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Abstract: To alleviate the emission of greenhouse gas and the dependence on fossil fuel,
Plug-in Hybrid Electrical Vehicles (PHEVs) have gained an increasing popularity in current decades.
Due to the fluctuating electricity prices in the power market, a charging schedule is very influential to
driving cost. Although the next-day electricity prices can be obtained in a day-ahead power market,
a driving plan is not easily made in advance. Although PHEV owners can input a next-day plan into
a charging system, e.g., aggregators, day-ahead, it is a very trivial task to do everyday. Moreover, the
driving plan may not be very accurate. To address this problem, in this paper, we analyze energy
demands according to a PHEV owner’s historical driving records and build a personalized statistic
driving model. Based on the model and the electricity spot prices, a rolling optimization strategy
is proposed to help make a charging decision in the current time slot. On one hand, by employing
a heuristic algorithm, the schedule is made according to the situations in the following time slots.
On the other hand, however, after the current time slot, the schedule will be remade according to the
next tens of time slots. Hence, the schedule is made by a dynamic rolling optimization, but it only
decides the charging decision in the current time slot. In this way, the fluctuation of electricity prices
and driving routine are both involved in the scheduling. Moreover, it is not necessary for PHEV
owners to input a day-ahead driving plan. By the optimization simulation, the results demonstrate
that the proposed method is feasible to help owners save charging costs and also meet requirements
for driving.

Keywords: plug-in hybrid electrical vehicle; personalized statistic driving model; heuristic algorithm;
rolling optimization

1. Introduction

In recent years, plug-in hybrid electric vehicles (PHEVs), as eco-friendly and cost-effective
transportation vehicles [1], have drawn world-wide attention [2,3]. By shifting from fuel power
to battery power, electric driven vehicles are not only helpful to reduce the emission of green-house
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gas but also have a considerable energy independence. Therefore, many countries’ governments,
auto manufacturing enterprises, and energy enterprises have paid lots of attention to the development
of PHEVs. For one thing, compared to the fossil-fuel vehicle, electric power is much friendlier to the
environment and the price is much cheaper, since renewable energies generated by wind or solar have
nowadays been common in the smart grid [4]. For the other, PHEVs are generally affordable for long
distance driving while the pure electric vehicle is poor in endurance.

Because of the fluctuation of electricity spot prices in the power market, it is viable to create
a charging schedule for PHEV to save costs and also meet PHEV owners’ driving requirements.
However, it is a big challenge to integrate EVs (electrical vehicles) into the current smart grid due
to many different kinds of factors such as grid load burden, investments of infrastructures, revenue
of customers, etc. In [5], Green et al. investigated the influences of EVs charging to the distribution
network and concluded that the key factors include driving patterns, charging characteristics, charging
time, and vehicle penetrations. Belgium, as an example, was investigated in detail to explore the
impacts from EVs to such networks [6]. For charging characteristics, a fast but unregulated charging of
EVs will lead to a heavy grid load burden, moreover, even cause a breakdown of power system [7].
In addition, as indicated by the technical reports from the Oak Ridge National Laboratory and the
National Renewable Energy Laboratory [8,9], an uncontrolled charging strategy will also cause an
additional demand of generation capacities. Hence, to enhance the benefits of using EVs, it is necessary
to optimize charging control strategies for EVs. In recent years, to address the issues, various kinds of
charging control strategies have been proposed and applied substantially [10,11].

From the perspective of the power provider, the research generally focuses on the optimization of
grid load or power losses. To minimize power losses and maximize the grid load factor, a coordinated
charging schedule strategy was proposed by Clement et al. [12]. In [13], Sundstrom and Binding
considered the issue that involves multiple EVs. From the view of PHEV owners, Jin et al. considered
both aggregators’ revenue and drivers’ demand on energy to conduct the research to propose offline
and online charging scheduling strategies for multiple EVs [4]. By investigating the elasticity of EV
loads, Gan et al. proposed a decentralized charging schedule strategy to fill the valleys in electric
load profiles [14]. In [15], the authors proposed a lottery-based charging strategy to decide whether to
charge an EV or not, in order to guarantee fairness.

As an intermediary part between vehicle owners and grid operators, aggregators have played
a significant role in executing smart charging for EVs [16] and also have actively taken place in
the electricity market [17]. The optimization problems on the aggregators’ side have been widely
investigated in recent years. In [18], a dynamic programming was employed in frequency formulation
to propose an optimal charging strategy for each vehicle to maximize aggregators’ revenue. A fleet
of EVs are modelled by aggregate battery approaches and a charging scheduling optimization by
dynamic programming-based method were proposed by Skugor and Deur [19]. In [7], the authors
investigated a maximization problem to pursue aggregators’ profit by controlling the optimal charging
rates. In [4], the benefits of both the electricity provider and vehicle owners are considered by linear
programming. Aggregators are also well used for the researches on power market. A contract size
about frequency of regulation was optimized in [20] based on the historically obtained probability
distribution of procured power capacity. In [21], by employing fuzzy optimization, an optimal bidding
of ancillary services coordinated across different markets are researched. An improved heuristic
algorithm named particle swarm optimization was proposed in [22] to exploit the potential consumers
value added by coordinated distributed energy resource scheduling.

