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Abstract: Realistic models of occupant behaviour in relation to air-conditioner (a/c) use are
fundamentally important for developing accurate building energy simulation tools. In Australia
and elsewhere, such simulation tools are inextricably bound both in legislation and in the design
of new technology, electricity infrastructure and regulatory schemes. An increasing number of
studies in the literature confirm just how important occupants are in determining overall energy
consumption, but obtaining the data on which to build behaviour models is a non-trivial task. Here
data is presented on air-conditioner usage derived from three different types of case study analyses.
These are: (i) use of aggregate energy consumption data coupled with weather, demographic and
building statistics across Australia to estimate key predictors of energy use at the aggregate level;
(ii) use of survey data to determine characteristic a/c switch on/off behaviours and usage frequencies;
and (iii) use of detailed household level sub-circuit monitoring from 140 households to determine
a/c switch on/off probabilities and their dependence on different building and occupant parameters.
These case studies are used to assess the difficulties associated with translation of different forms of
individual, aggregate and survey based information into a/c behaviour simulation models. Finally
a method of linking the data gathering methodologies with the model development is suggested.
This method would combine whole-of-house “smart”-meter data measurements with linked targeted
occupant surveying.
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1. Introduction

The ability to understand and predict when occupants will use air-conditioning, and the energy
consumed when doing so, is important for design of electricity infrastructure, for developing
regulations aimed at reducing household energy consumption, and for designing systems that provide
occupants with better comfort outcomes at lower economic and environmental cost. Understanding
building air-conditioning energy consumption is particularly important in the first two respects
because it contributes 40% of household energy usage in Australia [1], and because air-conditioning is
the primary driver of peak electricity consumption in most states of Australia [2].

In Australia, all new residential buildings constructed must meet a minimum building energy
efficiency level that is assessed through annual thermal simulation of the proposed building, combined
with representative weather data and assumptions around occupancy and air-conditioning (a/c) usage
behaviour. The modelling requirements are documented by the Nationwide House Energy Rating
Scheme (NatHERS) regulator [3] and dedicated tools [4] have been developed to perform the analysis.
Thus, assumptions around how occupants will behave in relation to a/c use, and the simulation
models themselves are effectively enshrined in Australian law, with far reaching implications for the
building construction industry and for the design of the approximately 20,000 new dwellings built
every month [5].
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Given this, our goal is to develop improved models of residential air-conditioning use in Australia,
not only to improve energy use predictions, but also to facilitate better building and technology design.
However, as will be explored in this work, such models must be built on a comprehensive and
representative set of data and there is limited existing data available in this area particularly in the
Australian context. Before proceeding however, it is important first to review the evidence for the
importance of occupant behaviour on building energy consumption, noting in the process the methods
of gathering the data used to make these assessments. This is not an exhaustive review, but by necessity
international works have been considered.

In the study by Lutzenhiser et al. [6] modelling combined with survey derived information on
equipment usage patterns was used to simulate three representative detached houses—stated to
represent approximately 70% of the Californian building stock—in four climate zones with a range of
different occupancy schedules, a/c control strategies, appliance efficiencies and energy consumption
levels. A total of 9500 different model combinations were considered. The authors found that variations
due to the climate and building together contributed less than 20% of the total household demand, and
that variations across occupant a/c usage behaviour lead to 30 to 50% of the demand variation (with
remaining variation due to occupant behaviour in relation to other appliances). Being a model-based
approach, the authors were readily able to compare the influence of different building and equipment
changes on consumption. However, variations in a/c usage behaviour were largely confined to
set-point temperature levels and the occupancy pattern—both of which were based on occupant
reported behaviour—which the authors note is sometimes less reliable.

In a widely reported study by Li and Jiang [7], direct measurements of a/c energy consumption
for 25 apartments within the same residential building in Beijing were made over a summer. Energy
consumption for cooling varied between 0 and 14.3 kWh/m2 with an average of 2.3 kWh/m2—the
variation entirely due to different occupant behaviours given that the apartment base construction
and climate were identical. However, the extent to which the data from this one building can be
extrapolated to similar apartment buildings in the same city—let alone to other types of buildings and
occupants in other locations—is unclear.

In another study, Daniel et al. [8] surveyed the a/c usage behaviour off approximately
175 occupants living in buildings specifically designed to have low energy consumption. The survey
responses were then used in a simulation model to compare the predicted energy consumption of
3 selected air-conditioned houses firstly with the standard occupant behaviour assumptions used
for NatHERS rating and then using the actual occupant behaviours. Model predictions were also
compared with several months’ of measurements from the 3 houses. Results showed that when the
actual occupant behaviour was used the annual energy consumption was an order of magnitude less for
a temperate climate and 2.6 times less for a cool temperature climate. These results give useful insights
into the importance of occupant behaviour—though for a specific type of low energy consumption
building only—and a small sample of occupants.

Meanwhile, Ren et al. [9] expanded the capability of the rating software by adding 6 different
representative overall house occupancy patterns based on an Australian Bureau of Statistics (ABS)
survey of how Australians use their time. They assumed that when the house was occupied, a/c was
used in the zone if the indoor temperature was above a certain set-point. A sensitivity analysis of a
highly efficient zero-emission house under the assumed occupancy scenarios showed a 20% variation
in annual consumption in Melbourne. However, in this study only the occupancy was varied and not
specifically how the a/c was used—i.e., under what conditions a/c was switched on and off.

As discussed by Rupp et al. [10], accurately predicting the extent to which an individual will feel
comfortable in a given situation is an extremely difficult task in general. However, a further layer of
behaviour complexity exists between the state of being uncomfortable and the action taken to modify
this situation. For example, Soebarto and Bennetts [11] monitored 60 households in Adelaide, Brisbane,
and Sydney in an attempt to understand whether low-to-middle income occupants were satisfied with
their thermal environment and the actions taken if they were unsatisfied. Ten of these households in a
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modern “green village” development were also instrumented with temperature and a/c monitoring
equipment, and occupants were given regular comfort surveys. All houses had a/c only in the living
room. The majority of occupants used a/c only occasionally, instead turning on ceiling fans, followed
by opening/closing windows and doors, closing curtains, changing clothes, going outside, and having
a shower all before finally switching on a/c if they were still uncomfortable. All households stated the
cost of running a/c as a concern. Interestingly, 60% of thermal comfort survey responses indicated
“slightly warm” to “hot” but only 43% of these indicated that they actually wanted to be cooler. That is,
being “not neutral” does not necessarily mean “wanting to be cooler.” This study is an example of
using a combination of survey and monitoring data to give revealing interesting insights into a specific
group of behaviours, behaviours that are considerably different from those often assumed. Though of
course, once again it would not be appropriate to generalize these results across the wider population,
building stock, and range of climates.

Finally, several studies—including [11]—also report that the ability of occupants to control their
own environment is critical for improving the range of conditions considered comfortable. For example,
Frontczak and Wargocki [12] report that users are more tolerant of conditions in naturally ventilated
buildings, while Stevenson and Rijal [13] also note that it is critical that occupants understand how to
operate their home to maximise both comfort and energy efficiency. The importance of the “human
factor” has also been discussed in the compressive review of general occupant behaviour modelling by
Yan et al. [14], who cite several authors whose results have shown this (please see the review paper
for references).

