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Abstract: This paper proposes an economic dispatch strategy for the electricity system with one
generation company, multiple utility companies and multiple consumers, which participate in
demand response to keep the electricity real-time balance. In the wholesale markets, multiple utility
companies will commonly select a reliable agent to negotiate with the generation company on the
wholesale price. It is challengeable to find a wholesale price to run the electricity market fairly
and effectively. In this study, we use the multiple utility companies’ profits to denote the utility
function of the agent and formulate the interaction between the agent and the generation company as
a bargaining problem, where the wholesale price was enforced in the bargaining outcome. Then, the
Raiffa–Kalai–Smorodinsky bargaining solution (RBS) was utilized to achieve the fair and optimal
outcome. In the retail markets, the unfavorable disturbances exist in the power management and
price when the consumers participate in the demand response to keep the electricity real-time balance,
which motivates us to further consider the dynamic power management algorithm with the additive
disturbances, and then obtain the optimal power consumption and optimal retail price. Based on the
consumers’ utility maximization, we establish a price regulation model with price feedback in the
electricity retail markets, and then use the iterative algorithm to solve the optimal retail price and the
consumer’s optimal power consumption. Hence, the input-to-state stability condition with additive
electricity measurement disturbance and price disturbance is given. Numerical results demonstrate
the effectiveness of the economic dispatch strategy.

Keywords: economic dispatch; demand response; input-to-state stability; pricing strategy;
Raiffa–Kalai–Smorodinsky bargaining solution (RBS)

1. Introduction

Smart grid is an intelligent power system that integrates advanced control, communications,
demand response, storage, and sensing technologies into the power grid. A smart metering system
is crucial in order to provide management capabilities and obtain metering data with additional
information [1]. Additionally, demand forecasting as a forecast technology plays an important role in
the smart grid and the energy generation process [2]. In the smart grid, demand-side management
(DSM) is an effective technology to keep the energy real-time balance in the deregulated electricity
market. It is widely accepted that demand response can transform the traditional power grid into a
more reliably and economically operated smart grid [3–6]. An overview for various types of DSM is
given in [7]. Demand response can motivate consumers to shift their loads from on-peak to off-peak
periods. To reduce the peak load of a smart distribution network feeder, a self-decision method
for load management is proposed in [8]. In general, the demand response programs include two
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categories: incentive-based programs and price-based programs [9]. The incentive-based programs
include the direct load control, the emergency demand response, and the ancillary services market. For
the price-based program, there are two types of consumers: pricing-taking (PT) consumers [10] and
price-anticipating (PA) consumers [11–13]. The utility companies can adjust the power consumption of
customers by pricing strategy, such as time of use (TOU), critical peak pricing (CPP), and real-time
pricing (RTP) that can match the supply with demand [14–16]. Generally, the regulation service is
defined by the North American Electric Reliability Council (NERC) as the provision of generation and
load response capability, which responds to automatic control signals issued by the system operator
updated every four seconds [17].

Recently, different pricing-based demand response programs were developed based on game
theory and kinds of optimization methods. For example, the authors analyzed the cooperation
between the small-scale electricity suppliers (SESs) and end-users (EUs) based on the coalitional game
in [18–20]. Solving potential games with dynamical constraint, and improving the Pareto efficiency
with punishment mechanism were developed in [21,22]. The Stackelberg game was developed to
formulate the energy trading between the consumers and multiple utility companies who aim to
maximize their own profits from the energy exchange between the plug-in electric vehicles (PEVs) and
the smart grid [23–25]. The authors in [26,27] developed a load curtailment strategy and analyzed the
energy consumption control in the smart grid based on the noncooperative game and aggregate game
theory. The dual decomposition method was developed to achieve the social welfare maximization by
optimizing the individual utilities of the consumers [28–30]. Distributed power control algorithms
with a linear pricing function and a nonlinear pricing function were developed to achieve the balance
between supply and demand for demand response [31,32]. The authors use the Nash bargaining
theory to study the financial bilateral contract negotiation process between a generation company and
a load-serving entity in a wholesale electric power market [33]. Nash bargaining was developed in the
demand response and microgrid to derive the optimal solutions for the load reduction and maximize
the social welfare [34,35]. To minimize the emission by optimizing the total power generation, an
economic dispatch algorithm for congestion management in power system is proposed in [36]. In [37],
the author proposed a novel unsymmetrical faults analysis method for microgrid distribution systems.
This method can achieve the advantages of reducing computation time, increasing convergence
robustness and improving accuracy for unsymmetrical faults analysis. The computation time of the
algorithm is important to the power system; thus, we take into account the computation time of
the proposed algorithm in the paper. To achieve a fast and stable response for real power control, a
dynamic operation and control strategy for a microgrid hybrid power system under different load
conditions with disturbances was proposed in [38]. In [39], the authors proposed a novel intelligent
damping controller (NIDC) for the static synchronous compensator (STATCOM) to reduce the power
fluctuations, voltage support and damping in a hybrid power multi-system. To mitigate the voltage
imbalance and deviation, the authors in [40] developed a modified bird-mating optimization approach
to enhance the phase-connection adjustment of distribution transformers, and ensure a satisfactory
supplying power. The differences between our work and the above work are shown in Table 1.