Besides the aggregators’ revenue, in EV charging problems, there also exist many other
perspectives on optimization objectives. For the battery energy storage system (BESS) charging
scheduling problem, Maly and Kwan employed a dynamic programming to minimize the electricity
bill while reducing battery stress and prolonging battery life [23]. To reduce payment and operational
costs, intelligent scheduling for charging/discharging, as a crucial step to implement EVs to smart
grid, has also been widely studied [24,25]. In [26], charging cost and grid load are taken into account
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to be minimized by a hierarchical schedule for vehicle fleets. In [27], the authors proposed two linear
programming models for different kinds of optimization objectives including maximization of vehicle
owners’ revenue and maximization of the number of EVs fulfilling their requirements. In addition to
linear programming, various kinds of other programming approaches are also employed to optimize
the schedule for electric vehicles. In [28], the authors considered a total cost of a large scale EVs by
quadratic programming. A heuristic algorithm was used to address a large scale PHEVs charging
scheduling problem aiming at the objective of maximizing the average state-of-charge [29]. In [10],
the authors employed estimation of distribution algorithm (EDA) to well address the 3000 PHEVs
charging scheduling problem and obtained satisfactory optimization results. In [30], a suite of
computational intelligence-based algorithms are adopted to address the problems. Other than
the optimization methods, there also exist various kinds of optimization objectives, such as the
minimization of charging cost, minimization of grid load variance, maximization of aggregators’ profit,
maximization of average state-of-charge of vehicles, and many others. A summary on the optimization
objectives can be found in [31]. Nevertheless, for the above studies, there still exist the problems below.

1. The research that is on the side of power providers does not consider the owners’ personalized
demand on electricity energy as well as the payment for charging in a dynamic environment of
electricity spot prices.

2. Much research on charging schedules requires the day-ahead energy demand, which means
the owners should input the next-day driving plan everyday. However, it is trivial for owners.
Besides, it is difficult to ensure the accuracy of plan.

By considering both charging payments and daily driving routines simultaneously, in this
paper, a rolling dynamic optimization for PHEV charging is proposed. A heuristic algorithm termed
Biogeography-based Optimization (BBO) is adopted to address the charging scheduling problem.
In this paper, we divide one day into N = 24 time slots. Namely, each time slot sustains one hour.
For a more accurate schedule, it is also feasible to divide one day into more time slots. For the charging
problem, the schedule system will consider both forward electricity prices (the prices in the following
24 time slots) and the historical driving routine. Based on the information, the system will decide
whether to charge the vehicle or not in the current time slot. The decision for the current time slot
will be made according to the optimized schedule. However, the schedule will be remade in the next
time slot since refreshed spot prices (a refreshed 24 prices in the following time slots) will be provided.
Hence it is a dynamic rolling optimization problem.

Heuristics are very popular in dealing with optimization problems in current decades.
Xue employed an artificial bee colony algorithm to handle global optimization and obtained
competitive performances for global optimization [32]. Zhang et al. employed heuristic algorithms to
wireless sensor networks and was copied well with the energy conservation problem in the process
data gathering [33]. A heuristic strategy was employed in dealing with the privacy problem in social
network data sharing, which showed the heuristics’ superiority [34]. For multi-objective optimization,
heuristic algorithms also play a crucial role. Liu employed NSGA-II to a heterogeneous cloud system
and obtain a comprehensive view for decision makers [35]. In addition, for the idea of heuristics,
it is usually employed in many different kinds of searching and exploration strategies. In [36],
Xia used the heuristic idea to propose a “Greedy Depth-first Search”, which was well implemented
to multi-keyword ranked search scheme and well optimized the time complexity of algorithms.
All the achievements of heuristics demonstrate it is a powerful tool to address optimization problems.
For scheduling problems, heuristic algorithms are also very active. Compared with the programming
methods, heuristic algorithms have several advantages summarized below.

1. Heuristic algorithms are independent of problems. After encoding operation (e.g., binary
encoding, matrix encoding, etc.), the run of the algorithm is independent to the problem. The final
results can be obtained by decoding operation. Hence, the design of algorithms and the proposal of
problems are separable, which provides a favourable compatibility for an algorithm’s application.
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2. For heuristic algorithms, they do not need much mathematical information. Compared with
several traditional mathematical methods, such as programming methods, it is impossible to
solve optimization problems without derivative information of objective function.

3. It is more adaptive to employ heuristic algorithm to solve different kinds of optimization
problems including multi-modular optimization problems, dynamic optimization problems,
linear programming problems, dynamic programming problems, integer programming problems,
and so forth. Hence, even if some conditions in the problems change, heuristic algorithms are still
competent to address them.

