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Abstract: Pumped hydro energy storage (PHES) is currently the only proven large-scale energy
storage technology. Frequent changes between pump and turbine operations pose significant
challenges in the design of a pump-turbine runner with high efficiency and stability, especially for
ultrahigh-head reversible pump-turbine runners. In the present paper, a multiobjective optimization
design system is used to develop an ultrahigh-head runner with good overall performance. An
optimum configuration was selected from the optimization results. The effects of key design
parameters—namely blade loading and blade lean—were then investigated in order to determine
their effects on runner efficiency and cavitation characteristics. The paper highlights the guidelines for
application of inverse design method to high-head reversible pump-turbine runners. Middle-loaded
blade loading distribution on the hub, back-loaded distribution on the shroud, and large positive
blade lean angle on the high pressure side are good for the improvement of runner power performance.
The cavitation characteristic is mainly influenced by the blade loading distribution near the low
pressure side, and large blade lean angles have a negative impact on runner cavitation characteristics.
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1. Introduction

Benefits of pumped hydro energy storage (PHES) on electrical system operations are prominent.
The flexible generation of PHES can provide upregulation and downregulation in power systems.
Furthermore, PHES enable quick start and the provision of spinning and standing reserves. Interest in
this technology has been renewed because of the increase in variable renewable energy, such as wind
power [1,2]. In recent years, higher head and larger capacity PHES stations have been developed in
order to reduce the construction costs [3].

The pump-turbine is a key component in PHES stations. It usually takes only one runner
functioning as pump or turbine. Therefore, pump and turbine efficiencies should be guaranteed for the
runners during water pumping and electricity generation. Furthermore, the cavitation performance
and operation stability have to be improved for both operating conditions. It is difficult to develop
a pump-turbine runner with high overall performance because the targets affect each other and
sometimes conflict in its two operations [4,5].

The pump-turbine runners are usually designed from pump mode, and then verified with turbine
mode [1,5], given that the requirements for pump operation are difficult to meet, and the relatively
good performance can be maintained when pumps operate as turbines [6,7]. The runners are more like
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centrifugal pump impellers in shape, rather than Francis turbine runners. Furthermore, pump-turbine
runners with higher working heads possess more prolonged flow channels. Low efficiency and bad
cavitation characteristics are the main challenges in the development of ultrahigh-head pump turbines,
especially the runners.

Computational fluid dynamics (CFD) has been widely used in the development of the
pump-turbine runner [8,9]. The profile of the runner can be modified by changing the design
parameters on the basis of internal flow analysis [10,11]. However, this CFD flow analysis cannot
directly propose a blade configuration with favorable flow pattern. Moreover, the direct CFD-based
modification technique is considerably time consuming and requires intensive experience. With
the development of design theory and computer technology, three-dimensional (3D) inverse design
methods have been increasing in popularity for turbomachinery in the past 30 years [12–14]. In the
so-called inverse design methods, the geometry of the blades is unknown and it can be directly
calculated according to the design specifications. The main advantage of the inverse design methods is
the closer relationship between the design parameters and the hydrodynamic flow field. However, no
direct relationship can be given between geometric parameters and runner performances. Accordingly,
trial and error in flow analyses and model tests is still necessary.

More systematic approaches, such as optimization techniques, have been applied in the design of
turbomachinery [9,15]. Optimal design associated to turbomachinery is a multiobjective and difficult
problem by its nature. Gradient-based optimization methods have been successfully applied in
the foil design [16,17]. It is known that gradient techniques are efficient in terms of convergence
rate, but do not guarantee production of the global optimum. On the other hand, multiobjective
evolutionary algorithms (MOEAs) have gained increasing popularity over the past two or three
decades [18–20]. These population-based methods mimic the evolution of species and the survival
of the fittest, and comparted to the gradient-based optimization techniques, they offer advantages,
such as good approximations to optimal sets of solutions, generating multiple trade-off solutions in
a single iteration [18,21]. Recently, a multiobjective optimization design strategy has been used to
develop pump-turbine runners [22,23]. The strategy has been built by combining 3D design method,
CFD analysis, design of experiment (DoE), response surface methodology (RSM), and multiobjective
genetic algorithm (MOGA). A middle-high-head turbine runner with high efficiency and stability has
been designed by using this strategy [23]. Because of its simplicity, its ease of use and its suitability to
be coupled with specialized numerical tools, for instance CFD techniques, the strategy can be widely
used in the development of fluid machines.