Table 1. Differences of the proposed work with the literature.

Indexes Pricing Function Disturbances Stability Demand Response

[38] ×
√ √

×
[39] ×

√ √
×

[40] ×
√ √

×
This work

√ √ √ √

On the whole, the above work didn’t consider the unfavorable disturbances on the power
system when the consumers participate in the demand response to keep the energy real-time balance.
Moreover, the wholesale price bargaining between the the utility company and generation company is
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neglected. Therefore, a systematic study with an effective approach is important to match supply with
demand; thereby, it motivates the study in this paper.

In this paper, based on the consumers’ utility maximization, we establish a price regulation model
with price feedback in the electricity retail markets, and use the iterative algorithm to solve the optimal
retail price and the consumer’s optimal power consumption. Then, we formulate the wholesale price
negotiation problem by the bargaining framework between the multiple utility companies and the
generation company. The utility companies and generation company negotiate the wholesale price to
maximize their revenues. We prove that the interaction between the utility companies and generation
company is a bargaining problem. Furthermore, the input-to-state stability condition with additive
electricity measurement disturbance and price disturbance is given. We have three contributions in
this work:

• We formulate a wholesale price negotiation problem between the multiple utility companies and
the generation company. Then, we prove that the wholesale price negotiation is a bargaining
problem and the Raiffa–Kalai–Smorodinsky bargaining solution (RBS) was utilized to achieve the
optimal solution.

• We establish a price regulation model with price feedback in the electricity retail markets based on
the consumers’ utility maximization and the negotiated wholesale price.

• The iterative algorithm is used to search for the optimal retail price and the power consumption.
Moreover, we prove that the power management system is input-to-state stability under additive
electricity measurement disturbance and price disturbance.

The rest of the paper is organized as follows. Some preliminaries are given in Section 2. In Section 3,
the electricity market model is established and the problem is formulated. In Section 4, the wholesale
price negotiation between the generation company and multiple utility companies is developed; then,
the Raiffa–Kalai–Smorodinsky bargaining solution (RBS) is utilized to achieve the optimal outcome.
In Section 5, the power management system with additive disturbances is developed. The input-to-state
stability of the power management system is proved. System implementation is described in Section 6.
Numerical results are given in Section 7, and conclusions are summarised in Section 8.

2. Definition and Preliminaries

This section presents the definition of the bargaining problem, and the RBS (please refer to [41,42]
for more details).

Definition 1. (Bargaining problem). Let {i|i = 1, 2, . . . , n} be the set of players and T denote the set of
feasible payoffs, which is a closed and convex set on Rn. Emin = [Emin

1 , . . . , Emin
i , . . . , Emin

n ], where Emin
i

denotes the minimum payoff player i. Then, (T, Emin) is a n-person bargaining problem, and f (T, Emin) is the
bargaining outcome.