Overall these studies paint a clear picture: occupant behaviour in relation to building
air-conditioning energy use is not just the biggest remaining unknown, but the single most important
of all parameters. Moreover, representative data covering a wide range of behaviours is central to the
development of new models. Use of survey-based information is a common feature in these studies
but is typically supported by validation with direct measurements, usually with the aid of simulation
models. In Section 1.2 a brief review of a/c usage models implemented in simulation programs is
presented. However, before this, a key distinction in these usage models is discussed—the difference
between understanding how a/c is used currently versus why it is used in that way.

1.1. Air-Conditioner Usage: The How and the Why

Understanding and developing models for how occupants behave is clearly essential for predicting
energy use. However, a broader understanding of why occupants act in the way that they do leads to a
vastly increased ability to predict behaviour over time or once changes to the existing status quo—such
as tariff changes or technology improvements—are made. When gathering methodologies, designing
data and the simulation models built upon them, it is important to keep this distinction in mind, and
hence to understand the limitations of the existing models that deal almost exclusively with the how.

Figure 1 shows a conceptual diagram of the problem. As discussed in a recent review of residential
energy consumption behaviours [15], an individual household’s energy and a/c consumption profile
is likely the result of many confounding factors. Some of these, for example demographics, climate
or building characteristics, are readily measurable and quantifiable and statistical information at the
collective level is often available. Others—such as individual priorities, lifestyles, or motivations—are
difficult to formalize and measure, profoundly inter-related, and are likely to be evolving over time
and/or changing in response to particular events. The contribution of individual behaviours to overall
household a/c usage further confounds the problem. The constantly changing, evolving nature of
human behaviour in response to a multitude of factors defies simplistic explanation, and certainly no
air-conditioner behavioural model could be found in the literature that seeks to understand the why of
occupant behaviour as opposed to the how at a stationary moment in time.
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developing models of a/c behaviour. In the “top-down” approach, data gathering begins at the 
aggregate level (for example sub-station, suburb or town). Techniques such as clustering may be used 
to identify typical representative usage that can then be correlated with known characteristics such 
as demographics using statistical regression techniques (paths A, B and C). This analysis may be 
made either using time integrated data (for example annual averages or totals), or time dependent 
(for example 30 min electricity meter) data. The approach yields a predictive capability in that the 
derived models should be applicable for predicting energy use in response to different weather 
patterns, or in different regions with known values of the regression predictors (such as 
demographics). However, because they don’t account for many individual human behaviour 
characteristics, these models are unlikely to be useful for predicting how usage may change in 
response to, for example tariff changes, technology or building fabric improvements. 

In the second method, the “bottom-up” approach, data gathering begins at the occupant or 
household level, for example using surveys or electricity metering. This information may be 
aggregated to build typical representative patterns of a/c energy usage (paths D and E). As for the 
top-down approach, the analysis may be made either using time integrated or time dependent data. 
However, depending on the extent of information gathered—for example, on areas such as 
motivations, circumstances and priorities at the occupant or household level—the models developed 
may have some ability to predict changing usage patterns. That is, such an approach could be used 
to help understand the “why” of occupant behaviour. However, this requires careful design of the 
data gathering methods, with close attention to psycho-social considerations; issues that are not 
typically the primary concern of users and developers of building energy use models such as 
engineers, architects and industry professionals. 

1.2. Air-Conditioner Usage Models 

According to Yan et al. [14], occupant behaviour models may be broadly classified as either 
deterministic or stochastic. An example of the former are a/c on/off set-points at specific values of 
temperature or times of the day. In stochastic models, the behaviour is defined in terms of a 
probability of the action occurring. Stochastic models require multiple independent simulation runs 
and yield a distribution of output results. However, these models are arguably more realistic because 
they can take account of the variability of real behaviour. Although there are a number of publications 
in the literature covering different air-conditioner operation models, here the focus is on two key 
recent publications that use a stochastic approach. 

In the first paper, Ren et al. [16], describe a discrete-time Markov chain based approach for 
modelling a/c behaviour. They performed an initial investigation of 34 families in 6 cities across China 
with measurements of indoor temperature, CO2 and a/c energy use, as well as interviews to uncover 

Figure 1. Conceptual diagram showing different inter-connections in the problem of developing a
general residential air-conditioner usage model.

Two fundamental approaches may be taken to the problem of obtaining data for use in developing
models of a/c behaviour. In the “top-down” approach, data gathering begins at the aggregate level
(for example sub-station, suburb or town). Techniques such as clustering may be used to identify typical
representative usage that can then be correlated with known characteristics such as demographics
using statistical regression techniques (paths A, B and C). This analysis may be made either using
time integrated data (for example annual averages or totals), or time dependent (for example 30 min
electricity meter) data. The approach yields a predictive capability in that the derived models should
be applicable for predicting energy use in response to different weather patterns, or in different regions
with known values of the regression predictors (such as demographics). However, because they don’t
account for many individual human behaviour characteristics, these models are unlikely to be useful
for predicting how usage may change in response to, for example tariff changes, technology or building
fabric improvements.

In the second method, the “bottom-up” approach, data gathering begins at the occupant or
household level, for example using surveys or electricity metering. This information may be
aggregated to build typical representative patterns of a/c energy usage (paths D and E). As for
the top-down approach, the analysis may be made either using time integrated or time dependent
data. However, depending on the extent of information gathered—for example, on areas such as
motivations, circumstances and priorities at the occupant or household level—the models developed
may have some ability to predict changing usage patterns. That is, such an approach could be used to
help understand the “why” of occupant behaviour. However, this requires careful design of the data
gathering methods, with close attention to psycho-social considerations; issues that are not typically the
primary concern of users and developers of building energy use models such as engineers, architects
and industry professionals.

1.2. Air-Conditioner Usage Models

According to Yan et al. [14], occupant behaviour models may be broadly classified as either
deterministic or stochastic. An example of the former are a/c on/off set-points at specific values of
temperature or times of the day. In stochastic models, the behaviour is defined in terms of a probability
of the action occurring. Stochastic models require multiple independent simulation runs and yield a
distribution of output results. However, these models are arguably more realistic because they can
take account of the variability of real behaviour. Although there are a number of publications in the
literature covering different air-conditioner operation models, here the focus is on two key recent
publications that use a stochastic approach.

In the first paper, Ren et al. [16], describe a discrete-time Markov chain based approach for
modelling a/c behaviour. They performed an initial investigation of 34 families in 6 cities across China
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with measurements of indoor temperature, CO2 and a/c energy use, as well as interviews to uncover
a/c usage patterns. From these, 3 families were selected as being “typical” and were studied over a
2 month period. For these families, the a/c usage was closely linked to the indoor temperature with
the probability of turning on a/c fit to three-parameter probability distribution functions for each
family and each conditioned room. The magnitude of these probabilities were very different for each
of the 3 families. In addition, event driven probability functions and combined event and temperature
probability functions were also proposed.