In this study, a parametric design study of an ultra-head pump-turbine runner is carried out based
on multiobjective optimization. First, the multiobjective optimization design system was introduced
and an ultrahigh-head pump-turbine runner was designed. The runner with high overall performance
was obtained. Then, the impact of blade loading and stacking conditions on the runner performance
was assessed, where the runners are optimally described using the inverse design method and their
performance was estimated with CFD analyses. The main aim is to offer a guideline for the design
ultrahigh-head pump-turbine runners by means of comparisons and analyses of design parameters on
the runners’ performances.

2. Optimization Design System

Figure 1 shows the flow chart of the design strategy used in this study. The design approach was
based on the coupling of the parameterization of the blade shape with a 3D inverse design method to
produce the blade geometry, DoE to reduce the number of calculation times, CFD analysis to estimate
the objective functions, RSM to correlate the design parameters with the objectives, and MOGA to
search the Pareto front for the trade-off design [22,23].
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shape [12,15]. The flow through the runner is considered as water at normal temperature. When 
TURBODesign 5.2 is used for design, the flow is simplified to steady and inviscid, and the blades 
are represented by sheets of vorticity. Strength of the vorticity is determined by a circumferentially 
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2.1. 3D Inverse Design

The 3D design software TURBODesign 5.2 was used to parametrically describe the runner
shape [12,15]. The flow through the runner is considered as water at normal temperature. When
TURBODesign 5.2 is used for design, the flow is simplified to steady and inviscid, and the blades
are represented by sheets of vorticity. Strength of the vorticity is determined by a circumferentially
averaged velocity torque rVθ , defined as

rVθ =
B

2π

∫ 2π
B

0
rVθdθ (1)

It is referred to as the “blade loading”, here is the blade number.
For the incompressible potential flow, blade pressure distribution can be expressed as follows [12,15].

p+ − p− =
2π

B
ρWbl

∂
(
rVθ

)
∂m

(2)

where subscripts + and – represent either side of the blades, ρ is the water density, Wbl is the relative
velocity on the blade surface, and m is in the direction of streamlines in the meridional plane.

Equation (2) shows the direct relationship of ∂
(
rVθ

)
/∂m with the difference between pressure

on the upper and lower surfaces of the blade. The other important input specification is the stacking
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condition. This condition specifies the blade lean at the high pressure side (HPS) of the pump-turbine
runner blades as shown in Figure 2, which affects the wrap angle of the blades [12,15,24].
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robust for predicting steady calculation with acceptable accuracy [25]. 

The computational domain includes spiral casing, stay vanes, guide vanes, runner, and draft 
tube as shown in Figure 3. The frozen rotor model was used at interfaces between the stationary 
and rotating components. No-slip wall conditions were set for stationary and rotating parts. Inlet 
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2.2. CFD Analyses

The widely used commercial code ANSYS CFX 15.0 was used to conduct the CFD analyses. CFD
analyses were conducted for two purposes: one was the estimation of objective functions and the
other was validation and analyses of optimization results. The accuracy of the objective functions
is important for the optimization process. Thus, as shown in Figure 3, 3D, turbulent, and steady
flow simulations were performed for the full passage pump-turbine using the Reynolds-Averaged
Navier–Stokes (RANS) equations [22,23]. For steady flow simulations, the RANS equations can be
expressed as

∂Vi
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where V is the velocity, p is the pressure, ρ is the density, and ν is the kinematic viscosity, respectively.
The Reynolds stresses are modeled according to the turbulent viscosity hypothesis as−Vi

′Vj
′ = νt(

∂Vi
∂xj

+

∂Vj
∂xi

)− 2
3 kδij, here k is the turbulent kinematic energy, and δij is the Dirac Delta function. The turbulence

model is an important factor for CFD. For turbomachinery, performance parameters like efficiency and
cavitation can be predicted with reasonable accuracy by solving the RANS equations with advanced
turbulence models, such as standard k− ε, and renormalization group (RNG) k− ε [10,22,23,25]. In this
study, RNG k− ε turbulence model was used for the closure of the RANS equations with the standard
wall function method since it is economical and robust for predicting steady calculation with acceptable
accuracy [25].

