
energies

Article

Evaluation of Demand-Side Management over
Pricing Competition of Multiple Suppliers
Having Heterogeneous Energy Sources

Kireem Han 1 ID , Joohyung Lee 2,* and Junkyun Choi 1

1 School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),
34051 Daejeon, Korea; hanrob@kaist.ac.kr (K.H.); jkchoi59@kaist.edu (J.C.)

2 Department of Software, Gachon University, Seongnam 13120, Korea
* Correspondence: j17.lee@gachon.ac.kr; Tel.:+82-31-750-6968

Received: 30 June 2017; Accepted: 1 September 2017; Published: 5 September 2017

Abstract: This study investigates a demand-side management problem in which multiple
suppliers compete with each other to maximize their own revenue. We consider that suppliers
have heterogeneous energy sources and individually set the unit price of each energy source.
Then, consumers that share a net utility react to the suppliers’ decisions on prices by deciding
the amount of energy to request, or how to split the consumers’ aggregated demand over multiple
suppliers. In this case, the consumers need to consider the power loss and the price to pay for
procuring electricity. We analyze the economic benefits of such a pricing competition among suppliers
(e.g., a demand-side management that considers consumers’ reaction). This is achieved by designing
a hierarchical decision-making scheme as a multileader–multifollower Stackelberg game. We show
that the behaviors of both consumers and suppliers based on well-designed utility functions converge
to a unique equilibrium solution. This allows them to maximize the payoff from all participating
consumers and suppliers. Accordingly, closed-form expressions are provided for the corresponding
strategies of the consumers and the suppliers. Finally, we provide numerical examples to illustrate
the effectiveness of the solutions. This game-theoretic study provides an example of incentives and
insight for demand-side management in future power grids.

Keywords: demand-side management; pricing mechanism; stackelberg game; equilibrium analysis;
heterogeneous energy sources

1. Introduction

Due to the growing concerns over environmental damage from existing power grids and
the depletion of traditional fossil fuel sources, next-generation power grids are envisioned to
transform traditional power grids into more energy-efficient, reliable, and responsive systems [1–3].
This evolution can be achieved by integrating modern communication technologies and innovations
in distributed generation from renewable energy sources. Such systems are known as smartgrids [4–6].
Balancing demand and supply in a smartgrid has proved to be a challenge because of the highly
variable, unpredictable, and intermittent nature of energy generation from renewable sources [4].

Demand-side management (DSM) is a promising responsive system for smartgrids to manage
consumer demand [7–15]. For instance, a supplier can directly manage its consumer demand to
maximize its revenue or improve energy efficiency. This is generally based on an agreement between
suppliers and consumers. However, a major drawback of this approach is related to concerns regarding
consumer privacy issues. Hence, to address these issues, there is an alternative approach wherein
suppliers indirectly manage consumer demand by changing energy unit prices over time. This is
called a pricing mechanism. Consumers are encouraged to voluntarily manage their demand based on
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pricing information determined by suppliers [9]. Accordingly, the pricing mechanism impacts both
suppliers’ revenues and consumers’ satisfaction [16,17].

This concern has motivated studies to determine the optimal behavior of consumers or to set
optimal energy unit prices for DSM. The common goal of these studies is to find optimal strategies
for consumers or suppliers by considering the impact of pricing mechanisms [3,12,17–24]. In [10],
the authors suggested a DSM strategy that uses a day-ahead load shifting technique to overcome
both peak load demand problems. The work of Song [24] proposed an optimal critical peak pricing
scheme for DSM by considering the interactions of consumers where there is a single utility company.
In this work, a repeated game framework for nonstationary DSM was proposed to minimize the
long-term total cost and discomfort cost of consumers. Further, for the practical use of real-time
data, the reference [25] suggested a game theoretic model predictive control approach to solve the
day-ahead optimization problem while considering forecasting errors. The approach presented in [12]
found the optimal behavior of consumers by considering competition among them, and interactions
between consumers and a supplier. In this system, a single supplier sets an optimal unit price to
maximize its profit. Consumers then individually determine their optimal demand by competing
against one another. Recently, in reference [3], the decision processes for both multiple suppliers and
consumers were modeled with the intervention of a utility company as an intermediate node. This
work assumed that a utility company sets the optimal energy unit price instead of the suppliers,
and pricing competition among suppliers was not considered. An incentive-based demand response
model proposed by Yu et al. [26] aimed to model three hierarchical levels of a grid operator, multiple
suppliers and corresponding consumers. Here, because it is assumed that each supplier serves enrolled
consumers, pricing competition among multiple suppliers was not considered. Maharjan et al. [27]
applied the Stackelberg game theory and developed a distributed algorithm to find optimal strategies
for multiple suppliers and consumers. In their study, each consumer attempted to maximize the
logarithmic satisfaction function according to procured energy within pre-defined budgets. However,
there was no consideration of the amount of required energy demand, so the required energy level
was not guaranteed. Similar to [27], the work of Alshehri [28] is the closest to this study. The authors
added the minimum required energy demand as a constraint in the model of [27]. However, there was
no consideration of a power loss penalty between multiple suppliers and consumers. In addition, it is
difficult to determine efficient budget requirements to meet the minimum required energy demand.