Recently Feng et al. [17] extended the work of Ren et al. performing surveys of residents
in Chengdu, China resulting in approximately 500 responses to a/c on/off behaviour questions
targeting information on when the respondents switched on and off their a/c. This resulted in
52 combinations of on/off behaviour that were then used in a simulation model of a residential
apartment. The cooling energy consumption over 3 days was estimated using one set of probability
functions determined previously by Ren et al. combined with a model of occupancy prediction.
The resultant a/c consumption ranged from 0 to 29.1 kWh/m2. Cluster analysis was then used
to determine the 5 clusters of energy consumption and the corresponding a/c on/off behaviour
combinations that covered the majority of behaviours.

Together, these studies show a way forward to gather the data from which to build more realistic
a/c use models in simulation tools. However, to be truly reflective of actual behaviour it is necessary
to use as broader base of measured data from which to build the underling probability functions
and models.

Especially in the Australian context, the required underlying data from which to build a
comprehensive a/c usage model is not currently available, though references to some data sources
in addition to those noted above are given throughout this paper. Hence, before proceeding to
develop and implement such models in building simulation tools, it is necessary firstly to formulate
a data gathering and analysis methodology. Thus, here 3 case studies are used to explore different
data gathering approaches. The results presented are in themselves useful for the development of
building air-conditioner simulation tools, though the approaches taken are also assessed in terms of
their comparative strengths and weakness for developing air-conditioner usage models for building
simulation tools.

2. Results

2.1. Case Study 1: Aggregate Level Energy Data Analysis

In the first case study, aggregate level dwelling energy use data was linked with aggregate data
on the dwelling characteristics, demographics and climate, and a statistical analysis was performed.
This is equivalent to path “A” in Figure 1. Although this analysis used total household energy
consumption and not a/c energy consumption, and hence is likely to underestimate the effect of
climate and building thermal performance, a/c energy use is a substantial portion of total energy use
for most households, even in relatively mild climates.

The energy data analysed are quintiles of the distributions of annual residential dwelling energy
consumption for approximately 2000 Statistical Area Level 2 (SA2) regions (each SA2 consisting
of on average 10,000 people) across Australia for the year 2011 published by the ABS [18]. Least
squares regression was used to fit these quintiles to a cumulative Weibull distribution for the energy
consumption distribution for each SA2 region. The root mean square (RMS) error of this fit in terms of
the quintile locations was 1.29% across all regions.

This energy use data was linked with climate data for the same year (2011) provided by the
Bureau of Meteorology [19] using the geographically nearest weather station to the centroid of each
SA2 region. Climate data was represented in terms of two parameters, the annual Cooling Degree Days
(CDD) and annual Heating Degree Days (HDD) both calculated using the apparent temperature [20].
Contours of CDD and HDD are shown across Australia in Figure 2.



Energies 2017, 10, 1256 6 of 21Energies 2017, 10, 1256 6 of 21 

(a) (b)

Figure 2. (a) Contours of cooling degree days and (b) heating degree days across Australia based on 
apparent temperature as calculated using 2011 Bureau of Meteorology (BOM) weather station 
measurements. 

The energy use and climate data were combined with demographic and dwelling data from two 
sources. The proportion of households with equivalized total weekly household income in 10 
different levels was obtained for each SA2 region for 2011 from the Australian Census [21]. Additional 
demographic and building information was obtained from the National Exposure Information 
System (NEXIS) provided by Geoscience Australia [22]. This data is provided at a higher resolution 
(approximately 50,000 SA1 regions) and so was aggregated to produce values for the SA2 regions 
used here. Further details are given in the Appendix A. 

Regression analysis was performed to estimate the two Weibull energy distribution parameters, 
the scale parameter (similar to the mean) and the shape parameter (an indicator of spread), for each 
SA2 region using the climate, building and demographic variables as predictors. A step-wise least 
squares regression was performed, allowing for first-order interactions between the predictors. Plots 
of the regression estimated Weibull distribution scale and shape parameters versus the fitted values 
are shown in Figure 3. Also shown are plots of the relative main effects (the influence of a given 
predictor while accounting for all other variables) for those parameters identified as significant for 
the two regressions. 
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Figure 2. (a) Contours of cooling degree days and (b) heating degree days across Australia
based on apparent temperature as calculated using 2011 Bureau of Meteorology (BOM) weather
station measurements.

The energy use and climate data were combined with demographic and dwelling data from two
sources. The proportion of households with equivalized total weekly household income in 10 different
levels was obtained for each SA2 region for 2011 from the Australian Census [21]. Additional
demographic and building information was obtained from the National Exposure Information
System (NEXIS) provided by Geoscience Australia [22]. This data is provided at a higher resolution
(approximately 50,000 SA1 regions) and so was aggregated to produce values for the SA2 regions used
here. Further details are given in the Appendix A.

Regression analysis was performed to estimate the two Weibull energy distribution parameters,
the scale parameter (similar to the mean) and the shape parameter (an indicator of spread), for each
SA2 region using the climate, building and demographic variables as predictors. A step-wise least
squares regression was performed, allowing for first-order interactions between the predictors. Plots
of the regression estimated Weibull distribution scale and shape parameters versus the fitted values
are shown in Figure 3. Also shown are plots of the relative main effects (the influence of a given
predictor while accounting for all other variables) for those parameters identified as significant for the
two regressions.
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Figure 3. (a,c) Regression fits of Weibull distribution scale parameter and shape parameter for 
distributions of annual energy consumption for Statistical Area Level 2 (SA2) regions across Australia; 
(b,d) Comparison of relative main effects sizes of significant regression predictors in the fitted models 
for scale parameter and shape parameter. 

Both the climate parameters (CDD and HDD) are significant predictors of mean energy usage 
with more extreme climates leading to higher energy consumption with a greater effect on cooling 
requirement than heating (electric only). However, the effect of mean income is greater with higher 
income regions corresponding with higher mean energy use. The most significant predictors are both 
demographic indicators; the average number of persons per dwelling and the proportion of 
households with indigenous occupants having the largest effect. Of the building and dwelling related 
parameters, the proportion of separate houses had the largest effect while the proportion of 
apartments and the average floor area were not significant in this model. The proportion of buildings 
built prior to 1980 (an indicator of the proportion of buildings likely to have poor thermal 
performance having been constructed prior to the adoption of NatHERS regulations) had very little 
effect with a higher proportion of older buildings corresponding to a lower average household energy 
consumption.  

In general, despite the large number of regression parameters and interaction terms, the 
resultant regression models still have a substantial degree of unexplained variance (30% for the scale 
and 40% for the shape parameters) despite averaging over several thousand households. This is most 
likely because households generally do not consume energy in categorical ways consistent with 
assignment to coarse demographic groupings, though it is also possible that some critical variables 
were not recorded here. However, herein lies a central difficultly of this high level approach. The 
number of possible contributing variables is so large that the process of aggregation may in fact 
prevent a statistically meaningful result. At the very least, much more detailed household 
information around such things as lifestyles, motivations and priorities is needed to test this. Whether 
this information is obtained directly, inferred from observed behaviour, or by other means is a topic 
of investigation. An additional consideration is that many of these variables may change over time. 
Thus, although this information may help in the prediction of aggregate trends, and potentially in 
the validation of general a/c usage models, distinguishing different classes of specific a/c on/off 
behaviour from such data alone is likely to remain challenging. 