The computational domain includes spiral casing, stay vanes, guide vanes, runner, and draft
tube as shown in Figure 3. The frozen rotor model was used at interfaces between the stationary and
rotating components. No-slip wall conditions were set for stationary and rotating parts. Inlet and
outlet boundaries were set as follows: static pressure zero was set at the inlet and the flow discharge
(Qm = 0.284 m3/s, listed in Table 1) was set at the outlet under pump mode; the flow discharge
(Qm = 0.305 m3/s, listed in Table 2) was set at the inlet and the static pressure was set at the outlet
under turbine mode. Stochastic fluctuations of the velocities with a 5.0% free stream turbulent intensity
were adopted as the mass flow rate was specified. ANSYS ICEM and TurboGrid were used for mesh
generation. Hexahedral meshes were mainly used except in the volute tongue with tetrahedral meshes
because of its complicated structure.
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2.3. Optimization Strategy

The RSM model was used to describe the approximate relationships between the optimization
targets and input design parameters. The second-order polynomial function was used in this study.
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where ŷi is the target, xi and xk are input parameters, β0, βi, βii, and βik can be determined by following
the principle of least square regression with the help of a set of sample points in the design space.

The distribution of sample points in design space has significant influence on the accuracy of
RSM model. The Latin hypercube sampling method was used in DoE, wherein the sample points
are equiprobable, random, and orthogonally distributed in the design space. As the quadratic
approximation model Equation (5) is used, the least number S of sample points should be

S ≥ (N + 1)(N + 2)/2 (6)

where N is the number of input variables selected.
When the RSM between the optimization targets and inputs was generated, the multiobjective

optimization was then implemented with modified non-dominated sorted genetic algorithm (NSGA-II).
In NSGA-II, the fast non-dominated sorting and crowding technique is adopted. NSGA-II is suitable
for the optimization design of the pump-turbine runners with a reduction in computation complexity
and an improvement in elitist strategy.

All the utilized software was integrated into the iSIGHT platform as shown in Figure 1. The
optimization design process began with the selection of input parameters. After the variation ranges
on the input parameters were determined, different combinations of the input parameters were used
to generate a number of runner configurations with TURBODesign5.2. Then, runner performances
were estimated under different operating conditions by using ANSYS CFX 15.0 and the RSM model
between the optimization targets was generated. The CFD calculations were time consuming. Finally,
NSGA-II was implemented on the RSM model and the optimal solutions were determined. It was
unnecessary to regenerate the runners and estimate their performance in this optimization process.
The optimal solutions could be obtained in a short time.

3. Design of the Ultrahigh-Head Pump Turbine Runner

3.1. Design Specifications

The specific design parameters were based on Yangjiang PHES station located in the Guangdong
Province of China [26]. In turbine mode, the rated head was Hr = 659.0 m, and the maximum and
minimum net head were Hmax = 693.85 m and Hmin = 624.66 m, respectively. In pump mode, the
maximum and minimum heads were Hmax = 712.46 m and Hmax = 652.11 m, respectively. The
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rated capacity of the reversible synchronous motor was Pr = 444.44 MW and its rotational speed was
nr = 500 rpm.

In order to conduct the model tests on a standard test rig [27], scaled pump-turbine runners were
designed. The design parameters are shown in Table 1, where Hm, Qm, and nm are the design head,
design flow discharge, and rotational speed of the model runners, respectively. The number of the
blades is B = 9. Figure 4 shows the meridional shape of the blades, which were derived on the basis
of the centrifugal pump and one-dimensional flow calculation. The main geometrical parameters of
the runner are high-pressure side (HPS) diameter D2, HPS width b2, low-pressure side (LPS) shroud
diameter D1s, and LPS hub diameter D1h. The value of these main parameters is given in Table 2.

