functions for four outputs are all simplified to one-order inertial expressions, and it is better to
utilize a two-order function to approximate a two-spool gas turbine engine. Further works can be
performed to investigate the performance when the order of linear dynamic element is increased and
each SWM has different transfer function order. Second, although this paper focuses on the SIMO
system identification for gas turbine engine at ground, extensions to the cases that have more than the
examined aero-thermodynamic parameters in this study or more wide operational condition in flight
envelope are worthy of future exploration.
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