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Abstract: Accurate parameter estimation of solar cells is vital to assess and predict the performance 
of photovoltaic energy systems. For the estimation model to accurately track the experimentally 
measured current-voltage (I-V) data, the parameter estimation problem is converted into an 
optimization problem and a metaheuristic optimization algorithm is used to solve it. Metaheuristics 
present a fairly acceptable solution to the parameter estimation but the problem of premature 
convergence still endures. The paper puts forward a new optimization approach using hybrid 
particle swarm optimization and simulated annealing (HPSOSA) to estimate solar cell parameters 
in single and double diode models using experimentally measured I-V data. The HPSOSA was 
capable of achieving a global minimum in all test runs and was significant in alleviating the 
premature convergence problem. The performance of the algorithm was evaluated by comparing it 
with five different optimization algorithms and performing a statistical analysis. The analysis 
results clearly indicated that the method was capable of estimating all the model parameters with 
high precision indicated by low root mean square error ሺܴܧܵܯሻ and mean absolute error	ሺܧܣܯሻ. 
The parameter estimation was accurately performed for a commercial (RTC France) solar cell. 

Keywords: photovoltaic cell; parameter estimation; particle swarm optimization (PSO); simulated 
annealing (SA); hybrid PSOSA; metaheuristic 

 

1. Introduction 

Increasing power demands due to continuous population growth and industrial needs, and 
depleting fossil fuel reserves and environmental concerns have led to the use of renewable energy 
sources, particularly to solar energy. Solar energy, being pollution free, renewable and freely 
available, has attracted great attention all around the world. 

Photovoltaic (PV) solar cells are used to harvest energy from solar radiation and convert it into 
electric energy. These cells are made up of semiconductor materials, traditionally silicon. The low 
efficiency, high cost and physical barriers of silicon limit the use of traditional solar cells. Extensive 
research has been carried out to improve the conversion efficiency of a solar cell; special attention has 
been paid to the materials used in the manufacture of solar cells. A new generation of solar cells, 
known as the 3rd generation solar cells, has evolved, which make use of sustainable materials and 
flexible architectures like dye-sensitized solar cells (DSSCs). DSSCs operate as an artificial 
photosynthetic system to convert solar light into electricity, and are reported to provide efficiencies 
of up to 14% [1]. More insights on the materials and coatings employed for efficient DSSCs can be 
found in [2–4]. 

These cells are connected in series and parallel combinations to construct a solar module. 
Accurate modeling of solar cells is necessary to evaluate and forecast the performance of the PV 
systems. Many circuit models have been proposed. Among them, single diode models (SDM) and 
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double diode models (DDM) are prominent and widely used for PV system modeling. For a 
simulation model to perform characteristics like the real one, precise model parameter estimation is 
required. An optimized parameter estimation strategy should be adopted to achieve the PV model I-
V characteristics to closely track the experimentally measured I-V characteristics. Many methods have 
been used for parameter estimation of solar cells including classical methods such as the Newton-
Raphson method [5], and Lambert function [6]-based method; but these methods are highly prone to 
being trapped into a local minimum [7]. 

Metaheuristics have been widely applied in solving nonlinear multimodal optimization 
problems in recent years. The literature describes many similar methods applied successfully for solar 
PV cell parameter estimation. The applied methods include genetic algorithm (GA) [8], differential 
evolution (DE) [9], particle swarm optimization (PSO) [10], simulated annealing (SA) [11], harmony 
search (HS) [12], artificial bee colony (ABC) [13], cuckoo search (CS) [14], pattern search (PS) [15], etc. 

Ishaque et al. [9] proposed a penalty-based differential evolution method to estimate the 
parameters of multi-crystalline, mono-crystalline, and thin-film PV modules. I-V test data were 
obtained synthetically using DDM. The results confirmed the outperformance of the method over 
GA, SA and PSO. 

Ye et al. [10] applied PSO to parameter estimation of SDM and DDM PV models. To check the 
ability of the PSO, synthesized and experimental I-V data were used. The results indicated that the 
PSO outperformed GA in terms of parameter precision and computational efficiency. 

Alrashidi et al. [11] applied SA for parameter estimation of solar PV cells. Summation of 
individual absolute errors (IAE) was used as the objective function to be minimized. A 57 mm 
diameter commercial (RTC France) silicon solar cell under 1 sun (1000 W/m2) at 33 °C was used for 
parameter estimation of SDM and DDM. The results showed the superiority of the SA over PS and 
gradient based methods. 