Definition 2. (RBS) If the mapping f : G → R satisfies the following axioms:

• Independence: f (T, Emin) � Emin;
• Feasibility: f (T, Emin) ∈ T;
• Pareto Optimality: f (T, Emin) is Pareto optimal;
• Linear Axiom: For any linear transformation function φ, φ( f (T, Emin)) = f (φ(T), φ(Emin));
• Symmetry: If T is invariant under all exchanges to consumers, then for all i, j ∈ {1, 2, . . . , N},

fi(T, Emin) = f j(T, Emin);
• Monotonicity: For any E

′ ∈ T
′

where E
′
= f (T

′
, Emin), if T ⊂ T

′
and ∑n

i=1 E
′
j,i, then, f j(Q

′
, Emin) ≥

f j(Q, Emin), then, the bargaining solution can be expressed as:

E∗i = arg max
Ei∈T

N

∏
i=1

Vi, (1)
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where Vi is player i’s utility function, which is denoted as:

Vi = Ei − Emin
i +

1
N − 1 ∑

j 6=i
(Emax

j − Ej), (2)

where Emin
i is the minimum payoff of player i and Emax

j is the maximum payoff of player j. This bargaining
solution indicates that one player takes into account both its own minimum payoff and others’ maximum payoffs.

3. System Model and Problem Formulation

We consider an electricity system composed of one generation company, one agent, multiple
utility companies, and consumers, as shown in Figure 1.

Generation

company
Agent

Utility company

Consumer

Utility company

Utility company

Bargaining

Consumer

Consumer

.

.

.

.

.

.

Wholesale

price

Retail price

Retail price

Retail price

Power 

consumption

Power 

consumption

Power 

consumption

Figure 1. An electricity market.

The agent negotiates with the generation company on wholesale price instead of the multiple
utility companies. Additionally, the operation cycle of the power system is divided into several time
slots. In each time slot, the utility company decides the electricity price and announces it to the
consumers. Then, the consumers manage their power consumption according to the announced price.
We employ the utility functions to characterize the profits of the customers, where Ui(xi) denotes the
utility of consumer i, and xi is the power consumption of the consumer i. Thus, the maximization of
the social welfare can be formulated as the following optimization problem:

max
N

∑
i=1

Ui(xi)− wQ, (3)

s.t.
N

∑
i=1

xi = Q, (4)

where w is the wholesale price, and Q denotes the total power supply of the utility companies.
The constraint indicates that the total power consumption should match with the power supply.
The optimization problem is a convex optimization problem and can be solved by the following
primal-dual algorithm:

ẋi = ki(U
′
i − p− w), (5)
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and:

ṗ = z(
N

∑
i=1

xi −Q), (6)

where ki and z are the control gain, p is the price of the utility company, and x = (x1, . . . , xN) denotes
the set of power consumption of all the customers.

4. Bargaining Model and Solution

The agent representing the multiple utility companies negotiates with the generation company on
the wholesale price w, and then announces the wholesale price to each utility company to maximize
the efficiency of the electricity market. It can be formulated as a bargaining problem between the agent
and the generation company according to Definition 1. The agent’s utility function can be regarded as
the total utility function of the utility companies, which is denoted as:

Uc =
M

∑
j=1

Nj

∑
i=1

Ui(xi)− w
M

∑
j=1

Qj. (7)

Qj denotes the power supply of the utility company j. The profit of the generation company can
be denoted as:

Uw = w
M

∑
j=1

Qj − cs, (8)

where wmin ≤ w ≤ wmax, cs is the cost of the generation.
Next, we prove that the negotiation between the agent and generation company is a bargaining

problem. The set of feasible profit is defined as:

T = {Uc, Uw|wmin ≤ w ≤ wmax}, (9)

where wmin is the minimum wholesale price and wmax is the maximum wholesale price.
It is easy to see that the set T is a closed subset of Rn from the profit functions of the utility

company and generation company, i.e., Equations (7) and (8). Assume any two elements {Ua
c , Ua

w} ∈ T
and {Ub

c , Ub
w} ∈ T: 

Ua
c =

M

∑
j=1

Nj

∑
i=1

Ui(xi)− wa
M

∑
j=1

Qj,

Ua
w = wa

M

∑
j=1

Qj − cs,

(10)

and: 
Ub

c =
M

∑
j=1

Nj

∑
i=1

Ui(xi)− wb
M

∑
j=1

Qj,

Ub
w = wb

M

∑
j=1

Qj − cs.