This study addresses a DSM problem in which multiple suppliers conduct pricing competition
to maximize their own revenue. We consider that suppliers have heterogeneous energy sources
and individually set the unit price of each energy source. Then, consumers that share a common
utility cooperatively react by making decisions on how to request (or how to split) the aggregated
demand over multiple suppliers to maximize their net utility. It should be noted that all previous
research adopted budget requirement and did not consider power loss for electricity transmission
between suppliers and consumers. In contrast, in the model proposed here, we consider two penalty
terms—namely, power loss and price to procure electricity—in the consumers’ objective function,
where the required demand is considered as a constraint. Thus, in the proposed model, setting the
budget requirement is not necessary, and consumers can consider both the distance to suppliers and the
energy price for the optimal decision. Accordingly, interactions between suppliers and consumers are
considered. We analyze the economic benefits of such a pricing competition among suppliers in terms
of the DSM problem by considering interactions between suppliers and consumers, which is modeled
by a multileader–multifollower Stackelberg game. We show that the behaviors of both consumers
and suppliers based on well-designed utility functions converge to a unique equilibrium solution
to maximize the payoff for all participating consumers and suppliers. Accordingly, closed-form
expressions are provided for the corresponding strategies of both the consumers and the suppliers.
Thus, our model accounts for situations in which consumers suffer from a trade-off between power
loss and the price of heterogeneous energy sources for DSM.

The contributions of this study are summarized as follows:
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• We design the suppliers’ utility function by compromising between both revenue and power
generation cost. In addition, the net utility function of procuring electricity for consumers
(which represents social welfare for consumers) is well designed by considering the following
aspects. (1) the satisfaction from electricity, (2) two penalty terms of power loss and the price
to pay for procuring electricity. Accordingly, compared with other studies, setting the budget
requirement is not necessary, and consumers determine an optimal strategy by considering both
power loss to suppliers and energy price.

• Based on the proposed utility function of the consumer and supplier sides, this study addresses
the joint pricing and DSM problem over heterogeneous energy sources in a competitive electric
energy market. The problem is formulated as a Stackelberg game (multipleleader-multifollower).

• In the formulated Stackelberg game, we propose a novel DSM scheme for finding the best
response of consumers while supporting aggregated demand. On the supplier side, we design
a non-cooperative pricing game between multiple suppliers by considering consumers’ reactions.
Here, we prove the existence of a Nash equilibrium (NE) in the proposed scenarios.

• With the relaxation of constraints on the DSM problem, closed-form solutions to the proposed
problem for both consumers and suppliers are provided. We also prove that a unique Stackelberg
equilibrium (SE) exists in the proposed Stackelberg game by providing a gradient iteration
algorithm for the SE, based on the mathematical background. In the numerical results, obtained
with varying parameters, we analyze the relationship of the best response between consumers
and suppliers. The proposed schemes converge well to equilibrium points.

The remainder of this paper is organized as follows. We explain the detailed system model and utility
functions for suppliers and consumers in Section 2. In Section 3, the problem is formulated as a Stackelberg
game and the SE is discussed. In Section 4, a detailed theoretical analysis of the Stackelberg game
is conducted by providing the closed-form solutions and showing the uniqueness of the SE. Finally,
we present the numerical results and conclude the work in Sections 5 and 6, respectively.

2. Competitive Electric Power Market Model with Heterogeneous Power Generators

In this section, we address the problem of a DSM where multiple suppliers compete against one
another to maximize their own revenue (Figure 1). We consider a set of suppliers I = {1, 2, ..., I} who
own various heterogeneous power generators (i.e., heterogeneous energy sources). Suppose there
are J types of power generators (e.g., thermal energy, solar energy, and wind turbines) in the power
grid infrastructures so that we can define the set of power generators with a given supplier i as
Ji = {1i, 2i, ..., Ji}. The available power generation capacity of each power generator can be expressed
as gi,j, with the available power generation capacity of supplier i over the power generator j.
Here, a supplier can provide the available power to consumers who are willing to use the power
at a given price ci,j. In this case, a supplier uses a dedicated control channel to broadcast the availability
of power with the payment price to obtain this power. Here, we assume that the consumers are in
the same geographical areas. It is a reasonable assumption when only focusing on the population of
certain areas. Thus, the consumers can request electric power from all available power generators
in Ji of suppliers in I simultaneously at every time slot, where there are periodical electric power
requests within a given time slot. That is, consumers can procure aggregated electric power from
different power generators. In this sense, there is a broker between the suppliers and the consumers
who aggregates demand from all consumers and makes demand requests to suppliers based on the
consumers’ decisions. It should be noted that the broker concept is widely used in electric power
market models to manage energy distribution, as in [4,5]. Here, the total amount of requested demand
required to support the whole population is denoted by dreq. To simplify analysis, we also assume that
each consumer requests the same amount of power for their own objective (or service) and is willing
to cooperate with others to maximize net utility (i.e., social welfare). This means that their optimal
demand vector over the provided power generators would all be in the same ratio. Furthermore,
the total aggregated demand over all energy sources is ∑i∈I ∑j∈Ji

di,j, where di,j is the allocated
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demand vector over the power generator j of supplier i. Thus, the total aggregated demand over all
power generators would meet the dreq to support the requested demand.