Askarzadeh et al. [12] investigated three different variants of HS algorithm for parameter 
estimation of SDM and DDM employing experimental data for a commercial solar cell (RTC France). 
The HS variants outperformed GA, chaos particle swarm optimization (CPSO) and PS in terms of 
precision. 

Wang et al. [13] provided improved ABC (IABC) for parameter identification of SDM and DDM. 
IABC outperformed artificial bee colony algorithm, DE, PSO and ABSO algorithms in terms of error 
residuals. 

Ma et al. [14] applied CS to estimate the parameters of the solar cell and solar module. A 
commercial 57 mm diameter solar cell (RTC France) was employed for SDM parameter estimation. 
The results showed that the CS performed better than CPSO, GA and PS. 

Metaheuristics present a fairly acceptable solution to optimization problems; but the problem of 
premature convergence still endures. Premature convergence makes a metaheuristic easily become 
trapped in a local optimum which leads to a local solution. In order to alleviate the problem of 
premature convergence, recently, a trend is seen in hybridizing a swarm-based algorithm with a 
point to point based algorithm [11–14]. SA is a point to point based metaheuristic which requires less 
computation time, easy implementation and strong local search ability [16]. These make it suitable 
for hybridization with swarm based optimization algorithms. In reference [17], the authors 
hybridized PSO with SA and applied the concept to commonly used benchmark functions to evaluate 
the performance of the hybrid algorithms; the hybrid strategy presented promising results when 
compared with conventional PSO. Junghans et al. [18] proposed a hybrid optimization approach 
using GA and modified SA for building optimization; idea behind the approach was that the best 
solution from GA has been improved by SA. Fang et al. [19] described a hybrid algorithm of particle 
swarm optimization (PSO) and tabu search (TS) for distribution network reconfiguration problem; 
the algorithm demonstrated fast computation speed and ability to avoid premature convergence. 
Carapellucci et al. [20] described a hybrid parameter estimation strategy for estimation of energy 
generation island using GA and SA. 

This paper attempts to mitigate the problem of premature convergence. Each global best solution 
from PSO undergoes SA to further improve the solution in terms of better objective values. This 
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approach sufficiently eliminated the premature convergence problem and achieved a better solution 
in less iteration. This paper is organized as follows: Section 2 discusses the solar cell modeling and 
formulation of the parameter estimation problem. Section 3 provides details of the HPSOSA 
algorithm. Simulation results are discussed in Section 4 along with analysis on the results. Section 5 
provides concluding remarks on the research work. 

2. Photovoltaic Cell Modeling and Parameter Estimation Problem Formulation 

This section discusses modeling and mathematical formulation of parameter estimation for SDM 
and DDM of PV cell. 

2.1. PV Cell Modeling 

A mathematical model that precisely represents the characteristics of the PV cell is 
indispensable. Among the various proposed PV models, two models are prominent, i.e., SDM and 
DDM. The PV cell is modeled as a current source with a diode, ideally. In practice, the model is also 
equipped with a shunt resistance and a series resistance to accumulate partial short circuit current 
path near the cell’s edges due to the semiconductor impurities and non-idealities, solar cell metal 
contacts and the semiconductor bulk resistance, respectively, whereas DDM of PV cell employs 
another diode shunted across existing diode to accumulate space charge recombination current [21]. 

SDM is a most widely used PV model and has been shown in Figure 1. I-V characteristics of SDM 
are expressed as: ܫ௅ = ௣௛ܫ − ଴ܫ ቈexp ቆݍሺ ௅ܸ + ௅ܴ௦ሻ݊݇ܶܫ ቇ቉ − ൬ ௅ܸ − ௅ܴ௦ܴ௦௛ܫ ൰ (1) 

From Equation (1), SDM is characterized by five parameters: Iph (photocurrent), I0 (diode 
saturation current), Rs (series resistance), Rsh (shunt resistance), and n (diode ideality factor). 
Estimation of these five parameters is essential for modeling of PV cell. 

 
Figure 1. Single diode photovoltaic circuit model. 