(11)
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Next, we construct the weighted summation of the two elements, i.e.,

θUa
c + (1− θ)Ub

c = θ
M

∑
j=1

Nj

∑
i=1

Ui(xi)− θwa
M

∑
j=1

Qj + (1− θ)[
M

∑
j=1

Nj

∑
i=1

Ui(xi)− wb
M

∑
j=1

Qj]

=
M

∑
j=1

Nj

∑
i=1

Ui(xi)−
M

∑
j=1

Qj[θwa + wb − θwb],

(12)

where 0 < θ < 1. Comparing Equations (10) and (12), we define:

w0 = θwa + (1− θ)wb. (13)

It can be proved that wa − wmax ≤ 0 and wb − wmax ≤ 0; then, we have:

w0 ≤ θwmax + (1− θ)wmax = wmax. (14)

Meanwhile, it can be proved that wa − wmin ≥ 0 and wb − wmin ≥ 0; then, we have:

w0 ≥ θwmin + (1− θ)wmin = wmin. (15)

Therefore, we can conclude that T is closed and convex on R2, and the negotiation between the
agent and the generation company is a bargaining problem. The cooperative strategy based on RBS
can be denoted as:

max V1V2 = (2wmax

M

∑
j=1

Qj − 2w
M

∑
j=1

Qj)(2w
M

∑
j=1

Qj − 2wmin

M

∑
j=1

Qj)

= −4w2(
M

∑
j=1

Qj)
2 + 4(wmin + wmax)w(

M

∑
j=1

Qj)
2 − 4wminwmax(

M

∑
j=1

Qj)
2,

(16)

where

V1 = (wmax

M

∑
j=1

Qj − w
M

∑
j=1

Qj) + (wmax

M

∑
j=1

Qj − w
M

∑
j=1

Qj), (17)

and:

V2 = (w
M

∑
j=1

Qj − wmin

M

∑
j=1

Qj) + (w
M

∑
j=1

Qj − wmin

M

∑
j=1

Qj). (18)

Next, we can obtain the globally optimal solution:

w∗ =


wmax+wmin

2 , wmin ≤ w
′ ≤ wmax,

wmax, wmax < w
′
,

wmin, wmin > w
′
,

(19)

where w
′

is the abscissa axis of symmetry.

5. Power Management System with Additive Disturbances

In reality, the utility company set the optimal retail price according to Equation (6) based on the
wholesale price, and the consumers determine the optimal power consumption according to Equation
(5). It is dependent on the two-way communications between the utility company and the customers.



Energies 2017, 10, 1193 7 of 17

It is necessary to study the impact of disturbances on the power management system because of the
errors in the power measurements and the price. As shown in Figure 2, d1 and d2 denote the additive
disturbances on the price and the total power consumption, respectively. Then, the power management
algorithm with disturbances is denoted as:

ẋi = ki(U
′
i − p− w + d1), (20)

and:

ṗ = z(
N

∑
i=1

xi −Q + d2). (21)
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Figure 2. Power management system with additive disturbances.

Next, we study the input-to-state stability of the power management system with additive
disturbances and denote p(x) as p for short. Before the proof, we first give the following lemma:

Lemma 1. (input-to-state Stability [43]) Support that : [0, ∞)→ R satisfies

D+W(t) ≤ −αW(t) + β(t), (22)

where D+ denotes the upper Dini derivative, α is a positive constant, and β ∈ Lp, p ∈ [1, ∞). Then,

‖W(t) ‖≤ e−αt ‖W(0) ‖ +α−1 ‖ β ‖L∞ . (23)

Then, we obtain the following theorem:

Theorem 1. The power management algorithm is input-to-state stable when the utility function satisfies
U
′′
i (xi) ≤ −η1, yields

‖ ỹ(t) ‖≤ √ϕ
√

ỹ(0)TK−1ỹe−αt +

√
2
√

ϕ

α
β, (24)

where ỹ = [x1 − x∗1 , . . . , xN − x∗N , p− p∗]T ,
x̃ = x− x∗,
p̃ = p− p∗,
ϕ = max{ki, z}, z is a positive constant,
K = diag{k1, k2, . . . , kN , z},
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α = η1ξ,
ξ = min{ki, z},
β =

√
2

4
√

ϕηmax,
ηmax = max{dmax

1

√
N, |d2|},

dmax
1 = max{d1, d2, . . . , dN},
‖ x̃ ‖=

√
(x1 − x∗1)

2 + . . . + (xN − x∗N)
2.