2.2. Case Study 2: Individual Reported a/c Usage Survey Data Analysis 

In contrast to the aggregate approach, analysis can also begin with individual household 
behaviour in an attempt to build representative models of a/c use. This is equivalent to path “B” in 
Figure 1. There are essentially two primary methods of gathering data on individual households; 
surveys and direct measurements. The various strengths and weaknesses of these approaches are 
discussed in [23]. A review of the published scientific literature found no specific Australian surveys 
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distributions of annual energy consumption for Statistical Area Level 2 (SA2) regions across Australia;
(b,d) Comparison of relative main effects sizes of significant regression predictors in the fitted models
for scale parameter and shape parameter.

Both the climate parameters (CDD and HDD) are significant predictors of mean energy usage
with more extreme climates leading to higher energy consumption with a greater effect on cooling
requirement than heating (electric only). However, the effect of mean income is greater with higher
income regions corresponding with higher mean energy use. The most significant predictors are
both demographic indicators; the average number of persons per dwelling and the proportion of
households with indigenous occupants having the largest effect. Of the building and dwelling related
parameters, the proportion of separate houses had the largest effect while the proportion of apartments
and the average floor area were not significant in this model. The proportion of buildings built prior
to 1980 (an indicator of the proportion of buildings likely to have poor thermal performance having
been constructed prior to the adoption of NatHERS regulations) had very little effect with a higher
proportion of older buildings corresponding to a lower average household energy consumption.

In general, despite the large number of regression parameters and interaction terms, the resultant
regression models still have a substantial degree of unexplained variance (30% for the scale and 40%
for the shape parameters) despite averaging over several thousand households. This is most likely
because households generally do not consume energy in categorical ways consistent with assignment
to coarse demographic groupings, though it is also possible that some critical variables were not
recorded here. However, herein lies a central difficultly of this high level approach. The number
of possible contributing variables is so large that the process of aggregation may in fact prevent a
statistically meaningful result. At the very least, much more detailed household information around
such things as lifestyles, motivations and priorities is needed to test this. Whether this information
is obtained directly, inferred from observed behaviour, or by other means is a topic of investigation.
An additional consideration is that many of these variables may change over time. Thus, although
this information may help in the prediction of aggregate trends, and potentially in the validation of
general a/c usage models, distinguishing different classes of specific a/c on/off behaviour from such
data alone is likely to remain challenging.

2.2. Case Study 2: Individual Reported a/c Usage Survey Data Analysis

In contrast to the aggregate approach, analysis can also begin with individual household
behaviour in an attempt to build representative models of a/c use. This is equivalent to path “B” in
Figure 1. There are essentially two primary methods of gathering data on individual households;
surveys and direct measurements. The various strengths and weaknesses of these approaches are
discussed in [23]. A review of the published scientific literature found no specific Australian surveys



Energies 2017, 10, 1256 8 of 21

of a/c usage across the general population; though in the broader literature several Australian studies
reporting survey results including /c usage related questions have been documented [15,24–26].

Designing surveys that achieve a representative sample, reasonable response rate and acceptable
cost, and that are easy for respondents to complete accurately free from response biases, is an active
area of research. Here an initial online survey was conducted primarily to gain some understanding of
the link between basic demographics and reported a/c usage. In the process, this also gave first-hand
experience of some of the above issues in relation to a/c usage surveys specifically. It is worth noting
that this platform was extremely cost and time effective.

The survey was run online using the Google survey platform between 29 April and 24 May
2016, and appeared as a “pop-up” on various Google controlled websites on desktop and mobile
platforms. A total of 78,079 users viewed the survey with 700 full responses gathered. Further details
are described in the Appendix A.

Here focus is on survey Q5, Q6 and Q7 since these are directly related to a/c usage. Approximately
half of respondents (47.7%) reported using a/c every day during summer (groups 1 and 2), with 32.2%
using the a/c relatively routinely (groups 3 and 4), and 18.3% essentially only on what are likely to be
very hot days (groups 5 and 6).

Next an Analysis of variance (ANOVA) was conducted to investigate the sensitivity of the main
effects of several parameters on the reported frequency of a/c use. Variation across states and territories
was found to be the largest, with Tasmania (TAS) and the Australian Capital Territory (ACT) having
much lower use frequency and South Australia (SA), Western Australia (WA) and the Northern
Territory (NT) having higher use. Variation across income brackets was also large, with higher incomes
corresponding to more frequent use. Respondents living in newer buildings reported higher frequency
of use, as did those in younger age brackets. Variation across a/c type was small, with only households
with split systems showing any significant difference (comparatively more frequent usage). Variation
across building type was also small, and there was no statistically significant variation with solar
photovoltaic (PV) or green power parameters. However, there was some indication that PV owners
reported less frequent use.

Q6 and Q7 asked respondents to indicate when they switch on and off the a/c during the summer
months. Multiple responses were allowed, but participants were instructed to only select a response if
it was true most or all of the time.

In total, 80% of respondents selected only one response option for Q6. Most respondents (72.8%)
reported switching on the a/c when they felt uncomfortable inside the building while a considerable
proportion (55.9%) also gave this as their only response. Similarly, while 21.2% reported switching on
the a/c when it was hot outside, 8.7% gave this as their only response. A total of 16% of respondents
gave reasons that excluded response options 1 and 2. For the open text field, the most common
response was related to never using a/c (0.9%), while a very small number of respondents (0.3%)
reported that the a/c was continuously running.

In total, 66% of respondents selected only one response option for Q7. For these single response
cases, the most common response was “when it feels comfortable inside” for 36% of respondents.
The next most common single response was “when it’s not hot outside” (9.3%) followed by “when
going to sleep” (6.3%), “when leaving the house/room” (5.3%), “after it’s been running for several
hours” (4.3%) and “it turns off automatically” (3.7%). For the open text field, the most common
response was related to the a/c being rarely used (0.6%), while others were related to when the room
was cool or cold, that the a/c was continuously running, or that the a/c was switched off “at night”.

To examine potential relationships between when respondents reported switching on and off the
a/c and the other survey responses and demographics, an ANOVA was conducted to investigate the
main effects. Key findings were as follows:

• Older respondents were less likely to report switching on a/c when it is hot outside or when
arriving home while younger respondents and those living in newer houses were more likely
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to report switching off the a/c when it is not hot outside. Higher-frequency a/c users were less
likely to report switching off a/c when it feels comfortable inside.

• Higher-income and more frequent a/c users were more likely to report switching on a/c when
going to sleep, as were owners of portable a/c and those living in newer houses.

• Higher-income respondents and those who were continuous users of a/c were more likely to
report switching on a/c when arriving home. Owners of wall and portable a/c systems were
more likely to report switching off the a/c when leaving the house or room, while split-system
owners were less likely to report this.

• Younger and higher-income respondents, and less frequent users of a/c, were more likely to
report switching off the a/c after several hours of operation. This was also true of households
with wall, split or ducted a/c.

• Higher-income respondents and those with wall, split or ducted a/c were more likely to report
that they have the a/c system switch on automatically while there was some indication that
respondents in newer buildings were more likely to report that their a/c switches off automatically.

• No significant trends in a/c switch on or off behaviour were found across gender, state or territory,
or dwelling with the exception of dwelling type which was a factor for the ‘other’ dwelling
category for Q6 response option 1.