DDM of a PV cell has been shown in Figure 2. The I-V characteristics of DDM are expressed as: ܫ௅ = ௣௛ܫ − ଴ଵܫ ቈexp ቆݍሺ ௅ܸ + ௅ܴ௦ሻ݊ଵ݇ܶܫ ቇ቉ − ଴ଶܫ ቈexp ቆݍሺ ௅ܸ + ௅ܴ௦ሻ݊ଶ݇ܶܫ ቇ቉ − ൬ ௅ܸ − ௅ܴ௦ܴ௦௛ܫ ൰ (2) 

From Equation (2), DDM is characterized by seven parameters: Iph (photocurrent), I01 (diode 
saturation current for diode D1), I02 (diode saturation current for diode D2), Rs (series resistance), Rsh 
(shunt resistance), ݊ଵ (diode ideality factor for diode D1), and ݊ଶ (diode ideality factor for diode D2). 
Similarly, estimation of these seven parameters is essential for modeling of PV cell. 
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Figure 2. Double diode photovoltaic circuit model. 

2.2. Parameter Estimation Problem Formulation 

The parameter estimation problem is transformed into an optimization problem to minimize the 
difference between measured current and calculated current. A performance criterion or objective 
function is defined for the minimization; RMSE is used as objective function and is given by: 

ܧܵܯܴ = ሻߠሺܬ = ඨ∑ ሾܫ௠ − ௖ሺܫ ௠ܸ, ሻሿଶே௜ୀଵߠ ܰ  (3) 

where, ܫ௠	 is the measured current, ܫ௖	 is the calculated current and N is the number of measured 
data points. θ is the parameter vector (to be estimated) which has five elements in the case of SDM 
i.e.,	ߠ = ൣܴ௦	ܴ௦௛	ܫ௣௛	ܫ଴	݊൧ and seven parameters in the case of DDM i.e., ߠ = ൣܴ௦	ܴ௦௛	ܫ௣௛	ܫ଴ଵ	݊ଵ	ܫ଴ଶ	݊ଶ	൧. ܫ௖	 is the function of Vm, and θ. 

A programming model computed ܫ௖	  and thus RMSE using the 	 ௠ܸ	 	௠ܫ ,  and ܫ௖	 ; thus the 
parameters are estimated. The estimated parameters should strictly follow the actual I-V 
characteristics, ideally. However, there is a difference between the experimental current and the 
estimated current due to the measurement noise errors. Parameter bounds [22] used in this study 
have been tabulated in Table 1 for SDM and DDM. 

Table 1. Parameter bounds for single diode and double diode PV cell circuit. 

Parameter Single Diode Model Double Diode Model 
Rs/Ω [0, 0.5] [0, 0.5] 
Rsh/Ω [0, 100] [0, 100] 
Iph/A [0, 1] [0, 1] 
I01/A [10−12, 10−6] [10−12, 10−6] 

n1 [1, 2] [1, 2] 
I02/A - [10−12, 10−6] 

n2 - [1, 2] 

3. HPSOSA Algorithm for PV Parameter Estimation 

This section presents a new algorithm of HPSOSA based on the analysis of PSO and SA. 

3.1. Particle Swarm Optimization 

Particle swarm optimization is a swarm-based metaheuristic optimization algorithm. A swarm 
of particles (potential solutions) is used in the entire search space to find the solution with optimized 
(minimized) objective value. The particles are randomly initialized in the search space. The initial 
position and associated objective values are stored as their personal best solutions. The particle or 
position with the minimum objective function value is stored as global best. The position and velocity 
of each particle is updated according to following relations: 

௜ܸ௞ାଵ = ߱ ௜ܸ௞ + ܿଵݎଵ൫ ௕ܲ,௜ − ௜൯ߠ + ܿଶݎଶ൫ܩ௕,௜ −  ௜൯ (4)ߠ
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௜௞ାଵߠ = ௜௞ߠ + ௜ܸ௞ାଵ (5) 

In Equations (4) and (5) ܸ	is the velocity of the i-th particle, ௕ܲ is the personal best solution, ܩ௕ 
is the global best solution, ߠ  is the position of current solution, ܿଵ  and ܿଶ  are the personal 
acceleration coefficient and social acceleration coefficient, respectively, ω is the inertia weight, ݎଵ	 
and ݎଶ	 are random numbers ∈ ሾ0, 1ሿ. 