In this paper, we investigate the charging schedule from the owners’ perspectives and conduct
rolling optimization for charging schedule by heuristic algorithms. First, to avoid the cumbersome
task of daily input to a driving plan, we built a model of driving routine according to historical driving
records, which brings two advantages: (1) it is needless to input the next-day plan, which can provide
a smart charging service. The drivers only input specific driving plans if needed; (2) Since the driving
routine is modeled according to owners’ habits, the charging schedule is personalized. Second, we will
conduct a dynamic optimization per time slot, which means that the schedule will be made according
to the changes of real driving routine autonomously.

The remainder of this paper is organized as follows. In Section 2, the current day-ahead power
market is introduced in brief. In Section 3, we build the model for owners’ driving habits and make
the charging scheme based on the driving routine model. Specifically, in Section 3.1, the owners’
habit will be illustrated. A statistical model for energy demand in different time slots is built, which
is a combinatorial optimization problem in a dynamic environment. In Section 3.2, to address the
optimization problem, an evolutionary algorithm is employed to design a charging scheme to minimize
the owners’ payments for energy demand. The simulation experiments are conducted in Section 4.
The simulation results are also analyzed to provide suggestions for owners. We conclude this paper in
Section 5 and present our future work.

2. Background and Preliminaries

2.1. A Brief of the Power Trading Market

As a kind of wholesale electricity market in Scandinavia, the day-ahead market operated by
Nordpool is the main arena for trading power. In this market, electricity production balance the
responsible party (seller) and the consumption responsible party (buyer) to reach an energy agreement
for the delivery of power on the following day. With this agreement, the spot price is set and the trade
is agreed. This daily trading is driven by the seller and buyers’ planning. For example, the buyer needs
to assess how much energy he will need to meet the demand of the following day, and how much it is
willing to pay for this volume, hour by hour. The seller needs to decide how much he can deliver and
at what price, hour by hour.

After having these plans, they will submit their bids to Nordpool before 12:00 AM everyday.
Then, the Nordpool will publish the hourly spot price one hour later, i.e., all the players in the market
will know the spot price for the following day. However, due to the increasing penetration of uncertain
renewable energy as well as the displacement of conventional generation, it will further increase the
needs of real time balancing resources. Thus, the uncertainty issue should be considered when making
the schedule and the fluctuation of spot prices also provides the space for optimization to save the
charging cost.

2.2. Preliminary of Heuristic Algorithm

The charging scheduling problem is a combinatorial optimization problem. To address these
kinds of problems, the heuristic algorithm plays a very active role. In general, heuristic algorithms are
inspired from natural phenomena, and have now drawn much attention from worldwide researchers.
For the algorithms, they are usually independent of the background of optimization problems but only
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focus on the optimization objectives and searching space. Therefore, they are well and widely
applied to many areas including engineering, finance, medicine, transportation, and so forth [37,38].
The famous heuristic algorithms include the Genetic Algorithm (GAs) [39], Differential Evolution
(DE) [40], Ant Colony Optimization (ACO) [41], Biogeography based Optimization (BBO) [42], and
many others. As mentioned in Section 1, heuristic algorithms are already well used in charging
problems with different kinds of optimization objectives and constraints, which demonstrates the
algorithms are competent in addressing optimization problems in the EV power market. In general,
there are three components in the design of algorithms, which are recombination operator, crossover
operator, and selection operator. A general design flowchart of the heuristic algorithm is given in
Figure 1.

Figure 1. Generalized design of evolutionary algorithm.

Most differences among heuristic algorithms exist generally in the design of the recombination
operator. In GA, the crossover operator recombines different candidate solutions by mimicking
the natural genetic mechanism in biology [39]. BBO designs the migration operator to enforce the
communication among different candidate solutions by simulating species migration among different
islands [43]. DE produces new offsprings by the differences of their parents [40]. ACO explores the
searching space by the cooperation among ants’ cooperation [41]. The various kinds of recombination
operators have their own properties in addressing different optimization problems. In this paper, BBO
will be employed to optimize the optimization in PHEV’s charging scheme. For BBO, it has a more
flexible way to recombine candidate solutions since for each recombination all candidates are involved,
while for GA only one pair of candidates are in one recombination [43,44]. In addition, BBO is easily
implemented since it has few parameters in programming, compared with several other heuristic
algorithms such as ant colony optimization (ACO) [41] that contains around five parameters.
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2.3. Brief of Biogeography-Based Optimization

Biogeography-based Optimization (BBO) mimics the species migration among different islands.
In the algorithm, candidate solutions are analogous to islands. For fertile islands, there are a huge
number of species living there, while for barren islands, only a few of species live there. Considering
there are lots of species living in a fertile island, it is difficult to immigrate to the islands and species’
trend is to emigrate. While for barren islands, the immigration rate is high and emigration rate low.
Inspired from this idea, the good solutions have a large emigration rate and a low immigration rate,
while the poor solutions have a low emigration rate and a high immigration rate. Moreover, a large
emigration rate means the solution will much affect other solutions. On the other hand, a large
immigration rate means the solutions will be much affected by other solutions. A figure to illustrate
the migration rates is given in Figure 2.

