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Abstract: An autonomous induction generator (IG) with an asymmetric configuration, in which both
the stator and the rotor are single-phase, is often formed when a triple-phase wound rotor loses
connection to a winding component while running. The machine still works and is shown to be
capable of generating modulated waveforms. Equations can help as an IG design guideline. The first
harmonics of the mutual inductance effect on the IG is explained by its steady-state equivalent circuit.
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1. Introduction

This work is a continuation and refinement of Professor Raul Rabinovici and Doctor Nathan
Ben Hail’s article, “Autonomous Induction Generator with Single-Phase Rotor” [1]. In this paper,
more exact formulae are developed and the resulting system is analyzed and shown to be capable of
behaving with each of the six solutions. Furthermore, after the first analytical section, an additional
simulation section was added, in which it is proved that the basic prediction of the analytical section
also holds in a numerical simulation.

During recent decades, the wound rotor induction generator (IG) has been used more and more
in applications such as wind turbines [2], water turbines [3], and mostly in small, portable autonomous
configurations, such as the type small construction teams frequently use. Generally, the IG works
autonomously while it is connected to a capacitor bank. Its operation is explained by a resonance
phenomenon between the capacitor bank and the inductive components of the IG itself. When such a
generator loses a phase connection, it does not cease operation, but rather provides distorted wave
form while the resonance limits the effect of higher frequencies emanating from the rotor’s current
asymmetrical connection. This article is about the effect of the first harmonics of the mutual inductance
of the rotor and a single-phase stator coil under such conditions.

2. Induction Machine Model

The circuit of the induction machine model is shown in Figure 1. It is supposed that the IG rotates
at a constant angular speed,ω. If the IG has P pole pairs, the electrical angular frequency of the rotor
will beωr = Pω. The IG has the following mathematical model ([4], p. 197):

is = −C
dv
dt

(1)

v(t) = Rsis(t) + Ls
dis(t)

dt
+

dm(t)ir(t)
dt

(2)

0 = Rrir(t) + Lr
dir(t)

dt
+

dm(t)is(t)
dt

(3)
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where is is the stator current, ir is the rotor current, v is the stator output voltage, is the stator circuit
resistance, Rr is the rotor circuit resistance, Ls is the stator winding inductance, Lr is the rotor winding
inductance, C is the external capacitor (an external capacitor bank is necessary for any IG to work [5]),
and m(t) is the mutual inductance between the stator and the rotor windings. If the stator and the rotor
have sinusoidal distribution, the mutual inductance will also be sinusoidal ([6], pp. 80–108).

m(t) = Mcos(ωrt) (4)

Then, Equation (3) can be solved with an (indefinite) integral solution for ir(t).

ir = −
1
Lr

e−
Rr
Lr t
∫

e
Rr
Lr tdmis (5)

Note the e−
Rr
Lr t term. This is a phase shift effect between ir and mis. When Rr

Lr
approaches zero,

then ir and mis will tend to align. When Rr
Lr
→ ∞ the phase shift will approach 90◦.
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validated by the experimental results, where the fundamental harmonic is taken into consideration. 
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3. Approximate Solution of the System

The system of equations of the IG is usually used to perform a computer simulation rather than
to obtain an analytical solution. However, the latter, although approximate, can contribute to a general
understanding of the IG characteristics.

The analytical solution is obtained in this section for the steady-state case. It is supposed that
in the steady-state condition, the stator current is a sinusoidal wave. This supposition is further
validated by the experimental results, where the fundamental harmonic is taken into consideration.
Furthermore, the stator circuit is an RLC circuit, a circuit consisting of a resistor (R), an inductor (L),
and a capacitor (C), which attenuates high harmonics. Therefore, the stator current is deemed to be
of the form is(t) = IsCos(ωet), whereωe is the stator currents wave frequency. From here, using this
approximation:

m(t)is(t) =
MIs

2
(cos(ωr +ωe)t + cos(ωr −ωe)t) (6)

Therefore:

d(m(t)is(t))
dt

= −MIs

2
((ωr +ωe) sin(ωr +ωe)t + (ωr −ωe) sin(ωr −ωe)t) (7)

As such, Equation (3) can be solved with aid of the known indefinite integral:
∫

eαt sin(βt)dt =
eαt(α sin[βt]−β cos[βt])

α2+β2 , however, this is not an absolute form. It is correct to use only if the machine is
assumed to work from time −∞. This is an approximation, which was used in Reference [1]. It is
hereby suggested to refine this approximation by using an absolute integral.
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To acquire an absolute (for a finite time) integral, the integral

∫ t

k
eas sin(bs)ds =

eak(bcos(bk)− asin(bk)) + eat(−bcos(bt) + asin(bt))
a2 + b2 (8)

is evaluated. Now, another well-known trigonometric identity is used:

eak(bcos[bk]− asin[bk]) = −eak · a
(

sin[bk]− b
a

cos[bk]
)
= −eak · a

 sin
[
bk− arctan( b

a )
]

cos
[
arctan[ b

a ]
]

 (9)

meaning, eak(asin[bk]− bcos[bk]) = eak · a
(

sin[bk−arctan( b
a )]

cos[arctan[ b
a ]]

)
. If one wishes to zero the contribution

of the constant, k, in the equation, then:

k =
1
b

arctan
[

b
a

]
(±π · n

b
) (10)

Note ir(t) = − 1
Lr

e−
Rr
Lr t ∫ e

Rr
Lr tdmis and dmis = −MIs

2 ((ωr +ωe) sin(ωr +ωe)t + (ωr −ωe) sin(ωr −ωe)t)dt,
so the integral will be split into two terms. In the first,
b1 = ωe +ωr ⇒ k1 = 1

ωe+ωr
arctan

[
Lr
Rr
(ωe +ωr)

](
±π · n

ωe+ωr

)
while in the second,

b2 = ωe −ωr ⇒ k2 = 1
ωe−ωr

arctan
[

Lr
Rr
(ωe −ωr)

]
(±π · n

ωe−ωr
) . It is impossible to select different

start times for each part of the integral, leaving only the possibility of k = 0 as the viable choice that
will suit both parts of the integral in any case.