After changing velocity and position of each particle, objective associated with new position is 
evaluated and their ௕ܲ and ܩ௕ are updated using simple relations shown in Equations (6) and (7): 

௕ܲ,௜௞ାଵ = ቊ ௕ܲ,௜௞ if ௜௞൯ߠ൫ܬ ≥ ൫ܬ ௕ܲ,௜௞ ൯ߠ௜௞ if ௜௞൯ߠ൫ܬ < ൫ܬ ௕ܲ,௜௞ ൯  
(6) 

௕,௜௞ାଵܩ = ௕ܲ,௜௞ if maxൣܬ൫ ௕ܲ,௜௞ ൯൧  (7) 

where J is the objective function to be minimized. In this way ܩ௕  is computed iteratively until a 
stopping criterion is satisfied. The stopping criterion may be a certain number of iterations or a 
predefined error tolerance. 

3.2. Simulated Annealing 

Simulated annealing (SA) is another metaheuristic, proposed by Kirkpatrick et al. in 1983 [23]. 
Since then SA, a point to point based algorithm, has found diverse applications. In SA, a new solution 
is generated in the vicinity of the previous solution. For a minimization problem, all new solutions 
are evaluated for an objective function. Solutions that contribute to a minimized objective are 
accepted; solutions are also accepted which do not minimize the objective but with a certain 
probability based on the following inequality: ݎ > exp ቈܬሺߠ௞ሻ − ௞ିଵሻௌܶ஺ߠሺܬ ቉ (8) 

In Equation (8) ݎ is a random number	∈ ሾ0, 1ሿ. ߠ௞ is the new solution and ߠ௞ିଵ is the previous 
solution, and ௌܶ஺  is the temperature. Before starting SA an initial temperature ଴ܶ and minimum 
temperature ୫ܶ୧୬ is defined. Accepting solutions based on Equation (8) enables SA to escape local 
minimum in early iterations and reach the global minimum. The temperature is lowered using a 
cooling schedule; commonly used one is geometric cooling schedule written as: 

௞ܶ = ߙ ௞ܶିଵ (9) 

where ߙ is the temperature control factor. 

3.3. Hybrid Particle Swarm Optimization and Simulated Annealing 

The purpose of hybridizing PSO with SA is to alleviate the premature convergence problem. The ܩ௕ obtained by PSO, at each iteration, is further processed and evaluated by SA. The obtained result 
thus presents an improved solution by virtue of optimal objective. Following is a description of step-
wise procedure for HPSOSA. 

Step 1: Set all parameters: ܿଵ , ܿଶ , ߱ , problem dimension n, maximum number of iterations, ଴ܶ ,  ୫ܶ୧୬, ߙ. 
Step 1.1: Initialize particles using a random generation system within parameter bounds.  
Step 1.2: Evaluate the objective value of all the particles using Equation (3), assign Pb and Gb 

of the particles. 

Step 2: Start the iteration cycle. 
Step 2.1: Update particle velocity according to Equation (4). 
Step 2.2: Apply velocity limits. 
Step 2.3: Update particle position according to Equation (5). 
Step 2.4: Update Pb and Gb according to Equations (6) and (7). 
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Step 2.5: Assign Gb as current solution to SA. 
Step 2.6: Start SA iterations. 
Step 2.7: Generate random solution in the proximity of the current solution as a new solution. 
Step 2.8: Evaluate the new solution for the objective function. 
Step 2.9: Accept new solution if it satisfies Equation (8). 
Step 2.10: Update temperature according to Equation (9). 
Step 2.11: Repeat Step 2 until the stopping criterion is met. 

Step 3: Output the Gb and associated objective value. 

A flowchart of the algorithm is shown in Figure 3. 

 

Figure 3. Flowchart of the HPSOSA. 

4. Experimental Results and Discussions 

The HPSOSA algorithm described above is used to estimate the parameters of a commercial 
silicon solar cell (RTC France, city, country); the experimental data were obtained at an irradiance of 
1000 W/m2 and temperature of 33 °C [24]. For HPSOSA, initially, ߱  is set as 0.9 and decreased 
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monotonically with a factor of 0.9, at each iteration. Both ܿଵ and ܿଶ are set as 2. The number of 
particles is set as 500 for SDM as well as for DDM. ଴ܶ for SA is set as 100 and ߙ is set as 0.99. 
Termination criterion is set by maximum number of iterations; algorithm stops when it reaches 100 
iterations. The HPSOSA is compared with conventional particle swarm optimization (CPSO) as 
described in [25], HS, IABC, SA and PS algorithms to authenticate its performance. In an attempt to 
evaluate the quality of the estimated model, two basic measures of accuracy namely root mean square 
error ሺܴܧܵܯሻ and mean absolute error ሺܧܣܯሻ are calculated based on Equations (10) and (11):  