Figure 2. Linear migration model in Biogeography-based Optimization.

Figure 2 illustrates a linear model of species distribution in a single habitat [43], where I is
the maximum possible immigration rate and E represents the maximum possible emigration rate.
The immigration rate λ and the emigration rate µ are functions of the number of species in the habitat.
For one island, the immigration rate increases and the emigration rate decreases as the number of
species increases. As a very important operator in EAs, the mutation operator helps algorithms break
away local optima and maintain population diversity. In BBO [43], the mutation rate is calculated
by (1).

mK = mmax

(
µmax − µK

µmax

)
(1)

where K is the index of candidate solution, mmax is defined by users in advance, µK are the immigration
probability calculated according to migration model, and µmax is the maximal immigration rate of µ.
A linear migration model is shown in Figure 2. Compared with many other conventional evolutionary
algorithms, the mutation rate in BBO fluctuates over the course of the optimization process, which
is affected by the recombination operator, say the migration operation. A detailed analysis on BBO’s
mutation rate can be found in [45]. The psudo-codes of BBO are given in Algorithm 1.
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Algorithm 1: Pseudo-codes of Biogeography-based Optimization.
Input: Population Size PS. The dimension of problem D.
Output: The best solution Hbest.

1 Initialize a population composed by PS candidate solutions H1, H2, ..., HPS;
2 For Hi , calculate its immigrate rate λi and emigration rate µi ;
3 while Termination condition is not met do
4 for i = 1 to PS do
5 for d = 1 to D do
6 Generate a random value r1 ∈ [0, 1] % Migration Operator;
7 if λi > r1 then
8 Generate a random value r2 and set Total_Sum = r2 ∑PS

1 µi ;
9 Set Temp_Sum = 0 and j = 0;

10 while Temp_Sum ≤ Total_Sum do
11 j = j + 1 ;
12 Temp_Sum = Temp_Sum + µj;
13 end
14 Hi(d) = Hj(d);
15 else
16 Hi(d) = Hi(d);
17 end
18 Use µi to compute mutation rate mi according to (1) % Migration Operator;
19 Generate a random value R;
20 if R < mi then
21 Generate a feasible value F in searching space ;
22 Hi(d) = F;
23 end
24 end
25 end
26 end
27 Hbest is the best solution in Hi , where i = [1, 2, ..., PS];

3. Design for Charging Scheme

Due to the fluctuated electricity prices, a satisfactory charging scheme is useful for PHEV owners to
save charging costs and also meet the requirements of a driving plan. For the driving routine, in general,
the owners should input the next day driving plan into charging system, e.g., aggregators. However,
it is a very trivial task for drivers. Besides, in general, the plan may not be very accurate. Hence, in
this section, a driving schedule will be conducted through modeling on historical driving records.
After that, the driving model and the electricity prices in the next 24 time slots (24 h) will be employed
as input of evolutionary algorithms for scheduling. We chose Biogeography-based Optimization to
solve the corresponding optimization problem because of its straightforward implementation and
ability to generate optimal schedules within manageable computation times.

3.1. Modeling of Energy Demand

In this section, according to PHEV owner’s historical driving routine, a statistical model is built.
In the modeling, several assumptions are made below.

1. We divide one day into N time slots. For each time slot, there are only two charging status,
the charging status and non-charging status. For the non-charging status, it includes two cases.
The first case is the idle case that means there is neither charging nor discharging. The second
case is discharging when driving. We do not schedule for the time slot where the vehicle is driven.
Even if the driving operation does not occupy a whole time slot, we consider the whole time slot
as used for driving and do not conduct scheduling on the rest of that time slot.

2. In any full time slot, we consider the energy consuming is E, which means that we employ an
average energy demand per time slot regardless of the road condition or accelerating/decelerating
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status. For the time slot that is not fully occupied by charging time, we calculate the energy cost
proportionally to the driving time.

By analyzing driving data in Θ = 246 days, total Ω = 1074 driving records are obtained. Due to
the limitation of pages, we only present segmental part including 20 records in Table 1. “Start Time” is
the time that owner begins to use the vehicle, while the “Finish Time” records the end time that finish
the driving.

Table 1. 20 driving records from total 1074 records. Each record presents the complete time cost for a
driving record. Start Time is the time to start driving, while Finish Time records the end time.