The above survey results show a number of qualitative indications and trends and give some data
on the proportions of households likely to have certain characteristic a/c usage behaviour patterns
linked to other parameters. However, without linking this information to actual measurements of
usage or energy consumption it is difficult to build a quantitative a/c usage model from this data alone.

For example, for the majority of users who use temperature as the primary driver of “switch on”
behaviour, it would be possible to link frequency of usage with the ambient temperature corresponding
to the same frequency of occurrence given the respondents location, with the aim of creating a
distribution for the proportion of respondents using a/c as a function of temperature. For the specific
survey question used here, this would require encoding of the quantitative response options such as
“a few times a week” into actual hours of operation. A more definitive set of quantitative response
options would be required for this approach to have validity. However, it is likely that this would lead
to other challenges, in particular ensuring reliable responses from a wide selection of respondents.
This suggests that actual measured energy use data is an essential component for developing a general
a/c usage model.

2.3. Case Study 3: Household-Level Combined a/c Energy Consumption and Survey Data Analysis

As demonstrated above, the survey methodology can be used to obtain information from a broad
population base, however without linking this to specific quantifiable energy consumption data, they
have limited utility. In 2012/2013 CSIRO conducted a detailed Residential Building Energy Efficiency
(RBEE) study across 209 Australian households [26]. This consisted of 30 min measurements of up to
8 separate circuits within each household over a 12 month period combined with indoor temperature
measurement, occupant survey and building assessment information. The houses were located in
Melbourne, Brisbane, and Adelaide and were all less than 10 years old. Here this data was used to
perform a detailed assessment specifically focused on a/c usage combining both energy consumption
and survey information. This analysis corresponds to path D in Figure 1.

2.3.1. Combined Analysis of all 140 Households

The 140 households who had at least one air-conditioner were considered. As in the previous case
study, of particular interest are the actions of switching a/c on and off, as understanding an occupant
decision requires consideration of the event or action that it precedes. Here, the “switch on” action is
defined to have occurred if the a/c energy usage was below a nominal level for the preceding 30 min
interval, and above a nominal level for the interval in question. The “switch off” action may be defined
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similarly. The a priori probability that a/c is switched on or off in any given 30 min interval for any
one randomly selected household then follows as the mean ratio of the frequency of the action to the
total frequency of all possible actions for that state.

Because compressor on/off cycles usually occur with periods less than 30 min it is expected that
the majority of the events captured using this procedure are user “actions” (whether pre-programmed
using a controller or made at the time). In addition, even during compressor cycling, the air supply
fans of many air-conditioners continue to use significant power, hence in this instance the method
would determine that the air-conditioner was still on.

For households with more than one air-conditioner, air-conditioning was assumed to be on for
that household if any one device was on and off only if all devices were off.

The resulting overall computed “switch on” and “switch off” probabilities are shown in Figure 4
as a function of apparent ambient and apparent indoor temperatures for days where the maximum
ambient temperature was >24 ◦C. Only points based on more than 100 unique data values were
included in this figure. There is a clear trend of increasing probability of switching on a/c with
increasing ambient and indoor temperatures and decreasing probability of switching off a/c with
increasing ambient and indoor temperatures. However, whereas the trend for switch off probability
varies almost linearly with ambient temperature, the trend for indoor temperature shows a dip
in probabilities for indoor temperatures corresponding to typical room set-points. One possible
explanation is that occupants are slightly less likely to switch a/c off if the indoor conditions
are comfortable.
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Figure 4. Probability of air-conditioner (a/c) “switch on” action and “switch off” actions as a function
of apparent ambient and apparent indoor temperatures for days.

In general, since a/c relates to the indoor space and occupant comfort within that space, it might
be supposed that the indoor apparent temperature (a close indicator of comfort) would be a clearer
driver of a/c-use behaviour, particularly for switching a/c on. However, this does not appear to be the
case here. There are several potential contributing factors.

First, the indoor temperature measurement itself is subject to considerable uncertainty in both
the accuracy of the measurement, and the extent to which the temperature at the measurement
location gives a good indication of the indoor temperature as felt by the occupants. Second, the indoor
temperature often changes more rapidly than the ambient temperature, and is affected by prior a/c
use. For example, it is possible to envisage a/c being switched on, for the first time in a given day, at a
relatively high indoor temperature and being switched off later. A subsequent “switch on” action may
be made at a much lower indoor temperature, even though the ambient temperature for both cases
was similar.
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It may also be noted that here information on the occupancy of the household was unavailable.
This means that the “switch on” probabilities include periods when occupants were not at home and
so the a/c was off and remained off—as well as periods when the a/c remained on and occupants
were not at home. Hence, it was not possible to identify whether, for example, a/c was switched off
because occupants left the household or conditioned zone, or for some other reason. That is, “why” the
action was made (or not made). Thus, while this model is useful for predicting current a/c behaviour,
it cannot reliably predict usage changes due to, for example, changes to the occupancy pattern.

An alternate method of modelling a/c switch-off behaviour is based on the duration of running
time. Figure 5 shows the average cumulative probability that the a/c has been switched off as a
function of hours since a/c was switched on, again calculated across all households. Approximately
50% of the time, the operation period is less than 2 hours. Further analysis also shows an almost
identical plot when the switch off period is required to be at least 1 hour suggesting that the analysis
is correctly capturing actual occupant operation of the a/c system and not simply cycling of the a/c
compressor operation.
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Figure 5. Cumulative probability function for a/c switch off-behaviour as a function of duration on.

Also of relevance to air-conditioner switch on/off behaviour is the time-dependence of these
actions. Air conditioner “switch on” and “switch off” probabilities are shown in Figure 6 by time of day
for approximately equal values of apparent ambient temperature. By comparing these probabilities for
equal temperatures, the influence of time of day—and indirectly the duration of exposure—can be
considered separately from the absolute temperature. Once again, only points based on more than
100 unique data values are plotted.

Switching off a/c is substantially more likely to occur in certain periods of the morning and
evening. For those temperatures were there are sufficient data points, the pattern over the day is
also somewhat independent of the ambient temperature. On the other hand, the switching on a/c
pattern is relatively constant over the day with ambient temperature, with only small increases in
probability observable in the morning and afternoon, particularly for temperatures below 34 ◦C. Given
that temperatures above 34 ◦C occur relatively infrequently, and that these temperatures typically
occur at the same times of the day, there is considerable scatter in the data for higher temperatures.
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Figure 6. Probability of air-conditioner “switch on” action (a) and “switch off” action (b) as a function
of time of day separated by apparent ambient temperature (Tapp).

The potential influence of successive hot days on a/c use was also considered. The probability
that a/c was used on a given day was calculated for different intervals of (i) the maximum apparent
ambient temperature on the given day; and (ii) the maximum apparent ambient temperature on the
previous day. Only temperatures above 20 ◦C for the given day were considered, and only days for
which at least 10 readings were available. Figure 7 plots the average probability versus the difference
between the daily temperature maximums, with separate sets of data points for different ranges of the
maximum apparent temperature on the day of the reading. That is, each set of points compares usage
for approximately equal values of the maximum apparent temperature on the given day, since the
phenomena of interest is any trend of a/c-usage and not underlying characteristics of the weather—for
example, a hot day being more likely to precede a hot day.
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Figure 7. Probability of a/c usage on the given day versus the difference between the given days
maximum apparent ambient temperature (Tapp), and the maximum apparent temperature on the
preceding day for different values of today’s maximum apparent temperature.