ܧܵܯܴ = ඨ∑ ሺܫ௠ − ௖ሻଶே௜ୀଵܫ ܰ  
(10) 

ܧܣܯ = ∑ ௠ܫ| − ௖|ே௜ୀଵܫ ܰ  
(11) 

Another test of quality of the estimated model is to calculate residual autocorrelation function ሺܴܨܥܣሻ that describes that the estimated model satisfactorily defines a given set of data. The test is 
implemented in two steps: (1) Examination of the estimated residuals described by ݁ = ሺܫ௠ −  ௖ሻ. (2)ܫ
Calculation of RACF at different time lags using the following expression: ܴܨܥܣ௞ = ∑ ሺܫ௠ − ௠ܫ௖ሻ௧ሺܫ − ∑௖ሻ௧ି௞ே௧ୀ௞ାଵܫ ሺܫ௠ − ௖ሻ௧ଶே௧ୀଵܫ  (12) 

where k is the time lag, and t is the time index. The ܴܨܥܣ value ranges from −1 to +1. If a given value 
is significantly different from zero, it will fall outside a confidence level. 

4.1. Results for Single Diode PV Model 

The algorithm has been run for 20 times to curtail the effect of randomness implicit in the results. 
Statistics of 20 runs for SDM have been computed and tabulated in Table 2. 

Table 2. Statistics of objective values (RMSE) for single diode PV model using HPSOSA. 

Objective Value HPSOSA CPSO 
Average 7.7301 × 10−4 1.4991 × 10−3 

Best 7.7301 × 10−4 8.3400 × 10−4 
Worst 7.7301 × 10−4 2.4436 × 10−3 

Standard deviation 4.0768 × 10−17 4.3154 × 10−4 
Median 7.7301 × 10−4 1.5240 × 10−3 

It is evident from Table 2 that HPSOSA performs better than CPSO in terms of the average, best, 
worst, standard deviation, and median of the objective values in all 20 runs. The HPSOSA achieved 
the average, minimum, maximum and median of objective values as low as 7.7301 × 10−4. HPSOSA 
achieved a standard deviation of 4.0768 × 10−17; obviously it is far better than the standard deviation 
calculated for CPSO. The best values of the estimated parameters of SDM have been tabulated in 
Table 3 along with ܴܧܵܯ  and ܧܣܯ  values. It can be seen that HPSOSA stands out as superior 
among all the algorithms with ܴܧܵܯ and ܧܣܯ values as low as 7.7301 × 10−4 and 6.7818 × 10−4, 
respectively. 

Table 3. Estimated parameters of single diode PV model obtained by HPSOSA and other five 
algorithms with RMSE and MAE values. 

Parameter HPSOSA CPSO HS [12] IABC [13] SA [9] PS [15] 
Rs 0.0365 0.0357 0.0366 0.0363 0.0345 0.0313 
Rsh 52.8898 57.6914 53.5946 54.4610 43.1034 64.1026 
Iph 0.7608 0.7606 0.7607 0.7599 0.7620 0.7617 
I0 0.3107 0.3758 0.3050 0.3324 0.4798 0.9980 
n 1.4753 1.4946 1.4754 1.4842 1.5172 1.6 ܴܧܵܯሺ× 10ିସሻ 7.7301 8.3400 9.9510 10.000 190.00 149.36 ܧܣܯሺ× 10ିସሻ 6.7818 7.1058 28.514 27.848 51.106 42.146 



Energies 2017, 10, 1213 8 of 13 

 

A measure of robustness of the HPSOSA and CPSO for 20 runs is shown in Figure 4. It is 
apparent from Figure 4 that the HPSOSA is able to achieve a minimum RMSE value in all 20 iterations 
and presents a robust solution for the parameter estimation problem. Whereas CPSO reached only 
once in the proximity of the minimum RMSE, achieved by HPSOSA. 

 

Figure 4. Comparison of the HPSOSA and the CPSO for 20 runs. 