Broker

Aggregated demand

Consumers (Followers)

Supplier 1 Supplier 2 Supplier I

Suppliers (Leaders)

Demand response

: Wind turbine

: PV panel

: Thermal energy

: Etc

Energy unit price info. Power loss/generation profile

Figure 1. Stackelberg game model. PV: photovoltaic.

2.1. The Net Utility Function of Consumers (Social Welfare)

Generally, consumers can adaptively control the aggregated demand over the various power
generators from the suppliers by simultaneously utilizing available heterogeneous power generators.
Based on this assumption, consumers will maximize their net utility—which is coupled with the power
loss cost and price to pay—through cooperation, while meeting the requested demand for the whole
population. From the consumers’ point of view, total net utility (or social welfare) for the requested
demand needs to be modeled using the power loss penalty and the payment price to procure energy.
First, we consider the cost of power loss.

1. Power loss model: In the power loss model, we consider a general power loss penalty model
from [2,29]. Here, the power loss occurs during a power exchange between the consumer and
power generator. It is a function of several factors, such as the distance between consumer and
power generator, power transfer voltage, and amount of power. In this case, we assume that the
power demand vector di,j is less than the available power generation capacity. Thus, the power
loss penalty function (Ploss

i,j ) is expressed as follows:

Ploss
i,j (di,j) =

d2
i,jRi,j

V2 + βi,jdi,j,

where V is the transfer voltage, Ri,j is the resistance of the distribution line between the power
generator j of the supplier i and consumers, and βi,j is the fraction of power lost in the transformer
at generation.

2. Proposed net utility function: Therefore, the proposed utility function—which represents the net
utility or social welfare—for consumers is presented as follows:

Ucon(d) = κlog(1 + ∑
i∈I

∑
j∈Ji

di,j)−∑
i∈I

∑
j∈Ji

Ploss
i,j (di,j)− δ ∑

i∈I
∑

j∈Ji

ci,jdi,j, (1)

where κ and δ are the weight factors (≥ 0) for satisfaction of consumers from procuring electricity
and payment, respectively. The logarithm term is the consumers’ gain from satisfaction in using
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a certain amount of electricity. Note that a logarithmic utility function is generally utilized to
measure user’s satisfaction with diminishing returns [4–6]. In this study, the total requested
demand for electricity is defined as a constant. This term should be considered a constant gain
term. There are two major motivations for using this utility function. First, because the function is
concave, it guarantees the existence of a global optimal point. Second, the adjustable parameters
κ and δ provide flexibility to fit the function with different priorities for consumers’ satisfaction
and payment, respectively.

Proposition 1. The net utility function Ucon of consumers is concave in d.

Proof of Proposition 1. To prove the concavity of the multi-variable function, we must verify the
negative semi-definiteness of the Hessian matrix [30]. If a Hessian of Ucon(d) is negative semidefinite
for all d ∈ D, then Ucon(d) is concave. The Hessian of Ucon(d) is expressed as H(Ucon) = {t(i,j),(l,m)},
0 ≤ i, l ≤ I , 0 ≤ j ≤ Ji and 0 ≤ m ≤ Jl , where

t(i,j),(l,m) =
∂2Ucon(d)
∂di,j∂dl,m

=

{−2Ri,j
V2 if (i, j) = (l, m)

0 if (i, j) 6= (l, m).

Consequently, the negative diagonal implies concavity.

2.2. The Supplier’s Utility Function

From the suppliers’ point of view, the total utility function needs to be modeled using the generation
cost and total revenue from consumers. Therefore, a novel utility function (i.e., net revenue) from
supplier i is presented as follows:

Usup,i = ∑
j∈Ji

ci,jdi,j − ∑
j∈Ji

oi,jdi,j, (2)

where oi,j denotes the cost for generating and operating power generator j to supplier i.

3. A Game-Theoretic Approach: Stackelberg Game

In this section, we introduce a game-theoretic approach to analyze our system model.
More specifically, we describe a basic overview of the Stackelberg game and formulate the joint
pricing and DSM problem based on the proposed utility functions defined in the previous section.