Proof. Consider the Lyapunov candidate function:

V =
1
2

x̃TΦ−1 x̃ +
1
2z

p̃2, (25)

where Φ = diag{k1, k2, . . . , kN}, take the derivation respect to V, we have:

V̇ = x̃T(U
′
(x)− pRT

N + d1) + p̃(RN x−Q + d2), (26)

where U
′
(x∗) = p∗, RN x∗ = Q, RN = [1, 1, . . . , 1]1×N .

Adding and subtracting x̃TU
′
(x∗) from the right-hand side of Equation (26), we obtain

V̇ = x̃T(U
′
(x)−U

′
(x∗)) + x̃T(p∗RT

N)− x̃T(pRT
N) + dT

1 x̃ + p̃(RN x− RN x∗ + d2)

= x̃T(U
′
(x)−U

′
(x∗)) + x̃T(− p̃RT

N) + p̃(RN x− RN x∗) + dT
1 x̃ + p̃d2

= x̃T(U
′
(x)−U

′
(x∗)) + x̃T(− p̃RT

N) + p̃(RN x̃) + dT
1 x̃ + p̃d2

= x̃T(U
′
(x)−U

′
(x∗)) + dT

1 x̃ + p̃d2

≤ −η1 ‖ x̃ ‖2 +dmax
1
√

n ‖ x̃ ‖ +| p̃||d2|
≤ −η1 ‖ x̃ ‖2 +ηmax(‖ x̃ ‖ +| p̃|)

≤ −η1(‖ x̃ ‖2 +| p̃|2) + ηmax
(‖ x̃ ‖ +| p̃|)

2

≤ −η1(‖ x̃ ‖2 +| p̃|2) + ηmax

√
(‖ x̃ ‖2 +| p̃|2)

2

≤ −2η1ξV +
ηmax√

2
√

ϕ
√

V

= −2αV + 2β
√

V.

(27)

Setting W =
√

V, we obtain:

D+W = −αW + β, (28)

which, from Lemma 1, implies that:

‖W(t) ‖≤ e−αt ‖W(0) ‖ +α−1β. (29)

The inequality (24) is proved.

6. System Implementation

The system implementation is shown in Figure 3, and the process is shown as below.
Generation company: the generation company produces the electric energy and then sells it to

the utility companies at a wholesale price to maximize its profits.
Agent: the agent represents the multiple utility companies and then bargains the wholesale price

with the generation company to maximize the efficiency of the electricity market.
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Utility company: the utility company receives the wholesale price announced by the agent and
then sets the optimal retail price. Furthermore, the optimal retail price is sent to the consumers through
the bidirectional communication link.

Consumer: the consumers accept the optimal retail price sent by the utility company through the
smart meters and then determine the optimal power consumption to maximize their utilities. Then, the
consumers send the optimal power consumption to the utility company.

Generation

company

Agent

Utility company

Consumer...
Utility company

Utility company

...

Bargaining

Wholesale

price

Wholesale

price

Wholesale

price

Retail price

Power 

consumption

Retail price

Retail price

Power 

consumption

Power 

consumption

Figure 3. System implementation.