Trip Number Start Time Finish Time

1 2001/12/7 16:07:38 2001/12/7 16:18:55
2 2001/12/7 16:25:52 2001/12/7 16:46:22
3 2001/12/7 17:05:52 2001/12/7 17:18:47
4 2001/12/7 17:48:06 2001/12/7 17:49:57
5 2001/12/7 18:00:45 2001/12/7 18:09:51
6 2001/12/8 10:31:02 2001/12/8 10:36:52
7 2001/12/8 10:51:53 2001/12/8 10:57:29
8 2001/12/8 11:04:00 2001/12/8 11:05:09
9 2001/12/8 11:26:36 2001/12/8 11:31:29

10 2001/12/8 11:55:51 2001/12/8 11:55:53
11 2001/12/8 12:09:09 2001/12/8 12:17:00
12 2001/12/9 10:32:17 2001/12/9 10:36:14
13 2001/12/9 13:35:47 2001/12/9 13:40:48
14 2001/12/10 06:32:14 2001/12/10 06:58:57
15 2001/12/10 15:27:37 2001/12/10 15:41:10
16 2001/12/10 15:48:42 2001/12/10 16:08:54
17 2001/12/11 06:33:45 2001/12/11 06:59:00
18 2001/12/11 15:31:53 2001/12/11 15:57:37
19 2001/12/11 16:07:49 2001/12/11 16:12:11
20 2001/12/11 16:28:16 2001/12/11 16:30:37

As mentioned above, in this paper, we divide one day into 24 time slots, namely N = 24 and
therefore for each time slot, the time is TInterval of one hour. The driving time during the j-th time slot
is calculated according to (2).

Tj =



Ω

∑
i=1

(Ft(i)− St(i)) , i f St(i), Ft(i) ∈ slot(j)

Ω

∑
i=1

(
Ft(i)− Sslot(j)

)
, i f St(i) /∈ slot(j) & Ft(i) ∈ slot(j)

Ω

∑
i=1

(
Fslot(j) − St(i)

)
, i f St(i) ∈ slot(j) & Ft(i) /∈ slot(j)

Ω

∑
i=1

(
Fslot(j) − Sslot(j)

)
, i f St(i), Ft(i) /∈ slot(j) & Ft(i) > Fslot(j) & St(i) < Sslot(j)

(2)

where Tj is the total time cost during the jth time slot, Ω = 1074 is the amount of driving records, Ft(i)
and St(i) (i ∈ [1, Ω]) are finish time and start time for a driving, slot(j) (j ∈ [1, N]) is the jth time slot,
and Fslot(j) and Sslot(j) are the finish time and start time of the jth time slot. In (2), there are four cases.
For the first case, the finish time and start time of the i-th driving are both in slot(j). For the second
case, the start time of the i-th driving is not in the slot(j), but the finish time of the i-th driving is in
the slot(j). For the third case, the start time of the i-th driving is in the slot(j), but the finish time of
the i-th driving is not in the slot(j). For the fourth case, the whole driving time covers slot(j), which
leads to the result that both finish time and start time of the i-th driving are not in the time slot slot(j).
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By statistical analysis, the total time for driving in each time slot is given in Figure 3a. Besides, we also
employ, in a similar way as (2), to calculate the driving accounts in each time slot and present the
statistical results in Figure 3b. According to the figures, it is obvious that in a day, there are two peaks
occurring during 7:00–9:00 a.m. and 16:00–18:00 p.m., which corresponding with daily rush hours.

(a) (b)

Figure 3. Statistical analysis on total time and total count for 1074 driving records. (a) Total time of
driving at each time slot and (b) total count of driving at each time slot.

As mentioned in the first item of assumptions, the energy consuming is proportional to the
driving time. It consumes energy E for a full time slot. According to the statistical results of driving
time, we can evaluate energy cost for each time slot. However, there exits some rare driving behaviors
that should be properly dealt with. In the statistical analysis of Figure 3a and Figure 3b, there
exit some sporadic driving actions. For example, according to Figure 3a, during the time slot 3
(from 3:00 a.m. to 4:00 a.m.), the total driving time is about one hour. However, during the time slot,
there only exists few driving records in total 1074 records. Hence, we consider the driving action as
sporadic driving, which is not a habitual routine. To reduce the influence of happenstance to driving
routine modeling, we employ ϕ shown in (3) as a weight to evaluate the corresponding energy demand
ed for each time slot.

ϕed(i) =
counted(i)

Θ
(3)

where counted is the energy demand ed that occurs in the i-th time slot and i ∈ {1, 2, ..., 24}, Θ = 264 is
the total days of records . For the energy demand ed, it is proportional to the time consuming, which is
given in (4).

ed =
Ted

Tinterval
× E (4)

where Ted is the time cost to consume energy ed, Tinterval is the time duration of a full time slot, and
in this paper the value of Tinterval is one hour. The weighted energy demand ew at the i-th time slot is
given in (5).

ew(i) =
counti

∑
j=1

ϕed(j)× ed(j). (5)

where counti is the total number of driving records in the i-th time slot, i ∈ [1, 2, ..., 24]. According
to (5), the weighted energy consumption shows the energy cost in habitual daily driving routine.
An example to explain the weight is given as follows. In the statistical analysis of 246 days, for the
time slot of 3:00 a.m. to 4:00 a.m., there exists a driving behavior using about 40 minutes only once and
therefore it costs energy of 2

3 E. Since such driving at that time only exists once during 246 days, the
weight value ϕ is 1

246 and therefore the weighted energy demand is ew(
2
3 E) = 1

246
2
3 E. Hence, ew(

2
3 E)
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is a very small value and is also competent to reflect the true routine in PHEV owners’ daily life. By
accumulating all weighted energy demands in each time slot, we define the weighted energy demand
in the i-th time slot in (6).