3.1. Preliminaries

Stackelberg games are a special type of noncooperative game in which there exists a hierarchy
among players. For instance, for a two-level game, players can be classified as leaders and followers.
In the original work of H. von Stackelberg, the Stackelberg model was designed to analyze a strategic
game in economics in which the leader firm moves first and then follower firms move sequentially.
This is the case with one single leader and multiple followers. Generally, in a Stackelberg game,
each player is assumed to be selfish and rational, and each aims to maximize its utility or revenue.
Moreover, the leaders are in a strong position to enforce their strategies on the followers. Hence, in this
leader–follower competition, the leaders decide their strategies prior to decision of the followers’
strategies. Therefore, the followers can observe the strategies of the leaders and adapt their own
strategies accordingly. In particular, because each follower has the information of the strategy adopted
by each leader, they will choose their best strategy (also known as the best response), given the strategies
of the leaders. On the other hand, the leaders are aware of the fact that each follower will choose
its best response to the leaders’ strategies. Therefore, the leaders are able to maximize their utilities
based on the best responses of the followers. The solution of the game is known as the Stackelberg
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equilibrium. The Stackelberg game approach has advantages for identifying hierarchical equilibrium
solutions in this noncooperative decision problem and analyzing the economic benefits [4,5].

In our system model, there are two levels of game where multiple suppliers and multiple
consumers exist (Figure 1). The competition game in the first level is among suppliers to sell their
electricity to consumers. Here, suppliers take the role of leaders. Each supplier sets its own pricing
strategy c to impose price on consumers who demand electricity. Here, multiple leaders hold a strong
position, and leaders can impose their own strategy. In the second level, there are other players called
followers who react to the leaders’ strategy. The followers—consumers in this case—determine the
demand vector over each power generator based on the leaders’ strategy to maximize their net utility
through cooperation.

3.2. Novel DSM Scheme at Consumer Side

In the proposed game formulation on the follower side, c is decided by electricity suppliers
(i.e., multiple leaders). The followers (i.e., consumers) maximize their own net utility (Ucon) by
performing DSM. That is, they determine the amount of demand to request from the distributed
generators while guaranteeing support for the required power demand. Therefore, for a given pricing
strategy c = {ci,j}I×Ji from the suppliers, we define the best response function B f ol for the follower as

d∗ = B f ol(c) = arg max
d∈D

Ucon(c), (3)

where D denotes a set of possible demand distribution strategies. To identify the best-response
demand-distribution for a given price, we transform Equation (3) into a convex optimization problem.
Because the consumers’ net utility function Ucon is a concave function, solving the best-response
function for a consumer in Equation (3) could be considered a convex optimization problem as follows:

max
r

Ucon(d, c) (4)

s.t. ∑
i∈I

∑
j∈Ji

di,j = dreq, (5)

di,j ≥ 0, for ∀i ∈ I, ∀j ∈ Ji, (6)

di,j ≤ gi,j, for ∀i ∈ I, ∀j ∈ Ji. (7)

The objective function of Problem (4) is concave, and the problem has linear constraints. Therefore,
the problem is a convex optimization problem, which also makes a local maximum the global
maximum [31]. The basic principle in Lagrange duality is to relax the original problem (4)–(7) by
transferring the constraints to the objective in the form of a weighted sum. We then define a Lagrangian
associated with the above problem as:

L(d, λ, σ, µ) = Ucon(d, c) + λ(∑
i∈I

∑
j∈Ji

di,j − dreq) + ∑
i∈I

∑
j∈Ji

σi,jdi,j + ∑
i∈I

∑
j∈Ji

µi,j(gi,j − di,j), (8)

where λ is the Lagrange multiplier corresponding to the demand requirement of Equation (5), and
σ = (σi,j: ∀i ∈ I, ∀j ∈ Ji) and µ = (µi,j: ∀i ∈ I, ∀j ∈ Ji) are vectors of Lagrange multipliers corresponding
to the feasible region of the d vector from Equations (6)–(7) with σi,j, µi,j ≥ 0. Then, the dual function
can be expressed as

h(λ, σ, µ) = max
d

L(d, λ, σ, µ). (9)

Accordingly, the dual problem corresponding to the primal problem of Equations (4)–(7) is

min
(σ,µ≥0),λ

h(λ, σ, µ). (10)
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Because the primary problem of Equations (4)–(7) is a convex optimization problem, a strong
duality exists. The optimal values for the primal and dual problems are equal. As a result, it is
appropriate to solve the primal problem through its dual problem of Equation (10). Hence, the optimal
power distribution di,j for a fixed value of dual variables (λ, σ and µ) can be calculated by applying the
Karush–Kuhn–Tucker (KKT) conditions on Equation (10). We then obtain:

∂Ucon(d, c)
∂di,j

+ λ + σi,j − µi,j = 0. (11)

Using the utility function (1), we conclude that the optimal demand distribution vector is d∗i,j.
Therefore, the optimal solution can be calculated as

di,j =
V2(−βi,j − δci,j + λ + σi,j − µi,j)

2Ri,j
. (12)

Here, a gradient descent method can be applied to calculate the optimum values for dual variables
(λ, σ and µ) to solve Equation (12), as given by

λ(t + 1) = [λ(t)− γ1(dreq −∑
i∈I

∑
j∈J

di,j(t))]+ (13)

σi,j(t + 1) = [σi,j(t)− γ2(di,j(t))]+ (14)