7. Numerical Results

In this section, we consider a smart power system consisting of one generation company (GC),
one agent and multiple utility companies (UC). Moreover, each utility company services for several
consumers. The utility company decides the electricity price and announces it to the consumers.
Then, the consumers manage their power consumption according to the announced price. We employ
the utility functions to characterize the profits of consumers. A quadratic utility function with
decreasing marginal benefit is defined as:

Ui(xi) =

ωixi − a
2 x2

i , 0 ≤ xi ≤ ωi
a ,

ω2
i

2a , xi >
ωi
a ,

(30)

where xi is the power consumption of consumer i(i ∈ {1, 2, . . . , N}), ωi(ωi > 0) denotes the
willingness to increase the power consumption, and ωi

a denotes the maximum demand of consumer i.
The power management algorithm with disturbance is denoted as:

ẋi = ki(ωi − axi − p + d1), (31)

and:

ṗ = z(
N

∑
i=1

xi −Q + d2). (32)

The discrete-time power management algorithm with disturbance is denoted as:

xi(m + 1) = xi(m) + µ(ωi − axi(m)− p(m) + d1), (33)

p(m + 1) = p(m) + b(
N

∑
i=1

xi(m)−Q + d2). (34)
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The flowchart of the pricing regulation strategy is given in Figure 4.

Initialization

The generation company negotiates with 

multiple utility companies on the wholesale 

price    .    

End

Is termination 

accuracy satisfied?

Calculate the power consumption  

and the retail price    . 

Update     and      according 

to  (34) and (35).

Yes

No

w

i
x

p

p

i
x

Figure 4. The flowchart of the pricing regulation algorithm.

Assuming that the wholesale price is set in [$1, $5], the generation and agent negotiate on the
wholesale price based on Equation (19), and the RBS solution is w∗ = $3. Moreover, the influence
of the maximum wholesale price wmax and minimum wholesale price wmin on the RBS solution are
shown in Figure 5, where wmin is changed from 2 to 8 when wmax = 8 is fixed (green bar) and
wmax is changed from 2 to 8 when wmin = 1 is fixed (red bar). For convenience, we select 1000
consumers from one utility company. Each consumer’s willingness parameter ωi is randomly selected
from [22,28], and the power supply Q is varying from 5 kW to 12 kW. Figure 6 shows the convergence
of 1000 consumer’s power consumption bounded by 4.456 kWh and 5.379 kWh. Next, we focus on
studying the disturbance impact on the system; for convenience, we select three consumers from the
1000 consumers to analyze the disturbance influence on the system. The parameters of the system are
given in Table 2. The changes of the power consumption and the retail price versus the iterations of the
algorithm are shown in Figures 7–12, respectively. In the simulations, we mainly focus on the influence
of the communication disturbances d1 and d2 on the power control algorithm. We take three different
parameter values in Table 3, where d1 and d2 follow normal distribution. From Figures 7 and 9, we
observe that the fluctuations of the power consumption will increase with the variance of d1. Furthermore,
it is shown that the fluctuations of the retail price will increase greatly with the variance of d2 from
Figures 8 and 12. In general, the power system has a good robustness for the additive disturbances, and
the errors can be bounded by 1%, 2% and 6% under Case I, Case II and Case III, respectively. From the
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simulation results, we can observe that the power control algorithm has a fast convergence speed. In the
first 100 iterations, the fluctuations are large, and the convergence rate slows down after 100 iterations.
The optimal consumption and optimal retail price are given in Table 4. The proposed algorithm can
calculate the optimal power consumption and retail price with short time as shown in Table 5, which
was conducted in MATLAB R2010b (MathWorks, Natick, MA, USA) with a 3.60 GHz CPU and 4.0 GB of
RAM.
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Figure 5. The Raiffa–Kalai–Smorodinsky bargaining solution (RBS) versus maximum wholesale price
and minimum wholesale price.
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Figure 6. Convergence of 1000 consumers’ power consumption.
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Figure 7. Convergence of the power consumption under case I.
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Figure 8. Convergence of the retail price under case I.
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Figure 9. Convergence of the power consumption under case II.
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Figure 10. Convergence of the retail price under case II.
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Figure 11. Convergence of the power consumption under case III.
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Figure 12. Convergence of the retail price under case III.



Energies 2017, 10, 1193 14 of 17

Table 2. Parameter settings of the system.

ω1 ω2 ω3 a b µ

28 22 25 3.2 0.3 0.05

Table 3. Disturbance parameter settings.

Disturbances Case I Case II Case III

d1 (0.1 0.05) (0.2 0.1) (0.1 0.05)
d2 (0.1 0.01) (0.1 0.01) (0.1 0.1)

Table 4. The optimal power consumption and the retail price.