Table 1. Design parameters of a model pump-turbine.

Mode Hm/m Qm/m3 nm/rpm

Pump 59.40 0.284 1200
Turbine 59.31 0.305 1200

Energies 2017, 10, 1169 6 of 16 

 

maximum and minimum net head were max 693.85 mH =  and min 624.66 mH = , respectively. In 
pump mode, the maximum and minimum heads were max 712.46 mH =  and max 652.11 mH = , 
respectively. The rated capacity of the reversible synchronous motor was 444.44 MWrP =  and its 
rotational speed was 500 rpmrn = . 

In order to conduct the model tests on a standard test rig [27], scaled pump-turbine runners 
were designed. The design parameters are shown in Table 1, where mH , mQ , and mn  are the 
design head, design flow discharge, and rotational speed of the model runners, respectively. The 
number of the blades is B = 9. Figure 4 shows the meridional shape of the blades, which were derived 
on the basis of the centrifugal pump and one-dimensional flow calculation. The main geometrical 
parameters of the runner are high-pressure side (HPS) diameter 2D , HPS width 2b , low-pressure 
side (LPS) shroud diameter 1sD , and LPS hub diameter 1hD . The value of these main parameters is 
given in Table 2. 

Table 1. Design parameters of a model pump-turbine 

Mode mH /m mQ /m3 mn /rpm 
Pump 59.40 0.284 1200 

Turbine 59.31 0.305 1200 

 

Figure 4. Meridional blade shape. 

Table 2. Geometric parameters for meridional blade shape 

Parameter 2b /m 1hD /m 1sD /m 2D /m 
Value 0.042 0.132 0.250 0.540 

3.2. Optimization Settings 

As the description in Section 2.1, blade loading and blade stacking are the most important 
parameters in determining the blade shape [12,15,24]. Blade loading distributions are usually given 
along the hub and shroud streamlines. The blade loading between the hub and shroud is determined 
by using linear interpolation. As shown in Figure 5, along each streamline, three-segment 
distribution was adopted. Four parameters—namely, connection point locations NC and ND, slope 
of the linear line SLOPE, and loading at the low pressure edge DVRT—were used to control the 
distribution curve. 

Blade stacking specifies the blade lean angle θ at the HPS of the blade as shown in Figure 2. The 
rake angle β in Figure 2 is given as 

2
2arctan

2
D

bβ θ  = ⋅    
 (7) 

Figure 4. Meridional blade shape.

Table 2. Geometric parameters for meridional blade shape.

Parameter b2/m D1h/m D1s/m D2/m

Value 0.042 0.132 0.250 0.540

3.2. Optimization Settings

As the description in Section 2.1, blade loading and blade stacking are the most important
parameters in determining the blade shape [12,15,24]. Blade loading distributions are usually given
along the hub and shroud streamlines. The blade loading between the hub and shroud is determined
by using linear interpolation. As shown in Figure 5, along each streamline, three-segment distribution
was adopted. Four parameters—namely, connection point locations NC and ND, slope of the linear
line SLOPE, and loading at the low pressure edge DVRT—were used to control the distribution curve.

Blade stacking specifies the blade lean angle θ at the HPS of the blade as shown in Figure 2.
The rake angle β in Figure 2 is given as

β = arctan
[(

θ · D2

2

)
/b2

]
(7)

The stacking condition was imposed linearly along the HPS of the blade in this study.
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As shown in Figure 5, a total of eight variables are necessary for the control of the blade loading
distribution. When the blade loading and blade lean angle are identified as optimization parameters,
there are nine variables. The sensitivity on the runners’ shape and the range of these variables are
tested by the trial designs of the runners [22,23]. In this study, extensive trial designs were made by
using the design software TURBODesign 5.2 to check whether blades with a reasonable shape could be
obtained. With these trial designs, three variables were fixed at NCh = 0.7, NDh = 0.8, and NDs = 0.8,
and the variation range of the other input variables were determined as shown in Table 3.