D(i) =
Ω

∑
i=1

ew(i) (6)

where ew(i) is obtained by (5), i ∈ [1, 2, ..., 24]. By defining E = 12 kWh, for the energy demand in each
time slot, we draw the figures shown in Figure 4.

Figure 4. The accumulated weighted energy demand for 24 time slots by analyzing 246 days data.
The x-axis is index of time slot. The y-axis is weighted energy demand with unit of kWh.

According to the figure, on one hand, it is obvious that there is nearly no energy cost during
the nights and also reflect the two period of peak consuming at 8:00 a.m. and 16:00–17:00 p.m.,
which reflect the personalized true habitual driving routine. On the other hand, the y-axis is the energy
consumption. It is easy to know the energy demand in each time slot. For the energy consumption in
each time slot, it meets the Poisson probability distribution, which is given in (7).

P(i, j) =
(

ew(i)j

j!

)
∗ exp(−ew(i)) (7)

where i ∈ [1, 2, ..., 24] is the index of time slot and j is the number of ew. The figures to show the
probability distribution of energy demands in 24 time slots are given in Figure 5. Each curve presents
the probabilities in each corresponding time slots.

Figure 5. Poisson probability distribution for weighted energy demand in each time slot. The x-axis is
index of time slot. The y-axis is probability of weighted energy demand.
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In Figure 5, we employ the bold green curve as an example to explain the meaning. For the green
curve, it presents the probabilities at the time slot 19:00–20:00. According to the green curve (at the time
slot 19:00–20:00), the probability of energy demand “1 kWh” is about 0.35. The probability of energy
demand “2 kWh” is 0.28. The probability of energy demand “0 kWh” is about 0.2. The probability
of energy demand “4 kWh” is about 0.6. The green curve only presents the probabilities of different
energy demand for time slot 19:00–20:00. Other curves present the probabilities of energy demands
in different time slots. In the charging scheduling, we select the energy demand with the maximum
probability as a predictive energy demand.

3.2. Design of Optimization for Charging Schedule

To pursue a minimal payment, a charging schedule is designed in this subsection. The optimization
objective is given in (8).

Minimize P =
24

∑
i=1

C(i)× S(i)

St. B(i) ≥ D(i)

(8)

where P is the total payment in the future 24 time slots, C(i) as a binary integer is used to depict the
charging status at the i-th time slot, S(i) is the spot price at the i-th time slot, and B(i) is the dump
energy in battery at i-th time slot. Since the maximum state of battery is 12 kWh, the maximal value
of B(i) is 12, D(i) is the demand at the i-th time slot, and B(i) = B(i− 1) + C(i− 1). Thanks to the
day-ahead electric market, we assume that the S(i)s in the next 24 time slots are known in advance.
According to (8), it is a constrained optimization problem. To solve the constraints, we employ the
penalty function method. The penalty function is designed according to the price of gasoline, which
means that once the electric power is not enough for driving, the user must pay the price of gasoline
for vehicle endurance, which is feasible for PHEVs. Hence the optimization objective is modified in (9).

Minimize P =
24

∑
i=1

C(i)× S(i) + max{D(i)− B(i), 0} × Sg (9)

where Sg is the price of gasoline. Since in this paper, we assume the output power remains unchanged,
the cost of Sg in different time slot is also fixed. Here we assume Sg is 9 Euro per hour. According to (9),
this problem can be considered as a combinatorial optimization problem. In addition, the optimization
environment is dynamically changing per hour.

As explained above, we employ a heuristic algorithm named Biogeography-based Optimization
(BBO) to address the dynamic rolling optimization problem. As a heuristic algorithm, it is powerful
to address combinatorial optimization problems. For optimization, we conduct a rolling dynamic
schedule for charging, which means that the schedule is made every hour from the current time slot
to the next 24 h. The charging decision in current time slot is made according to the optimization
schedule. The inputs include the electric prices and the weighted energy demands in the following 24 h.
However, at the next time slot, the schedule is remade according to the new inputs in the following
24 h, which is a rolling schedule. The steps of optimization is given as follows.

1. Record the electricity spot prices P = [P(1), P(2), ..., P(24)] per time slot in the next 24 time
slots (hours).

2. Record the weighted energy demand Ew = [ew(1), ew(2), ..., ew(24)] per time slot in the next
24 time slots (hours).

3. Input P and Ew (total 48 decision variables) to BBO for optimization according to Algorithm 1.
4. Output the charging decision for each time slot in the next 24 h.

The pseudo codes of the algorithm are presented in Algorithm 2.
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Algorithm 2: Pseudo-codes of BBO for Personalized Charging Schedule.
Input: The electricity prices P in the next N time slots. The Weighted Energy Demand Ew in the next N time slots.

Gasoline price Sg. The current energy in battery B. Population Size PS for BBO.
Output: Charging Status C in the next N time slots.