µi,j(t + 1) = [µi,j(t)− γ3(gi,j − di,j(t))]+, (15)

where t is the time index of iteration, γs with s = {1, 2, 3} is a sufficiently small fixed step size, and the
notation [·]+ denotes the projection onto nonnegative orthants [31,32]. Convergence towards the
optimum solution is guaranteed because the gradient of Equation (12) satisfies the Lipschitz continuity
condition [33]. Specifically, by updating dual variables to a gradient direction [31], the dual variables
λ(t + 1), σi,j(t + 1), and µi,j(t + 1) will converge to the dual optimal λ∗, σ∗i,j, and µ∗i,j, respectively,
as t → ∞, and the solution to Equation (12) will also converge to the optimal d∗i,j. The proposed
decomposition method for the optimization problem (4)–(7) is summarized as follows:

3.3. Novel Competitive Pricing Scheme at Supplier Side

Here, we analyze the leaders’ strategies for the Stackelberg game. In this case, we assume that
there are multiple leaders (i.e., various suppliers) in the area where consumers can request electric
power, and suppliers compete with each other to maximize their own utility. This is accomplished by
selecting their pricing strategy based on considering the followers’ best-response. Here, the optimal
pricing strategy p∗i could be expressed as

c∗i = arg max
c

Usup,i(ci). (16)

where ci={ci,1, ci,2, ..., ci,Ji }.
However, the utility function of the leader Usup,i not only depends on its own strategy, but also

on the rate at which it is allocated by the followers as determined in Equation (3). Thus, Equation (16)
can be rewritten more specifically,

c∗i = arg max
c

Usup,i(ci, d∗(c)). (17)

Therefore, the leader needs to consider the followers’ best-response to the imposed pricing strategy
to identify on an optimal strategy. Furthermore, we also consider that multiple leaders compete with
each other by setting their own prices. Thus, other suppliers’ strategies are another criterion for
deciding one’s own strategy.
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Proposition 2. The DSM algorithm for the follower side (Algorithm 1) is quasi-convex in ci,j when other prices
(c−(i,j)) are fixed.

Proof of Proposition 2. When ci,j is gradually increased from zero, the demand distribution d∗i,j will
remain equal or decrease. Subsequently, when ci,j continues to increase to an infinite value, d∗i,j will
reach the value max (0, dreq −∑(l,m) 6=(i,j) gl,m). Therefore, the DSM algorithm for the follower side is
a non-increasing function in ci,j. From [34], a function that is always non-increasing or non-decreasing
is quasi-convex; therefore, we can prove that the DSM algorithm for the follower side (Algorithm 1)
is quasi-convex in ci,j.

Algorithm 1 A gradient algorithm for demand-side management (DSM).

1: Input: consumer net utility Ucon (1) and its available capacity gi,j, price for electric power and

minimum required power demand (dreq)
2: Output: optimal demand distribution vector di,j
3: Initialization: set t = 0 and dual variables (λ, σ, and µ) equal to some nonnegative value
4: Repeat the iteration

(a) Calculate the demand distribution vector by computing (12)

(b) Update the dual variables with the gradient iterate (13)–(15)

(c) Until ||d[t + 1]− d[t]|| ≤ ε

Based on these perspectives, we prove the existence of NE in this competitive pricing game and
SE in the two-level (consumer–supplier) game, respectively. This allows us to provide a gradient
algorithm for the SE as represented in Algorithm 2.

Definition 1. A pricing vector c = {ci,j}I×Ji is a Nash equilibrium of the non-cooperative competitive
pricing game if, for every i and j, Usup,i(ci,j, c−i,j) ≥ Usup,i(c

′
i,j, c−i,j) for all c

′
i,j ∈ c, where Usup,i(ci,j, c−i,j)

is the resulting pricing strategy for the power generator j for the supplier i, given the other power generator
pricing results c−i,j.

Theorem 1. There exists at least one Nash equilibrium in the non-cooperative competitive pricing game.

Proof. Note that the strategy ci,j is a nonempty, convex, and compact subset of some Euclidean
space RNXN . The utility function User,i(c) is a non-decreasing function in di,j. The DSM algorithm on
the follower side represents a continuous function of demand distribution which is quasi-convex in
each ci,j from Proposition 2. Therefore, according to [35], the game has at least one NE.

3.4. Existence of Stackelberg Equilibrium

For the formulated Stackelberg game, a pair consisting of leaders’ and followers’
strategies (cSE(= cSE

1 ,... cSE
i , etc.), qSE) is called SE if

cSE
i = arg max

c
User,i(ci, B f ol(c)), (18)

and dSE = B f ol(cSE). To find the SE, we first solve the best-response function (3) to identify
the relationship between the leaders’ and followers’ strategies. Based on that relationship, we can
obtain an optimal pricing strategy c∗i by solving (18) and determining the SE point(s).

Corollary 1. At least one Stackelberg equilibrium exists in the proposed two-level game.
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Proof of Corollary 1. There is a unique optimal demand distribution point at the follower level.
Correspondingly, there exists at least one NE in the non-cooperative competitive pricing game at
the leader level, as shown in Theorem 1. Therefore, the proposed two-level game has at least one SE.

We can use the following gradient-based iteration algorithm to obtain the SE.