The optimization targets were set as the runner efficiencies ηmP and ηmT at the pump design point
and turbine rated point. In pump-turbines, the cavitation performance in pump mode is usually worse
than that in turbine mode. During the design, as the cavitation requirement is satisfied in pump mode,
it can be satisfied in turbine mode. Therefore, the lowest pressure plow on the blade at the pump design
point was also set as an optimization target. The optimization was made to maximize the runner
efficiencies, ηmP and ηmT, and to increase pressure plow. Considering these three objective functions
were likely conflicting, MOGA was employed to find a number of trade-off solutions.

Table 3. Variation range of input parameters.

Optimized Inputs Parameters Range

Blade loading

NCs 0.7 ∼ 0.8
SLOPh −1.0 ∼ 2.0
SLOPs −2.0 ∼ 2.0
DRVTh −0.2 ∼ 0.2
DRVTs −0.2 ∼ 0.2

Blade lean angle θ −20.0
◦ ∼ 20.0

◦

The efficiencies ηmP and ηmT are defined in Equations (8) and (9), respectively.

ηmP =
ρgHmPQmP

MmPωmP
(8)

ηmT =
MmTωmT

ρgHmTQmT
(9)

where Qm and Hm are the discharge and head given in Table 1, ωm is the angular velocity. Momentum
Mm acting on the runner was calculated through CFD analyses introduced in Section 2.2.
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In order to generate the quadratic RSM model as shown by Equation (5), 40 different runner
geometries were provided by using TURBODesign 5.2. Therefore, 80 CFD calculations were conducted.
The parameters setting for NSGA-II is shown in Table 4.

Table 4. Parameter settings for NSGA-II.

Parameters Value

Population size 100
Number of generations 100
Crossover probability 0.9

Crossover distribution index 10
Mutation distribution index 20

Initialization mode Random

3.3. Optimization Results

Figure 6 shows the optimization results. There are a total of 10,000 different optimized runners
as shown in Figure 6a. The original 40 sample runners produced in DoE are also shown in Figure 6a.
These samples were random, equiprobable, and orthogonally distributed. So that a high accuracy
could be obtained as the RSM model shown in Equation (5) was used. The trade-off relationship
between pump efficiency, turbine efficiency, and minimum pressure at the blade surface is indicated in
the Pareto front surface in Figure 6b.
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Four runner configurations on the Pareto front in Figure 6b—denoted by 1, 2, 3, and 4—are selected
for further detailed study. These runners were selected with an artificial screening method, in which a
limited range was set to each optimization target, and the runners satisfying the target conditions were
selected. Table 5 shows the performance comparisons calculated by CFD and estimated by RSM. The
initial baseline runner was also reported. The CFD results shown in Table 5 were obtained from the
redesigned runners by using optimized blade loading and blade lean. As shown in Table 5, there are
some differences in the objective functions between the RSM estimation and CFD calculation. When
the RSM model approach expressed in Equation (5) is used in the optimization procedure, the response
surface is an approximation of runner performance predicted by CFD analyses. Simulation-based
objective functions are inherently noisy, which is the typical problem in the numerical optimization
process [18,21]. Therefore, it is necessary to develop robust and efficient optimization methodologies
that can afford satisfactory designs even for limited computational resources.



Energies 2017, 10, 1169 9 of 16

Table 5. Comparison of the selected runners and the initial runner

Runner Mode
Runner Efficiency η/% Low Pressure on Blade Surface pmin/Pa

RSM CFD RSM CFD

1
pump 96.29 95.28 −72,461.6 −178,610

turbine 93.61 93.25 - -

2
pump 96.21 95.91 −247,114.3 −282,009

turbine 93.94 93.04 - -

3
pump 96.47 95.66 −302,416.2 −276,037

turbine 94.16 93.42 - -

4 (Preferred runner)
pump 96.31 96.43 −248,645.4 −263,678

turbine 94.02 93.14 - -

Initial runner
pump - 95.86 - −326,890

turbine - 92.45 - -

Runner 4 is recommended as the preferred runner through comprehensive consideration of
runner efficiencies and minimum pressure on blade surface. As shown in Figure 7, the blade loading
distributions of the initial runner on the hub and shroud are both back-loaded, while the optimized
blade loading distributions are middle-loaded on the hub and back-loaded on the shroud for preferred
runner 4. The blade lean is θ = 0