1 Initialize a population for BBO;
2 Evaluate the fitness of the population according to (9);
3 Sort the population according to the fitness of each candidate solution in a descending order;
4 for i = 1 to PS do
5 for SIV = 1 to N do
6 % SIV is the index of each time slot. if λi > r1 then
7 Hi(SIV) is selected;
8 % H is a candidate solution.
9 else

10 Hi(SIV) is not selected;
11 end
12 if Hi(SIV) is selected then
13 Generate a random value r2 and set Total_Sum = r2 ∑N

1 µi ;
14 Set Temp_Sum = 0 and j = 0;
15 while Temp_Sum ≤ Total_Sum do
16 j = j + 1.;
17 Temp_Sum = Temp_Sum + µj;
18 end
19 Hi(SIV) = Hj(SIV)
20 else
21 Hi(SIV) = Hi(SIV)
22 end
23 end
24 Output the solution with the best fitness Hbest with charging status in the next 24 time slots.
25 end

4. Simulation and Discussion

In this section, according to the modeling in Section 3.1, we consider the statistical model as
a predicted by energy demand and input the electricity prices in the next 24 h to the optimization
algorithm. The charging schedule is given as follows. The capacity of the battery is 12 kWh which
means that if the battery is fully charged, the charging schedule cannot set the charge status as a ’1’.
The rated charging power is set as 2 kWh. In the initial stage, there is no power in battery. The start
time is from 0:00 at the first day, while the end time is at 24:00 at the third day. The price of gasoline
is set as e1.4 per liter (Price in Denmark as reference), and for each time slot (one hour) the driving
cost of gasoline is about e9. We run the simulations in a computer with a CPU of Intel(R) Core(TM)
i5-4300U @ 1.9 GHz and the compiler is Matlab 2016a in Windows 7 SP 1. For the heuristic algorithm
BBO, we employ a population size of 50 and set the generation limitation as 100, which means the
limitation of fitness evaluations is 100× 50 = 5000. For the migration operator, a linear model is
employed and the mutation rate is 0. We run the algorithm for 25 times and the average time cost
for calculation is round 4.27 (±0.21) s. Considering that in this paper time slot is one hour, which
means the charging schedule should be conducted hourly, it is definitely timely to do the calculation
in seconds. The electricity prices of the 72 time slots are given in Figure 6, which were downloaded
from an official website http://osp.energinet.dk/_layouts/Markedsdata/framework/integrations/
markedsdatatemplate.aspx. The predictive energy demand is calculated by (7), according to the
historical driving data and the real energy demand is given in Figure 7.

In the simulation, in addition to BBO, we also employ other two well-known heuristic algorithms,
which are the genetic algorithm (GA) and ant colony optimization (ACO) respectively, as peer
algorithms for a performance comparison. The population size in the two algorithms is also set
as 50 and the maximum fitness evaluations is also set as 5000 to guarantee a fair comparison. For GA,
a roulette wheel selection mechanism is employed. We select a single-point selection in the crossover
operator and the crossover probability is 1, and a mutation rate is set as 0.01. For ACO, we used

http://osp.energinet.dk/_layouts/Markedsdata/framework/integrations/markedsdatatemplate.aspx
http://osp.energinet.dk/_layouts/Markedsdata/framework/integrations/markedsdatatemplate.aspx
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the following parameters; initial pheromone value is as 1× 10−5; pheromone update constant is 20;
exploration constant is set as 1; global pheromone decay rate is 0.9; local pheromone decay rate is 0.5;
pheromone sensitivity is 1; and visibility sensitivity is 5. For each algorithm, we run the algorithm
25 times to obtain an average performance. The convergence performances of the three algorithms
are presented in Figure 8a. For each run, the averaged time cost is 4.27 (±0.21) s, 4.12 (±0.19) s,
and 5.33 (±0.17) s for BBO, GA, and ACO, respectively. It is noticed that in Figure 8a, it is only one
optimization process and as a rolling optimization process. In total, there are 72 figures since the
algorithms will be executed for each time slot. Due to the limitation of pages, we only present one
figure for the 1st time slot as an example. The charging scheduling for the 1st time slot (from 0:00 to
1:00 a.m.) is given in Figure 8b, where “0” is the non-charging status and “1” is the charging status.
According to Figure 8b, the decision in the current time slot (the 1st time slot) is “charging”. Hence, we
make the decision “charging” as the current operation. A comparison of the algorithm’s performance
charging cost (best performance, mean performance and worst performance) and averaged running
time, are summarized in Table 2. “Best” is the minimal cost in 25 runs for each algorithm, “Mean” is
the averaged cost in 25 runs, and “Worst” is the maximal cost calculated by algorithms in 25 runs.

Figure 6. Electricity prices in 72 time slots. For each slot, it presents one hour.