From the previous analysis, a trend of increasing probability of a/c use with increasing maximum
temperature in the given day is expected and this is also shown in Figure 7. However, the most
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interesting result is that for a fixed maximum temperature on any given day, a/c energy use appears to
be, in general, greater if the previous day had either a much higher or a much lower temperature. This
effect is evident for temperatures in the range 24 ◦C to 32 ◦C. It is hypothesized that the two effects
are potentially related to “temperature shock” (i.e., usage is more likely when there is a significant
increase in temperature from the previous day; this is the region toward the right-hand-side in the
figure), and to “usage routine” (i.e., if a/c was used yesterday it’s more likely to be used today, even if
it’s not particularly hot; this is the region toward the left-hand-side). For the temperature range 34 ◦C
to 36 ◦C, the trend is different; as noted above, particularly for the higher temperatures further data is
required to confirm these trends given the scatter in the data. A final point worth noting is that the
temperature difference scale extends much further toward negative values. This is a characteristic of
the weather at the data locations; heat tends to build over several days, whereas cool changes that
decrease the temperature rapidly regularly occur.

2.3.2. Regression Analysis of Predictors of Air-conditioner Use

It is also of interest to assess the influence of various household parameters—i.e., building,
demographic, and behavioural—on four key overall quantities:

1. Total a/c energy usage (kWh) at peak times (i.e., when the ambient temperature is above 30 ◦C
and many households are likely to be using a/c).

2. Total a/c energy usage (kWh) at times when the a/c is likely to be operating in cooling mode
(i.e., when the ambient temperature is above 20 ◦C).

3. Mean apparent indoor temperature (◦C) at which the a/c is turned on. This gives a measure of
the temperature conditions at which the occupants choose to use a/c (i.e., somewhat independent
of the building).

4. Mean apparent ambient temperature (◦C) at which the a/c is turned on. This gives a measure of
the building performance but is also influenced by the occupant behaviour.

A stepwise linear regression analysis was again used to successively remove the least useful
predictor from the model. This is described further in the Appendix A. The results showed that:

• For predicting both total a/c cooling energy use and total a/c use on peak days, the most
important predictors were the rated electrical power of the a/c equipment, the self-reported
usage frequency (i.e., similar to Q5 in the survey discussed in Section 2.2) and whether the
household purchases green power. Higher rated capacity, more frequent self-reported use, and
greater percentage of green power all correspond with more a/c energy use.

• For predicting the mean apparent ambient temperature at which a/c will be switched on, the most
important predictors were the self-reported frequency of a/c use, whether the household was
motivated to save money on energy bills, the NatHERS building star rating, the presence of
outside awnings or shutters on windows, and whether the occupants switched lights off in
unoccupied rooms. Higher mean ambient temperature when a/c is switched on corresponds
with less frequent self-reported usage, households with an economic motivation to save energy,
a higher building star rating, outside awnings on windows, and occupants who switch off lights
in unoccupied rooms.

• For predicting the mean apparent indoor temperature at which a/c will be switched on, the most
important predictors were the rated electrical capacity of the a/c, the self-reported frequency
of heater usage, the NatHERS estimate of total annual cooling energy consumption and the
NaTHERS building star rating. Higher indoor temperature when a/c is switched on corresponds
with households who had a small-capacity a/c, buildings with a theoretically greater cooling
energy consumption, households who used heating less frequently, and buildings that had a
lower star rating.

Of similar importance to the predictors that were significant are those that had no statistically
significant influence on the results. This included most of the occupant reported self-assessment of
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their comparative behaviours and usage—as opposed to definite statements of how often or whether
they perform a specific action—and for the total and peak a/c consumption, all of the building shell
thermal efficiency related parameters.

The presence of some self-reported behaviours—for example whether lights were switched off
in unoccupied rooms—as indicators of a/c usage should not necessarily be assumed to be due to a
direct impact on energy consumption from the action itself; these results are more likely to be useful
as general occupant psychological or behavioural indicators. This may also apply to some extent to
physical features of the building whether these are user operable such as outside shutters. On the other
hand, the direct impact on energy use of building features that aren’t user operable such as outside
awnings may be more reliably attributed to that feature. This highlights the difficulty of constructing
surveys that give the information necessary to address a particular question.

Interestingly the fact that occupants in buildings with a higher star rating switched on their a/c at
a lower average indoor apparent temperature, but a higher average ambient apparent temperature
suggests that in general, the building fabric for efficient buildings is performing well, creating, on
average, cooler conditions in the building, but that the occupants in higher star-rated buildings are
less tolerant of higher indoor temperatures (i.e., more likely to use a/c).

3. Discussion

The above case studies have explored a range of different approaches to using data to develop a
general residential a/c usage model; each with different limitations.

From the aggregate level analysis of energy consumption linked to aggregate demographic and
building data, it is difficult to decompose individual behaviour patterns such as typical a/c on/off
usage when there are so many confounding factors. These include relatively well defined parameters
such as climate and building physics, but also less well defined parameters such as occupant lifestyles,
priorities, perceptions and expectations, as well highly interrelated factors such as the interaction
between both active and passive building features and the occupants themselves.

While the survey provided useful indicative trends and behaviour patterns, without linking this
with actual energy consumption or air-conditioner usage data it is difficult to build quantitative models
without subjective interpretation.

The detailed sub-metered household energy analysis was the most comprehensive data-set and
is extremely useful for validating and testing different models, but the participating households are
unlikely to be representative of the broader population—due to both selection bias and the fact that
all buildings were less than 10 years old. Although several detailed quantitative models of a/c usage
behaviour could be implemented, statistically significant trends tended only to be clearly defined
when analysing the aggregate response of all households, and so defining representative groups of
behaviours is difficult. In addition, despite the statistically significant predictive strength of the key
factors for predicting a/c use in the RBEE study, the overall regression coefficient—the accuracy of the
prediction, given the values of the significant factors—was low: between 0.2 and 0.25. Even with the
inclusion of well over 100 variables, and the prediction of annual averaged quantities, this indicates
that there were still many more unknown factors contributing to the variation. However use of a much
greater household sample size or the inclusion of more variables is not practical given the time and
costs involved in such a study, and factoring in the willingness of individuals to participate.

A data framework and associated methodology is required that brings together the two aspects,
data and model, in a rigorous manner.

4. Proposed Methodology for Developing a General a/c Usage Model

In Australia “smart-meters” or meters that record individual household energy data typically at
30 min intervals, are becoming increasingly common. In the state of Victoria a comprehensive program
to install smart meters in all houses, both newly constructed and existing, has been completed with
almost complete coverage. Elsewhere in Australia smart-meters are becoming increasingly common.
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At a high level, one possible approach is to leverage this existing high resolution metering by
undertaking the following steps:

1. Conduct a targeted survey for a specific region (for example Victoria) to obtain statistics on a
specific selected set of demographic, lifestyle, behavioural and building related parameters based
on the case studies reported here and elsewhere. Critically, this survey information should be
linked to the specific end-user smart meter data for each respondent.