◦
for the initial runner, and θ = −2.0

◦
for the preferred runner 4 at the

HPS, respectively.
Compared the preferred runner 4 with the initial runner, the runner’s efficiencies are increased

about 0.6% and 0.7% under pump mode and turbine mode, respectively. At the same time, the runner
cavitation performance is greatly increased by raising the minimum pressure on the blade surface.
Figure 8 shows the comparison of the shapes among the preferred and initial runners. The preferred
runner has a negative blade lean angle θ = −2.0

◦
, and rake angle β = −12.65

◦
, whereas the initial

runner has no lean on the HPS. Near the low pressure side (LPS), the blade cross-sections are in
distorted shape in the preferred runner.

Energies 2017, 10, 1169 9 of 16 

 

by CFD analyses. Simulation-based objective functions are inherently noisy, which is the typical 
problem in the numerical optimization process [18,21]. Therefore, it is necessary to develop robust 
and efficient optimization methodologies that can afford satisfactory designs even for limited 
computational resources. 

Table 5. Comparison of the selected runners and the initial runner 

Runner Mode 
Runner Efficiency η/% Low Pressure on Blade Surface minp /Pa 

RSM CFD RSM CFD 

1 
pump 96.29 95.28 −72,461.6 −178,610 

turbine 93.61 93.25 - - 

2 
pump 96.21 95.91 −247,114.3 −282,009 

turbine 93.94 93.04 - - 

3 
pump 96.47 95.66 −302,416.2 −276,037 

turbine 94.16 93.42 - - 

4 (Preferred runner) 
pump 96.31 96.43 −248,645.4 −263,678 

turbine 94.02 93.14 - - 

Initial runner 
pump - 95.86 - −326,890 

turbine - 92.45 - - 

Runner 4 is recommended as the preferred runner through comprehensive consideration of 
runner efficiencies and minimum pressure on blade surface. As shown in Figure 7, the blade loading 
distributions of the initial runner on the hub and shroud are both back-loaded, while the optimized 
blade loading distributions are middle-loaded on the hub and back-loaded on the shroud for 
preferred runner 4. The blade lean is o0θ =  for the initial runner, and o2.0θ = −  for the preferred 
runner 4 at the HPS, respectively. 

Compared the preferred runner 4 with the initial runner, the runner’s efficiencies are increased 
about 0.6% and 0.7% under pump mode and turbine mode, respectively. At the same time, the 
runner cavitation performance is greatly increased by raising the minimum pressure on the blade 
surface. Figure 8 shows the comparison of the shapes among the preferred and initial runners. The 
preferred runner has a negative blade lean angle o2.0θ = − , and rake angle o12.65β = − , whereas 
the initial runner has no lean on the HPS. Near the low pressure side (LPS), the blade cross-sections 
are in distorted shape in the preferred runner. 

 
Figure 7. Blade loading distributions of the initial runner and the preferred runner. Figure 7. Blade loading distributions of the initial runner and the preferred runner.



Energies 2017, 10, 1169 10 of 16Energies 2017, 10, 1169 10 of 16 

 

 

Figure 8. Comparison of the blades for two runners. 

4. Parametric Effects on the Runner Performance 

With the optimization, the runner with good overall performance could be developed as shown 
in Table 5. As discussed in Section 3.3, there were some differences in the performance estimated by 
RSM model and CFD prediction. In order to assess the impact of the main design parameters on the 
runner performances and increase the quantitative credibility of the optimized results, besides 
runners 1–4, more runners (A–H) were selected from the optimized results as shown in Figure 9. 
These runners were redesigned using the optimized design parameters and numerically simulated 
with CFD. Table 6 shows main design parameters and the CFD calculated performances for runners 
A–H, as well as the initial runner and the preferred runner. 