Figure 7. Driving status in 72 time slots. For each slot, it presents one hour. The value of “1” means the
vehicle is being used, while “0” means that the vehicle is being not used.
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(a) (b)

Figure 8. A charging schedule during 0:00–1:00 a.m. by heuristic algorithms. (a) Performance (charging
cost) comparison for ACO, GA, and BBO in a single time slot and (b) a charging schedule by BBO at
the time slot during 0:00–1:00 a.m.

Table 2. Performance comparisons for algorithms GA, ACO, and BBO. “Best”, “Mean”, and “Worst”
are the minimal cost, averaged cost, and maximal cost, respectively, in 25 runs for each algorithm.

Algorithm Names Charging Cost (e) Averaged Run Time (Seconds)
Best Mean Worst

GA 1.87 1.89 1.96 4.27
ACO 1.83 1.85 1.91 5.33
BBO 1.71 1.72 1.74 4.12

As shown in Figure 8a, BBO has a very competitive convergence pressure and also outperforms
other two algorithms, which demonstrates that BBO is competitive to address the charging scheduling
problems for electrical vehicles. According to Table 2, BBO outperforms other two well-known heuristic
algorithms ACO and GA. To be specific, BBO does not only have the best performance for “Best”,
“Mean”, and “Worst” results in 25 independent runs, but also has the smallest computation time. Hence,
the choice of BBO is very competitive to deal with the optimization problem. For all the charging
status for 72 time slots, we present the Figure 9, and the total price is about e1.71. All driving demands
are met and there is no driving using gasoline fuel. In this paper, we present the charging status in
72 h but not a long-term schedule. The reasons are given below. First, as mentioned, it is due to the
pages limitation. Second, in this paper, the rolling optimization is a short-term schedule. On one hand,
the price of electricity power can be known only before one day. It is not possible to do a long-term
schedule (more than 24 h). In this paper, the presented 72 h performance is based on the historical data
but not a real-time and practical scheduling. On the other hand, the historical data is always updated.
A benefit of the rolling optimization is that this schedule is conducted according to a driver’s historical
routine. However, general routine may change for different months or seasons. Hence, even if a
longer time schedule is conducted, it may not be much helpful for practical use. In addition, with the
fluctuation of energy demand in different months or seasons, the errors in rolling optimization always
exists. Therefore, in our view, it is not fair to compare the rolling optimization performance to the
scheduling with an accurate pre-input plan, which is a trivial task for drivers.

An error analysis on energy demand is presented in Figure 10. In Figure 10a, the schedule
obtained by the proposed algorithm BBO is shown, while Figure 10b is a charging schedule according
to a real driving routine in 24 h by mixed-integer linear programming.
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Figure 9. Charge status in 72 time slots. For each slot, it presents one hour. The value of “1" means a
charging status.

(a) (b)

Figure 10. A comparison between rolling optimization and fixed-plan optimization. (a) Charging
Schedule by rolling optimization for the first day and (b) Charging Schedule by fixed-plan for the
first day.

From the two figures, the charging schedules are obviously different and reasons are generally
from three aspects. First, it is definitely different between a fixed-plan charging schedule and a
rolling charging schedule. For a fixed-plan charging schedule, it will not consider the afterward
driving demand, while the rolling charging schedule will consider more on the next dozens of time
slots. The different kinds of charging perspectives cause different ways to charge vehicles. In rolling
optimization, although a schedule of 24 h is made, only the decision in the current time slot is adopted.
A second factor is the estimating error. The Poisson probability provides a statistical analysis for
users’ driving behavior. However, in the real world, the owners will not always obey his or her usual
habits. For fixed plan charging, the schedule can be made more accurately. Nevertheless, the accurate
schedule may not be robust, which means once the plan changes, the fixed plan cannot provide a
promising endurance for driving. Third, the difference is from the modeling of scheduling. In this
paper, the scale of time slot is one hour, which means an operation of “driving" will take a whole time
slot, even the real driving time is only a few minutes. For the remaining time in such time slots, we do
not conduct any charging operation. Hence, the idle time will also cause a systematical error.

5. Conclusions

In this paper, we propose a novel idea for PHEV charging for personalized customers.
By analyzing historical driving records, we built a PHEV charging model, which correspond to
the PHEV owners’ historical driving routine. By employing the model, a heuristic algorithm named
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BBO is used to optimize the charging schedule. The schedule is made according to the energy demand
and the spot prices in near future. According to the simulation results, the proposed approach is
feasible and effective.

In our future work, the time slot will be divided into minutes to pursue a more accurate
optimization schedule. However, with the minutes schedule, it may encounter the problem that
there will exist a considerable error between a PHEV owner’s driving action and the predicted driving
model. To apply the proposed approach to vehicle fleets that include tens and hundreds of vehicles,
more customized requirements for daily driving routines of different vehicles will be considered as
well as for a large scale charging schedule and it is mandatory to consider the grid load. In addition, in
this paper, the proposed strategy is for the drivers’ party by conducting the optimization according to
owners’ driving routine. Our future work will consider the limitations of the distribution network,
which involves more factors including network congestion, bus voltage drop, transformer overloading,
and so forth.
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