Indexes Case I Case II Case III

The power consumption of first consumer (kW) 5.90 5.91 5.89
The power consumption of second consumer (kW) 4.03 4.03 4.02
The power consumption of third consumer (kW) 4.97 4.96 4.95

Retail price ($/kWh) 6.19 6.32 6.28

Table 5. The computation time of the pricing regulation algorithm.

Computation time Case I Case II Case III

The computation time of power consumption (s) 0.0271 0.0343 0.0369
The computation time of retail price (s) 0.0275 0.0371 0.0384

8. Conclusions

In this paper, we propose an economic dispatch strategy for the electricity system. We formulate a
wholesale price negotiation problem between the generation company and multiple utility companies.
Then, we prove that the negotiation problem between the generation company and multiple utility
companies is a bargaining problem. Next, the RBS is utilized to achieve the optimal bargaining outcome.
In the simulation, we find that the RBS solution is increasing with the maximum wholesale price when
the minimum wholesale price is fixed. Meanwhile, when the maximum wholesale price is fixed, the RBS
solution is decreasing with the minimum wholesale price. Moreover, based on the consumers’ utility
maximization and the negotiated wholesale price, we establish a utility function model of utility company
with price feedback in the electricity retail markets, and then use the iterative algorithm to obtain the
optimal retail price and the optimal power consumption. Additionally, we prove that the algorithm is
input-to-state stable and give the input-to-state stability condition under the additive power measurement
disturbance and price disturbance. In this work, the proposed algorithm can converge to the optimal
value within 100 steps, and the errors can be bounded by 1%, 2% and 6% under Case I, Case II and Case III,
respectively. In the future, an interesting topic is to consider the incomplete information game between
the utility company and the consumers. The consumers determine the optimal power consumption and
the utility company sets the optimal retail price to maximize their own profits, respectively. Then, the
Markov game and robust game are promising methods to deal with this problem.
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Nomenclature

p The retail price of utility company.
w The wholesale price charged by the generation company to the utility company.
wmax The maximum wholesale price.
wmin The minimum wholesale price.
cs The cost of the generation.
xi The power consumption of consumer i.
Ui The utility function of consumer i.
Q The total power supply of the utility companies.
Qj The power supply of utility company j.
K The diagonal matrix composed of {k1, k2, . . . , kN , z}.
k, z The control gains of system.
N The number of the consumers.
M The number of the utility companies.
d1 The additive disturbance on the price.
d2 The additive disturbance on the total power consumption.
dmax

1 The maximum disturbance in the disturbance set {d1, d2, . . . , dN}.
ϕ The maximum value in {ki, z}.
α The positive coefficient.
ξ The minimum value in {ki, z}.
ηmax The maximum value in {dmax

1

√
N, |d2|}.

β The positive coefficient.
η1 The positive constant.
x̃ The estimated value of the power consumption.
p̃ The estimated value of the price.
ω The consumer’s willingness.
a The coefficient of consumer’s willingness.
D+ The upper Dini derivative.
µ The iterative step size of the power consumption.
b The iterative step size of the price.
θ The weighted coefficient.
T The set of feasible payoff.
Ua

c , Ua
w Feasible payoffs in T.

Ub
c , Ub

w Feasible payoffs in T.
wa, wb, w0 The wholesale price.
E∗i The optimal bargaining solution of player i.
Emin

i The minimum payoff player i.
Emax

i The maximum payoff player i.
f (T, Emin) The Pareto optimum.
Rn The n-dimensional real number set.
φ The linear transformation function.
Vi The player i’s utility function.
RBS Raiffa–Kalai–Smorodinsky bargaining solution.
DSM Demand-side management.
UC Utility company.
GC Generation company.
PT Pricing-taking.
PA Price-anticipating.
TOU Time of use.
CPP Critical peak pricing.
RTP Real-time pricing.
NERC North American Electric Reliability Council.
SECs Small-scale electricity suppliers.
EUs End users.
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PEVs Plug-in electric vehicles.
NIDC Novel intelligent damping controller.
STATCOM Static synchronous compensator.
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