 
Figure 9. Selected runners and Pareto front surface. 

  

Figure 8. Comparison of the blades for two runners.

4. Parametric Effects on the Runner Performance

With the optimization, the runner with good overall performance could be developed as shown
in Table 5. As discussed in Section 3.3, there were some differences in the performance estimated by
RSM model and CFD prediction. In order to assess the impact of the main design parameters on the
runner performances and increase the quantitative credibility of the optimized results, besides runners
1–4, more runners (A–H) were selected from the optimized results as shown in Figure 9. These runners
were redesigned using the optimized design parameters and numerically simulated with CFD. Table 6
shows main design parameters and the CFD calculated performances for runners A–H, as well as the
initial runner and the preferred runner.
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Table 6. Design parameters and performances of the runners.

Runner
Design Parameters Performance

∂
(
rVθ

)
/∂m θ, β/o ηmT/% ηmP/% plow/Pa

Initial runner Figure 7a 0.0, 0.0 92.45 95.86 −326,890
Preferred runner Figure 7b −2.0, −12.65 93.14 96.43 −263,678

A Figure 12a −2.0, −12.65 93.09 95.53 −286,616
B Figure 12b −2.0, −12.65 92.82 95.89 −282,646
C Figure 12c −3.0, −18.60 93.15 95.88 −388,540
D Figure 12d 0.0, 0.0 93.34 96.10 −230,361
E Figure 7b 19.0, 64.87 93.96 95.96 −336,242
F Figure 7b 20.0, 65.89 94.08 96.45 −341,955
G Figure 7b −19.0, −64.87 92.97 96.03 −360,081
H Figure 7b −18.0, −63.66 93.14 95.41 −405,167

4.1. Effects of Blade Loading

The blade lean angles for runners A–D are θA = θB = −2.0
◦
, θC = −3.0

◦
, and θD = 0.0

◦
, while

the blade lean angles for the initial runner and the preferred runner are θi = 0.0
◦

and θP = −2.0
◦
,

respectively. Figure 10 shows the comparisons of the shapes among runners A–D and the preferred
runner. For runners A, B, and the preferred runner, their blade shapes are similar near HPS. As shown
in Figure 10b, the blade shapes are a little different near HPS for runners C, D, and the preferred runner
because of a slightly different blade lean. Near LPS, the blade shapes of runner D and the preferred
runner are similar, and the blades tilt more to the turbine rotation direction than the other runners.
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According to Table 6, the preferred runner and runner D have a higher efficiency in both turbine
and pump mode. Furthermore, the minimum pressure at the blade surface is lower for these two
runners. Figure 11 shows the pressure distributions on the blade suction surface under pump mode
for different runners. Smaller low pressure zones on the blade suction side in pump mode show that
the preferred runner and runner D have better cavitation characteristics.

Figure 12 shows the blade loading for runners A–D. Blade loading distributions are aft-loaded
on the hub and shroud for runners A, B, and C, similar to the initial runner in Figure 7a. For runner
D, blade loading distributions are middle-loaded on the hub and aft-loaded on the shroud, similar
with the preferred runner shown in Figure 7b. The preferred runner has same blade lean angle with
runners A and B, meanwhile runner D has the same blade lean angle as the initial runner. Therefore,
the performance improvement for the preferred runner and runner D is mainly provided by the
blade loading distribution. Synthetically considering the effects on efficiency and cavitation, it is
recommended to design the runner to be middle-loaded on hub and back-loaded on shroud for blade
loading distributions.
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4.2. Effects of the Blade Lean

More runners marked by E–H were investigated. For these four runners, the blade loading
distributions were almost the same with the preferred runner and runner D, while the blade lean
angles changed greatly, θE = 19.0