Objective function convergence curve for the best run of HPSOSA has been shown in Figure 5. 
It is evident from the figure that the HPSOSA is able to attain a stable minimum objective value in 
less than 20 iterations. 

 

Figure 5. Convergence of HPSOSA for parameter estimation of single diode PV cell circuit. 

A further insight of how close the estimated values are with the experimental values has been 
given in Table 4, Figures 6 and 7. Experimentally measured voltage, current and the error between 
measured current and estimated current, calculated by	݁ = ௠ܫ −  .௖, have been tabulated in Table 4ܫ
Table 4 shows that very low error values portray high precision of the estimated parameters.  
Figure 6 plots experimentally measured I-V data points and I-V data obtained by estimated 
parameters. Figure 7 plots experimentally measured P-V (power-voltage) data points and P-V data 
obtained by estimated parameters. Figures 6 and 7 clearly portray that the estimated data is in close 
agreement with the experimentally measured data. 
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Table 4. Error respective to each measurement for single diode PV model. 

No. ࢓ࡵ ࢓ࢂ Error (ࢋ) No. ࢓ࢂ (ࢋ) Error ࢓ࡵ
1 −0.2057 0.7640 −0.0001 14 0.4137 0.7280 0.0006 
2 −0.1291 0.7620 −0.0007 15 0.4373 0.7065 −0.0005 
3 −0.0588 0.7605 −0.0009 16 0.4590 0.6755 0.0001 
3 0.0057 0.7605 0.0003 17 0.4784 0.6320 0.0010 
5 0.0646 0.7600 0.0010 18 0.4960 0.5730 0.0008 
6 0.1185 0.7590 0.0010 19 0.5119 0.4990 −0.0005 
7 0.1678 0.7570 −0.0000 20 0.5265 0.4130 −0.0005 
8 0.2132 0.7570 0.0009 21 0.5398 0.3165 −0.0007 
9 0.2545 0.7555 0.0005 22 0.5521 0.2120 −0.0000 
10 0.2924 0.7540 0.0004 23 0.5633 0.1035 0.0009 
11 04.3269 0.7505 −0.0008 24 0.5736 −0.0100 −0.0007 
12 0.3585 0.7465 −0.0008 25 0.5833 −0.1230 0.0014 
13 0.3873 0.7385 −0.0016 26 0.5900 −0.21 −0.0009 

 
Figure 6. Comparison of estimated model and experimental data I-V characteristics of single diode 
model by the HPSOSA. 

 

Figure 7. Comparison of estimated model and experimental data PV characteristics of single diode 
model by HPSOSA. 

The ܴܨܥܣ result for SDM using the HPSOSA is shown in Figure 8. The estimated SDM qualifies 
the test as the values are in the range of –1 and +1. 
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Figure 8. RACF result for SDM. 

4.2 Results for Double Diode PV Model 

For the double diode model of the PV cell, statistics of 20 runs are tabulated in Table 5. It is 
obvious from Table 5 that the HPSOSA presented better statistics when compared with CPSO. The 
HPSOSA attains a best RMSE value of 7.4532 × 10−4, which is far better than the best RMSE value 
attained by CPSO. The HPSOSA outperforms CPSO in all means of average, best, maximum, 
standard deviation and median. The HPSOSA achieved a good standard deviation of 5.8569 × 10−5 
while CPSO achieved a standard deviation of 5.0461 × 10−4. 

Table 5. Statistics of objective values (RMSE) for double diode PV model using HPSOSA. 

Objective Value HPSOSA CPSO 
Average 7.7583 × 10−4 2.1069 × 10−3 

Best 7.4532 × 10−4 1.3057 × 10−3 
Worst 9.6169 × 10−4 2.9591 × 10−3 

Std 5.8569 × 10−5 5.0461 × 10−4 
Median 7.5511 × 10−4 2.1283 × 10−3 

Table 6 lists the best values of parameters estimated by HPSOSA and other five optimization 
algorithms along with ܴܧܵܯ  and ܧܣܯ	 . Table 6 is evident of the superiority of the HPSOSA 
compared with other algorithms. It is obvious that the HPSOSA achieved significantly low values of ܴܧܵܯ and	4−10 × 7.453163 ,ܧܣܯ and 6.5556 × 10−4 respectively. 

Table 6. Estimated parameters of single diode PV model obtained by HPSOSA and other five 
algorithms with RMSE and MAE values. 