Algorithm 2 Gradient algorithm for Stackelberg equilibrium.

Input: randomly given a price ci,j over energy source j by supplier i
2: Output: optimal demand distribution vector di,j and pricing vector ci,j over power generator j by

supplier i
Repeat the iteration

(a) The consumers perform DSM Algorithm 1 to obtain the optimal demand distribution

(b) The suppliers update the prices:

c[t + 1] = c[t] + σ∇Usup(c[t], d[t])

(c) Until ||c[t + 1]− c[t]|| ≤ ε
4: End iteration

In Algorithm 1, σ is the iterative step size of the price, Usup = {Usup,1, Usup,2,...,Usup,I},
∇Usup(c[t], d[t]) is the gradient with

∂Usup,i(c[t],d[t])
∂ci,j

.

4. Theoretical Analysis of the Proposed Stackelberg Game

In this section, we theoretically analyze the proposed Stackeberg game. This is accomplished by
providing a closed-form solution with a relaxation of the constraints for the DSM problem. Furthermore,
we also prove that a unique SE exists in the proposed two-level game.

4.1. Closed-Form Solution for DSM at the Consumer Side

To find the closed-form solution for theoretical analysis, we assumed that optimal demand
distribution is always positive and satisfies the capacity requirements of the power generator under
a certain condition of δ. Hence, inequality constraints (6)–(7) for the optimization problem for DSM are
removed. We then redefine the Lagrangian form as follows:

L(r, λ) = Ucon(d, c) + λ(∑
i∈I

∑
j∈Ji

di,j − dreq), (19)

where λ is the Lagrange multiplier.
To solve the problem, the necessary and sufficient conditions for optimality are then given by

the KKT conditions:

∂Ucon(d∗, c)
∂di,j

+ λ∗ = 0, for ∀i ∈ I, ∀j ∈ Ji, (20)

∑
i∈I

∑
j∈Ji

di,j − dreq = 0. (21)

Therefore, from Equations (20) and (21), for a given minimum required demand (dreq), the optimal
demand distribution d∗i,j at power generator j of supplier i can be obtained as follows:

d∗i,j =
δV2

2Ri,j

1
X
{( 1

Ri,j
− X)ci,j + ∑

(l,m) 6=(i,j)

cl,m

Rl,m
}+ V2

2Ri,j

1
X
{2dreq

V2 − Xβi,j + ∑
l∈I

∑
m∈Jl

βl,m

Rl,m
} (22)

where X = ∑i∈I ∑j∈Ji
1/Ri,j.
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Here, to satisfy the positivity and capacity requirement of optimal demand distribution,
we assumed that any positive weight factor δ should satisfy the condition below, when prices and
other constant values are given.

0 < δ{( 1
Ri,j
− X)ci,j + ∑

(l,m) 6=(i,j)

cl,m

Rl,m
}+ (

2dreq

V2 − Xβi,j + ∑
l∈I

∑
m∈Jl

βl,m

Rl,m
) <

2gi,jRi,jX
V2 (23)

Proposition 3. The optimal demand distribution d∗i,j at power generator j of supplier i decreases with its prices
ci,j when other prices are fixed.

Proof of Proposition 3. Taking the first-order derivative of d∗i,j, we have

∂d∗i,j
∂ci,j

=
δV2

2Ri,j

1
X
(

1
Ri,j
− X).

Because δV2

2Ri,j
1
X and 1

Ri,j
− X are positive and negative, respectively,

∂d∗i,j
∂ci,j

< 0 implies that d∗i,j is
decreasing with ci,j.

4.2. Closed-Form Solution for Competitive Pricing at the Supplier Side

Here, based on the analytical result (i.e., the closed-form solution) for the DSM for the consumers’
side, we determine that there is a unique SE in the proposed two-level game between consumer and
supplier. The leader of the Stackelberg game (the supplier) can optimize its strategy (ci) to maximize
its utility as defined in Equation (2), which forms a non-cooperative competitive pricing game. Thus,
from Equation (17), the best response from the supplier could be rewritten as

Bi,j(c−i,j) = arg max
ci,j

Usup,i(ci,j, c−i,j, d∗(c)), (24)

where ci,j and c−i,j are, respectively, the pricing strategy of supplier i for power generator j and all
other pricing strategies, except ci,j. In addition, d∗(c) is the optimal demand distribution vector for
consumers with given pricing c of suppliers.

Substituting Equations (2) and (22) into Equation (24), and taking the derivative of Usup,i to ci,j,
we have

∂Usup,i

∂ci,j
=d∗i,j + ci,j

∂d∗i,j(c)

∂ci,j
+ ∑

m∈Ji ,m 6=j
ci,m

∂d∗i,m(p)
∂ci,j

− oi,j
∂d∗i,j(c)

∂ci,j
− ∑

m∈Ji ,m 6=j
oi,m

∂d∗i,m(c)
∂ci,j

.