◦
, θF = 20.0

◦
, θG = −19.0

◦
, and θH = −18.0

◦
, respectively. Figure 13

shows the shapes of these four runners. It can found that large positive or negative blade lean angles
significantly change the spatial shape of the blades from shroud to hub.
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Table 6 shows that runners E and F with large positive blade lean angle have a higher efficiency
than the preferred runner and the initial runner in both turbine mode and pump mode. Runners G
and H with large negative blade lean angles retain a relative high efficiency in pump mode, but the
efficiency in turbine mode decreases. For all these four runners, the minimum pressure at the blade
surface is lower than that of the initial runner and the preferred runner. It is clearly shown in Figure 11
that low pressure zones on the blade suction surface for runners F and H are larger than those for the
initial and preferred runner.

The cavitation characteristics of the runner mainly depend on the blade shape near the runner’s
LPS. The blade loading for the preferred runner and runners D–H are almost the same, so that the
large blade lean on the HPS induces the blade shape change near the runner’s LPS, and deteriorates
the runner’s cavitation characteristics. Therefore, the large blade lean on the HPS is not recommended
to be used for the ultra-head reversible pump-turbine runner considering cavitation characteristics.

5. Conclusions

In the present paper, a multiobjective optimization design strategy is briefly presented. The
design approach is a combination of 3D inverse design to parameterize the blade geometry, CFD for
flow analysis, DoE to reduce the number of calculation times, RSM to correlate the design parameters
with the objectives, and MOGA to search the trade-off design. The strategy is used to develop an
ultrahigh-head pump-turbine runner. Based on the trade-offs among the optimized targets, a runner is
recommended from the optimized runners. Compared to the initial runner, the preferred runner’s
efficiency under turbine mode is increased by about 0.7% and the pump efficiency by about 0.6%,
while the runner’s cavitation is greatly promoted.

The hydrodynamic performance characteristics of the pump-turbine correlate strongly with the
design parameters. Based on the optimization, the effects of blade loading and blade lean on the
runners’ geometry and performance are studied. It is suggested that middle-loaded blade loading
distribution on the hub, and back-loaded distribution on the shroud—as shown in Figure 7b—are
good for the improvement for the runner efficiencies under two operating modes. On the shroud, the
blade loading should be reduced near the LPS because the cavitation is most likely to occur in this
zone. The large positive blade lean angle on the high pressure side can increase the runner efficiency
under turbine mode. However, large blade lean angles may induce drop on the lowest pressure, and
deteriorate the cavitation characteristics.

For the large capacity pump-turbine unit, besides the efficiency and cavitation performances, the
operation stability for both operating conditions should be guaranteed [3,28]. Under pump mode,
instabilities with cavitation in the hump region limit the normal operating range of the unit. Under
turbine mode, pressure fluctuations mainly determine smooth operations for the unit. The flow field is
converted into a fully separated unsteady state in these cases. Therefore, enlarging the present strategy
to consider the unsteady characteristics of the pump-turbine would be valuable.
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Nomenclature

b2 High pressure side width
B Number of blades
D1H Hub diameter for low pressure side
D1S Shroud diameter for low pressure side
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D2 High pressure side diameter
DRVT Blade loading at leading edge
H Head height
Hmax Maximum head height
Hmin Minimum head height
Hr Rated head height
k Turbulence kinetic energy
m Percentage meridional distance
M Torque acting on runner
n Revolution speed
NC Fore connection point on blade loading distribution curve
ND Aft connection point on blade loading distribution curve
Pr Rated output power
Q Discharge
r Radius or radial direction
SLOPE Slope of the middle line on blade loading distribution curve
V Tangentially velocity
Wmbl Relative velocity on blade surface
x Input parameter or Cartesian coordinate
y Optimization targets
β Blade rake angle or coefficients in polynomial for RSM
η Unit efficiency
θ Blade lean angle
ρ Fluid density
ω Angular velocity
νt Turbulent kinematic viscosity
Superscripts

Circumferential average
+ Upper side of blade
- Lower side of blade
′ Fluctuation
Subscripts
bl Blade surface
H Hub
m Model unit or meridional direction
P Pump mode
S Shroud
T Turbine mode
θ Tangential component
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