2. Link the smart meter data with readily available time dependent weather data and split the
overall data set into several representative weather zones.

3. For each weather zone, use load disaggregation and unsupervised clustering techniques to build
a representative set of a/c daily normalised usage profiles.

4. For each representative a/c usage profile, build a model that estimates a/c on/off events
as a function of one or a combination of triggers such as time-based or environmental—e.g.,
temperature—information.

5. Build a model that maps from the survey and weather data to the representative a/c usage
models—for example using regression or neural network techniques—for each weather zone.
This model will be able to estimate the probability that the a/c usage behaviour for a given
household on a given day will be according to each of the specific a/c usage models.

6. Use the developed model to simulate the a/c usage behaviour for a different portion of the
data-set—for example several months of new measurements—and compare the predictions with
the actual customer smart-meter data.

7. Run a new survey targeting a broader geographic base linked to smart meter data for example in
other states. Repeat the above steps for this new data set. Compare the resultant models across
similar weather zones to assess the broader applicability of the method.

Such an approach is a compromise between costly highly detailed analysis of a small set of
households and high-level analysis of a large population. Additional validation using aggregate data,
survey results and data from detailed studies such as the RBEE study will be critical.

Because of the increasing use of “smart meters” a study such as this should be able to use data from
several thousand individual customers and remain cost effective. The greater number of customers
makes clustering techniques more viable, which should lead to a reduction in the model uncertainties
seen in the case study analyses. The use of actual measured data should ensure data gathered from
surveys remains grounded in truth, and the use of modelling techniques should fill the gaps where
sub-metered data gathering is too costly.

As a final note, one particular aspect of the proposed approach that has been alluded to in
the previous case studies but not clarified is the use of ambient versus indoor temperatures as the
governing variable in an air-conditioner usage model. On the one hand, use of ambient temperature to
construct a/c switch on probability functions for one type of behaviour would discount the effect of
buildings on creating comfortable (or uncomfortable) conditions, although in a building simulation
model the effect of the building fabric on a/c energy use would be accounted for once the a/c was
switched on. On the other hand, whilst date and location alone is sufficient to have detailed knowledge
of ambient temperature (via weather station data), data sources with indoor temperature are rare given
the expense of temperature metering in individual rooms of dwellings.

This situation might be resolved by considering the occupant behaviour-building combination as
an indivisible classification unit—that is, where a particular class of occupant-building combination
has, for example, a specific probability function for switching on a/c determined as a function of
ambient temperature, and that this particular function is only applicable to that specific class of
occupant-building combination. This ensures that the a/c switch on usage model captures the
actual behaviour for the specific occupant-building grouping, but it also means that the model
applicability to predict the behaviour of that occupant grouping in, for example, a totally different
building, is potentially reduced. However, if additional direct measurements or indirect building level
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information were available to link indoor temperature with the ambient temperatures recorded in the
data set, then, it would be possible to separate occupant and building effects—i.e., to link the occupant
a/c usage to the indoor building conditions—and so to apply the model for one occupant-building
behaviour class to other buildings.

5. Conclusions

There is a mounting weight of evidence in the literature demonstrating the considerable
importance of understanding occupant behaviour for predicting long term air-conditioner energy
consumption in residential buildings. Key to the development of realistic usage models is the
underlying data upon which they are based. Unfortunately, the comprehensive data required to
build such models is not currently available. Here three case study analyses using different types of
data were used to explore different aspects of the problem of deriving usage behaviour from the data.
Each of these approaches has various limitations and so a unified methodology for developing a general
a/c usage model was proposed. The next stage of work is to deploy this methodology. This work
has important application in a number of areas including electricity network design and operation,
building energy efficiency regulation, electricity tariff determination and appliance development.
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Appendix A. Materials and Methods

The following section provides further details of the modelling methods used.

Case Study 1

To calculate the cooling and heating degree days the apparent temperature was used. This is
appropriate for comfort applications and combines both temperature and humidity in one parameter.
The CDD and HDD were calculated as the sum of the product of time above (cooling) or below
(heating) a temperature threshold and the difference between the instantaneous temperature and the
threshold. For cooling a threshold apparent temperature of 24 ◦C was selected and for heating 15 ◦C.
The climate data was purchased from the Bureau of Meterology.

To incorporate the income information from the Census database in our regression model the
following approach was used. The percentage of respondents in each income category were first
normalised by excluding categories corresponding to households who gave no or only partial income
information. Least squares regression was then used to fit a cumulative log-normal distribution
function for income for each SA2 region. The RMS error of this fit across all regions was 0.55%.
For example, Figure A1 shows the fitted income distribution for one randomly selected SA2 region
(in this case Cowra, NSW). The fit to the Census data is typical of that for all regions. Finally the
parameters of these distribution functions were used to represent income in the regression model.
The Census data-set is available online [21].

The parameters obtained from the NEXIS data-set and included in the regression model were:

• Equalised weekly household income distribution (from 2011 Census) (mean and standard
deviation parameters)

• Average number of persons per dwelling
• Fraction of households renting
• Fraction of households with indigenous occupants
• Fraction of households with a child under 5 years
• Fraction of households with all occupants over 65 years
• Fraction of households with a single parent family
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• Fraction of households with all occupants having insufficient English language skills
• Fraction of households with all occupants having no higher education
• Fraction pf households with all occupants unemployed
• Fraction of separate (detached house) buildings
• Fraction of apartments (2 or more stories)
• Fraction of buildings built before 1980
• Fraction of buildings with brick veneer construction
• Fraction of buildings with timber construction
• Fraction of buildings with cavity brick or solid masonry construction
• Average floor area per dwelling

The NEXIS data-set is freely available online [22].Energies 2017, 10, 1256 17 of 21 
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Case Study 2

The a/c usage survey question and response options are given in Table A1. The data from this
survey is available as part of this publication. The ethical approval for release of this information was
provided by CSIRO as part of the Energy Use Data Model (EUDM) project.

The survey was delivered online using the Google survey platform. Potential respondents had
the option of completing the survey, choosing a different (unrelated) survey or not completing any
survey. If a survey was completed, the user was given access to content on the website that would
otherwise require payment, or would receive Google Play credits.

Nine questions were asked including an initial screening question (Q1) where potential
respondents were asked if they would like to participate. Q2 was also used as a screening question
with respondents whose household did not have a/c also excluded. Note that the online format only
allowed for seven multiple-choice answer options, with strict question and answer word limits.

Along with the specific survey responses, Google also provides selected demographic, location
and time-based information for each respondent. This may include age bracket, gender, income
bracket, city, the date and time of completing the survey, and the response times for each survey
question. Demographic information is obtained primarily from browsing history or directly from
the respondent, while location is obtained from the internet service provider. Income was available
for 24% of respondents, age for 74%, gender for 77% and location and time for all. Gaps in the
demographic data were filled using a statistical multiple imputation technique known as trimmed
squares regression [27]. This method is most reliable when the proportion of missing data is not
too large. Hence, for the income information in particular, results should be treated with some



Energies 2017, 10, 1256 18 of 21

caution. Here no weightings were applied to account for any population bias between the respondent
population and the general population.