Parameter HPSOSA CPSO HS [12] IABC [13] SA [11] PS [15]
Rs 0.037408 0.035601 0.03545 0.0364 0.0345 0.0320 
Rsh 55.539281 45.547533 46.82696 55.2307 43.1034 81.3008 
Iph 0.760805 0.762321 0.76176 0.7609 0.7623 0.7602 
I01 0.111986 0.297108 0.12545 0.26900 0.4767 0.9889 
n1 1.395932 1.476035 1.49439 1.4670 1.5172 1.6000 
I02 0.855939 0.710454 0.25470 0.28189 0.0100 0.0001 
n2 1.820143 1.998103 1.49989 1.8722 2.000 1.1920 ܴܧܵܯሺ× 10ିସሻ 7.453163 13.05652 12.60 10.00 16.64 15.18 ܧܣܯሺ× 10ିସሻ 6.5556 10.3900 29.1820 134.3200 42.2640 43.1430 
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To further examine that how close the currents are calculated by the HPSOSA with the 
experimentally measured currents, Figures 9 and 10 have been shown. Figure 9 plotted the I-V 
characteristics of the estimated model and the experimental data while Figure 10 plotted the P-V 
characteristics of the estimated model and the experimental data. It is clear from Figures 9 and 10 that 
the current and power estimated by the HPSOSA closely trace the experimentally measured data. 

 

Figure 9. Comparison of estimated model and experimental data I-V characteristics of double diode 
model by HPSOSA. 

 

Figure 10. Comparison of estimated model and experimental data P-V characteristics of double diode 
model by HPSOSA. 

Table 7 shows another measure of how close are the estimated model and the experimentally 
measured data by virtue of error between them. Experimentally measured voltage, current and the 
error between the experimental current and the calculated current have been listed in Table 7. The 
very low error is an indication of the accuracy of the HPSOSA. 

Table 7. Relative error respective to each measurement for single diode PV model. 

No. ࢓ࡵ ࢓ࢂ Error (ࢋ) No. ࢓ࢂ (ࢋ) Error ࢓ࡵ
1 −0.2057 0.7640 0.0000 14 0.4137 0.7280 0.0008
2 −0.1291 0.7620 −0.0006 15 0.4373 0.7065 −0.0004
3 −0.0588 0.7605 −0.0009 16 0.4590 0.6755 0.0002
3 0.0057 0.7605 0.0003 17 0.4784 0.6320 0.0009
5 0.0646 0.7600 0.0009 18 0.4960 0.5730 0.0007
6 0.1185 0.7590 0.0009 19 0.5119 0.4990 −0.0007
7 0.1678 0.7570 −0.0002 20 0.5265 0.4130 −0.0006
8 0.2132 0.7570 0.0008 21 0.5398 0.3165 −0.0007
9 0.2545 0.7555 0.0003 22 0.5521 0.2120 0.0001

10 0.2924 0.7540 0.0003 23 0.5633 0.1035 0.0010



Energies 2017, 10, 1213 12 of 13 

 

11 0.3269 0.7505 −0.0008 24 0.5736 −0.0100 −0.0006
12 0.3585 0.7465 −0.0007 25 0.5833 −0.1230 0.0014
13 0.3873 0.7385 −0.0014 26 0.5900 −0.21 −0.0011

The ܴܨܥܣ result for DDM using the HPSOSA has been shown in Figure 11. The estimated DDM 
qualifies the test as the values are in the range of –1 and +1. 

 
Figure 11. RACF results for DDM. 

5. Conclusions 

This paper has presented a hybrid optimization approach using particle swarm optimization 
and simulated annealing for parameter estimation of photovoltaic solar cell single diode and double 
diode models. Experimentally measured data of a silicone solar cell (RTC France), measured at an 
irradiance of 1000 W/m2 and a temperature of 33 °C, were used to estimate the models. The approach 
significantly improves the problem of premature convergence. The applied approach is compared 
with different metaheuristic algorithms, namely CPSO, IABC, HS, SA and PS. The HPSOSA 
outperformed all the compared algorithms by all means of statistical analysis used in this paper, i.e. 
average, best, maximum, standard deviation and median. The HPSOSA achieved very low values of 
RMSE and MAE comparatively. The HPSOSA successfully passed the RACF test and the test values 
lie within the confidence interval. 
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