This can be written as

∂Usup,i

∂ci,j
=

δV2

2Ri,j

1
X
{( 1

Ri,j
− X)(2ci,j − oi,j) + ∑

(l,m) 6=(i,j)

cl,m

Rl,m
}

+
V2

2Ri,j

1
X
{2dreq

V2 − Xβi,j + ∑
i∈I

∑
j∈Ji

βi,j

Ri,j
+

δ

Ri,j
( ∑

m 6=j
ci,m − ∑

m 6=j
oi,m)}, (25)

and we denote the solution of the best response as c∗i,j.

Proposition 4. The utility function Usup,i of supplier i is concave in its own price ci, when the other suppliers’
prices are fixed and optimal demand is allocated by consumers.
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Proof of Proposition 4. Taking the second-order derivative of Usup,i, we have

∂2Usup,i

∂2ci,j
=

δV2

Ri,j

1
X
(

1
Ri,j
− X).

Because V2

Ri,j
1
X and 1

Ri,j
− X are positive and negative, respectively,

∂2Usup,i
∂2ci,j

is less than 0. Therefore,

Usup,i is concave with respect to ci,j.

From Equation (25), we can conclude the closed-form of the best response function Bi,j(c−i,j)
as below

Bi,j(c−i,j) =
∑m∈Ji ,m 6=j ci,m

2Ri,j(X− 1/Ri,j)
+

∑(l,m) 6=(i,j)
cl,m
Rl,m

2(X− 1/Ri,j)
+ Yi,j , (26)

where

Yi,j =
oi,j

2
−

∑m∈Ji ,m 6=j oi,m

2Ri,j(X− 1/Ri,j)
−

Xβi,j

2δ(X− 1/Ri,j)

2dreq

V2 + ∑l∈I ∑m∈Jl

βl,m
Rl,m

2δ(X− 1/Ri,j)
.

Here, we assume that the cost for generating and operating electricity should be decided such
that Yi,j > 0, given that the variables are constant. Next, we can prove that the supplier-level game
has a unique NE; this NE provides a set of prices such that none of the suppliers can increase their
individual utility by choosing a different price based on prices offered by other suppliers. The key
aspect of the uniqueness proof is to realize that the best response function in Equation (26) is a standard
function [35]. A function is said to be standard if it satisfies the following properties:

• positivity: Bi,j(c−i,j)> 0;
• monotonicity; if c−i,j ≥ c′−i,j,Bi,j(c−i,j) ≥ Bi,j(c′−i,j);
• scalability: µBi,j(c−i,j) > Bi,j(µc−i,j), ∀µ > 1;

Theorem 2. An arbitrary supplier i’s best response function Bi,j(c−i,j) is standard. Thus, a unique NE exists in
the non-cooperative competitive pricing game between suppliers.

Proof of Theorem 2.
Please find the proof of this theorem in the Appendix A.

4.3. Existence and Uniqueness of Stackelberg Equilibrium (SE) for the Proposed Two-Level Game

For a Stackelberg game, the existence and uniqueness of a SE are two desirable properties. In this
subsection, we will prove that solutions d∗i,j(c) and c∗i,j (i ∈ I , j ∈ Ji) are in SE for the proposed game.

Corollary 2. A unique Stackelberg equilibrium exists in the proposed two-level game.

Proof of Corollary 2. Because an arbitrary supplier i’s best response function Bi,j(c−i,j) is standard
from Theorem 2, the supplier’s pricing game has a unique NE; therefore, the proposed game also has a
unique NE.

5. Numerical Results

In this section, various numerical examples—which were simulated by MATLAB—are presented
to verify the proposed theorems and propositions and to investigate the utility of both
consumers and suppliers with respect to varying parameters. Therefore, we assumed the
following scenario: two different types of power generators (indexed as 1 and 2) with different



Energies 2017, 10, 1342 12 of 16

operating costs o = [o1, o2] = [0.1, 0.2] kW.p.u. and available power generation capacity vectors
g = [g1, g2] = [6500, 5000] kW. In addition, the total amount of requested demand required to support
the whole population dreq was 4200 kW, and it was assumed to be constant during 1 h. The losses due
to resistance between the power generator and consumers and in the transformer were set, respectively,
to typical values of Ri,j = 0.2 ohm per km, κ = 500, and βi,j = 0.02. We also assumed that the distance
from power generators 1 and 2 to consumers were 20 km and 10 km, respectively. The voltage V was
set to 50 kV, which is a practical value in a variety of smart grid distribution networks [29,36].

5.1. DSM According to Suppliers’ Electric Power Price

We then verify the effect of the electric power price offered by supplier 2 on the demand
distribution to suppliers 1 and 2. Figure 2 shows that the demand distribution to supplier 2
linearly decreases with price c2 while c1 is fixed. Conversely, the demand distribution to supplier 1
correspondingly increases by guaranteeing dreq. This intuitive result regarding demand distribution
versus price is based on Proposition 3.
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Figure 2. The demand distribution to suppliers 1 and 2 (δ = 0.016) as the price offered by supplier
2 varies.