For the purpose of performing statistical analysis of the data, the overall a/c use frequency
response options were encoded onto a scale of 1 to 6, with 1 corresponding to “continuously” and 6 to
“rarely or never”. “Don’t know” responses were treated as missing values and the multiple imputation
technique used to estimate their value. The proportion of these missing values was very low (<2%).

Table A1. Survey questions and response options.

Question Question and Response Options Percentage of
Respondents

Number of
Responses

1 a,c

This survey will help CSIRO understand energy behaviour.

5816
The research is funded by the Australian Government.

I would like to participate. 18.2 (+1.0/−1.0)
I would not like to participate. → end survey 81.8 (+1.0/−1.0)

2 b,d

What type(s) of air-conditioning system do you have in your home?

998

Split-system 29.1 (+2.9/−2.7)
Wall or window mounted (i.e., box) 21.4 (+2.7/−2.5)

Ducted 19.1 (+2.6/−2.3)
Evaporative 10.9 (+2.1/−1.8)

Portable 5.9 (+1.6/−1.3)
None of the above→ end survey 23.3 (+2.7/−2.5)

3 b,c

Is your dwelling a?

749
Separate house 69.2 (+3.2/−3.4)

Flat, unit or apartment 16.6 (+2.8/−2.5)
Semi-detached house (e.g., townhouse or duplex) 8.8 (+2.2/−1.8)

Other dwelling 5.5 (+1.9/−1.4)

4 a,c

Approximately what year was the building constructed?

739

Pre 1950 11.1 (+2.5/−2.1)
1950 to 1986 28.8 (+3.4/−3.1)
1987 to 2004 26.7 (+3.3/−3.1)
2005 to 2009 12.7 (+2.6/−2.2)
After 2010 13.0 (+2.6/−2.2)

Don’t know 7.4 (+2.1/−1.7)

5 a,c

In an average summer, how often does your household use at least one
air-conditioner?

730

Continuously 12.2 (+2.6/−2.2)
A few hours each day 35.5 (+3.5/−3.4)

A few times each week 25.9 (+3.3/−3.0)
Once a week 6.3 (+2.0/−1.5)

A few times a month 9.5 (+2.3/−1.9)
Rarely or never 8.8 (+2.3/−1.8)

Don’t know 1.9 (+1.3/−0.8)

6 b,d

During the summer months, when do you turn ON the air-conditioner?
(Only select if the response is true most/all of the time.)

723

When it feels uncomfortable inside 72.8 (+3.1/−3.4)
When it’s hot outside 21.2 (+3.1/−2.8)
When going to sleep 16.6 (+2.9/−2.5)
When arriving home 11.9 (+2.6/−2.2)

When it’s needed for medical reasons 4.1 (+1.7/−1.2)
It turns of automatically (e.g., on a timer) 2.6 (+1.4/−0.9)

Other (open-ended response) 1.1 (+1.1/−0.5)

7 b,d

During the summer months, when do you turn OFF the
air-conditioner? (Only select if the response is true most/all of the time.)

711

When it feels comfortable inside 62.0 (+3.5/−3.6)
When leaving the house/room 37.3 (+3.6/−3.5)

When going to sleep 22.2 (+3.2/−2.9)
When it’s not hot outside 21.4 (+3.2/−2.9)

After it’s been running for several hours 18.0 (+3.0/−2.6)
It turns of automatically (e.g., on a timer) 7.5 (+2.2/−1.7)

Other (open-ended response) 1.4 (+1.2/−0.6)

8 b,c

Does your household have a solar PV system (solar panels)?

704
Yes 22.4 (+3.2/−3.4)
No 72.2 (+3.2/−2.9)

Don’t know 5.4 (+1.9/−1.4)

9 b,c

Is your household connected to an accredited Green Power electricity
scheme through your electricity company?

700Yes 17.3 (+3.0/−2.6)
No 43.4 (+3.7/−3.6)

Don’t know 39.3 (+3.7/−3.6)
a Answers displayed in fixed order; b Answers displayed in random order; c Single answer allowed; d Multiple
answers allowed.
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Case Study 3

The sub-metered household energy use analysis was based on data from the Residential Building
Energy Efficiency project [26] conducted by CSIRO. This data-set is not currently available for
public distribution.

In addition to the energy use data, this data-set includes occupant survey derived data and
detailed building and appliance information. In order to reduce the total number of categorical
parameters considered in the regression analysis (given that there were in total over 150 behavioural,
demographic and building parameters recorded for each household; in fact more than the total number
of households), a number of parameters that were deemed to duplicate information or be unlikely to
be a useful predictor for air-conditioner usage behaviour were removed from the analysis. In addition,
some parameters and response options were combined into new parameters as shown in Table A2.
This was considered necessary to improve the likelihood of identifying statistically significant trends
given the comparatively small sample size.

Table A2. Demographic, behavioural, building and air-conditioning system parameters used in analysis
of the RBEE data-set.

Building, a/c System, Demographic or Behavioural Parameter Additional Information Encoded Variable

Number of occupants in the household. Derived from RBEE household
survey Q3 Ratio scale integer

Whether the household is occupied in the afternoon Derived from RBEE survey Q2 Y/N

Whether the household is occupied all day Y/N

Average annual spend on electricity RBEE survey Q5 Ordinal scale 1 to 5
(5 indicating higher spend)

Percentage of green power purchased Combined from RBEE household
survey Q6 and Q7.

Ratio scale 0, 10, 25, 50,
75 or 100.

Whether the house has ceiling, wall and floor insulation, tinted
windows, double glazed windows, energy efficient lights,
box pelmets, glass doors, large windows, passive design,
outside awnings/shutters, and louvre windows.

RBEE household survey Q10. Y/N for each feature

The frequency of use of televisions, computers, air-conditioner
heater, dishwasher, washing machine and clothes dryer. RBEE household survey Q15, Q17

Ordinal scale 1 to 6
(1 indicating more

frequent usage)

Whether steps are taken to limit household energy use. RBEE household survey Q21. Y/N

Frequency in the last twelve months of: turning appliance off at the
power point, using cold water to wash clothes; reducing the length
showers; isolating areas that don’t need cooling; the use of fans
rather than a/c; switching off lights in unoccupied rooms;
only using the washing machine or dishwasher with a full load;
the use of blinds/curtains during the summer; not having the
air-conditioner on too cold; and purchasing appliances with high
energy efficiency rating.

RBEE household survey Q22.
Ordinal scale 1 to 5
(1 indicating more

frequent action)

Presence of three types of motivation for wanting to reduce energy
usage; “economic benefit”; “concern for the environment” and
“societal” (encompassing “others are doing it” and “making a
positive contribution” responses).

Derived from RBEE household
survey question Q23. Y/N for each motivation

Perception of whether the household is a high, medium or low
energy user. RBEE household survey Q31. Ordinal scale 1 to 3

Ranking as to how energy conserving the household considers
itself to be. RBEE household survey Q33.

Ordinal scale 1 to 6
(6 indicating

very conserving).

Cooling system rated capacity RBEE assessor survey kW value

Presence of solar hot water, solar photovoltaics and gas cooking RBEE household survey Q14 and
RBEE assessor survey Y/N for each technology

Building conditioned floor area
From AccuRate household

assessment

m2 value

NatHERS annual sensible and latent cooling loads kWh value

NatHERS building star rating kWh value
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