5.2. Utility of Suppliers and Net Utility of Consumers According to the Suppliers’ Price

Based on the results of Figure 2, we analyze the utility of the supplier and the net utility of
consumers as the price offered by supplier 2 varies. Figure 3b shows that the utility of supplier 2 is
concave in price c2 (from proposition 4), and the utility of supplier 1 increases with price c2. For each
price offered by supplier 2, supplier 1 offers a price based on the best-response strategy to maximize its
own utility. Therefore, until c2 = 1.2, supplier 2 will increase the utility with c2; however, it decreases
with c2 over 1.2. Thus, supplier 1 will end up obtaining a higher utility than supplier 1. This is due
to the amount of decrease in demand distribution to supplier 2 as the prices they offer increase.
Conversely, the demand distribution to supplier 1 correspondingly increases, as shown in Figure 2. In
addition, the increased price of supplier 2 affects the best strategy of the other suppliers (i.e., the optimal
price of supplier 1 also increases). Thus, the net utility for consumers decreases with price c2, as shown
in Figure 3b. In addition, as the value of δ increases, the net utility for the consumers gives more weight
to the impact of price. Hence, the lower net utility for consumers is achieved due to the larger impact
of price.

Figure 4 shows the best response functions and NE of the non-cooperative competitive pricing
for the two suppliers. This is derived from Algorithm 2. This figure graphically shows the existence
and uniqueness of the NE. As shown, there is only one point of intersection, which is the NE of prices
offered to consumers by suppliers. In this case, as the value of δ increases, the NE provides less value
due to the greater impact of price on consumers.
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Figure 3. (a) Utility of supplier and (b) net utility of consumers (δ = 0.016, 0.04) as the price offered by
supplier 2 varies.
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Figure 4. Existence and uniqueness of the Nash equilibrium (NE) in the non-cooperative competitive
pricing game among suppliers.

5.3. Utility of Suppliers and Net Utility of Consumers According to the Number of Suppliers

We investigate the effect of the number of suppliers on the net utility of consumers and the utility
of suppliers and the optimal price. Here, we assume that the specification of different suppliers is
identical to that of supplier 1. As shown in Figure 5a, the optimal price decreases with an increase in
the number of suppliers. As the number of suppliers increases, the competition among them becomes
more severe, and thus the average price decreases. Therefore, the utility for the supplier decreases
due to the reduced optimal price, as shown in Figure 5. Conversely, Figure 5c shows that the net
utility for consumers increases as the number of suppliers increases. Moreover, with the increase in the
value of δ (from δ = 0.016 to δ = 0.04), the optimal price for suppliers decreases because the price now
has a greater impact on the net utility of consumers than power loss penalty, as shown in Figure 5a.
This means that the utility of the suppliers also decreases, as shown in Figure 5.
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Figure 5. (a) Optimal price, (b) utility of the supplier, and (c) net utility of consumers at the Stackelberg
equilibrium (SE) as the number of suppliers varies.

6. Conclusions and Future Works

We analyzed and evaluated a demand-side management problem in which multiple suppliers
with heterogeneous energy sources compete with each other by setting the unit price of each energy
source. Then, consumers cooperatively react to the suppliers’ decisions on prices by deciding how
to request their aggregated demand from multiple suppliers. To do this, we first modeled the
utility functions for consumers and suppliers, respectively. For suppliers, the utility function was
designed considering the revenue acquired from consumers and the cost of electric power generation.
For consumers, the net utility function considers the consumers’ satisfaction, the price to pay, and the
power loss during transmission. In considering the interactions between consumers and suppliers,
the problem was formulated as a Stackelberg game. Based on the numerical results, we represented
the relationship between price and demand, which affects both the game and the suppliers’ strategy.
Finally, we showed that the proposed scheme converges well to an equilibrium point. Future work
stemming from this study should accommodate dynamic game models with time varying analysis
from a practical perspective.
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Appendix A

This appendix provides the mathematical proof of the theorem represented in Section 4.

Proof of Theorem 2.

(1) Positivity.

Because Ri,j > 0, X − 1/Ri,j > 0, and ci,m > 0, the first and second items in the best response
function (26) are always greater than 0. In addition, Yi,j is also positive due to this assumption.
Because the best response function is a sum of positive terms, we can obtain the positivity of the best
response function:

Bi,j(c−i,j) > 0.

(2) Monotonicity.
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Here, the problem for showing monotonicity can be reduced to providing
∂Bi,j(c−i,j)

∂c−i,j
≥ 0. Taking

the derivative of the best response function Bi,j(c−i,j) with respect to ci,k for k 6= j, we obtain

∂Bi,j(c−i,j)

∂ci,k
=

1
Ri,j(X− 1/Ri,j)

> 0.

In addition, taking the derivative of the best response function Bi,j(c−i,j) with respect to cl,k for
l 6= i and k ∈ Jl , we obtain

∂Bi,j(c−i,j)

∂cl,k
=

1
2Ri,j(X− 1/Ri,j)

> 0.

(3) Scalability.

Based on Eqaution (26) for all µ > 1, we obtain

µBi,j(c−i,j)− Bi,j(µc−i,j) = (µ− 1)Yi,j > 0

which satisfies scalability.
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