Selecting the start time to be 0 has another major advantage. The absolute solution of Equation

(3) is not ir(t) = − 1
Lr

e−
Rr
Lr t ∫ e

Rr
Lr tdmis. In reality, it is ir(t) := c(k) · e−

Rrt
Lr − 1

Lr e−
Rrt
Lr
∫ t

k e
Rrs
Lr d(m(s)is(s)).

However, if the time frame is set from time k = 0, and if the machine is deemed “switched on” at this
time, ir(0) = c(0) · e−

Rr0
Lr . So c(0) = 0. For those conditions to be viable, if the machine is a wound

rotor, three-phase machine, it is assumed that the fault occurred during a zero crossing. This is just an
approximation, but remains as a possibility. Therefore, the integration constant zeros off exactly when

the machine is deemed “started” at time k = 0, and ir(t) := − 1
Lr e−

Rrt
Lr
∫ t

0 e
Rrs
Lr d(m(s)is(s)).

As
∫ t

0 eas sin[bs]ds = b+eat(−bcos(bt)+asin(bt))
a2+b2 , a small constant, b

a2+b2 , will have to be added to the
integral relative to Reference [1]. Continuing the exploration,

ir(t) = −
1
Lr

e−
Rrt
Lr

∫ t

0
e

Rrs
Lr d(m(s)is(s)) (11)

ir(t) = − 1
Lr

e−
Rrt
Lr
∫ t

0 e
Rrs
Lr 1

2 (−IsM(ωe +ωr) sin[s(ωe +ωr)]− IsM(ωe −ωr) sin[s(ωe −ωr)])ds (12)

ir(t) =
IsM
2Lr

e−
Rrt
Lr

∫ t

0
e

Rrs
Lr ((ωe −ωr) sin[s(ωe −ωr)] + (ωe +ωr) sin[s(ωe +ωr)])ds (13)

So,
ir(t) = IsM

2Lr
(ωe +ωr)e

− Rrt
Lr
∫ t

0 e
Rrs
Lr sin[s(ωe +ωr)]ds(∗)

+ IsM
2Lr

(ωe −ωr)e
− Rrt

Lr
∫ t

0 e
Rrs
Lr sin[s(ωe −ωr)]ds(∗∗)

(14)

where

(∗) = IsM
2Lr

(ωe +ωr)e
− Rrt

Lr
(ωe +ωr) + e

Rr
Lr t(−(ωe +ωr) cos((ωe +ωr)t) + Rr

Lr
sin((ωe +ωr)t))

(Rr
Lr

)
2
+ (ωe +ωr)

2
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(∗) = IsM
2Lr

(ωe +ωr)e
− Rrt

Lr
(ωe +ωr) + e

Rr
Lr t Rr

Lr
(sin[(ωe +ωr)t]− (ωe+ωr)Lr

Rr
cos[(ωe +ωr)t])

(Rr
Lr

)
2
+ (ωe +ωr)

2

(∗) = IsM
2Lr

(ωe +ωr)e
− Rrt

Lr

(ωe +ωr) + e
Rr
Lr t Rr

Lr

(
sin
[
(ωe+ωr)t−arctan

[
(ωe+ωr)Lr

Rr

]]
cos
[
arctan

[
(ωe+ωr)Lr

Rr

]]
)

(Rr
Lr

)
2
+ (ωe +ωr)

2

As such,

(∗) = IsM
2Lr

(ωe +ωr)
2e−

Rrt
Lr + Rr

Lr

(
sin
[
(ωe+ωr)t−arctan

[
(ωe+ωr)Lr

Rr

]]
cos
[
arctan

[
(ωe+ωr)Lr

Rr

]]
)

(Rr
Lr

)
2
+ (ωe +ωr)

2
(15)

and

(∗∗) = IsM
2Lr

(ωe −ωr)e
− Rrt

Lr

(ωe −ωr) + e
Rr
Lr t
(
−(ωe −ωr) cos[(ωe −ωr)t] + Rr

Lr
sin[(ωe −ωr)t]

)
(

Rr
Lr

)2
+ (ωe −ωr)

2

(∗∗) = IsM
2Lr

(ωe −ωr)e
− Rrt

Lr

(ωe −ωr) + e
Rr
Lr t Rr

Lr

(
sin[(ωe −ωr)t]− (ωe−ωr)Lr

Rr
cos[(ωe −ωr)t]

)
(Rr

Lr
)

2
+ (ωe −ωr)

2

(∗∗) = IsM
2Lr

(ωe −ωr)e
− Rrt

Lr

(ωe −ωr) + e
Rr
Lr t Rr

Lr

(
sin
[
(ωe−ωr)t−arctan

[
(ωe−ωr)Lr

Rr

]]
cos
[
arctan

[
(ωe−ωr)Lr

Rr

]]
)

(Rr
Lr

)
2
+ (ωe −ωr)

2

Therefore,

(∗∗) = IsM
2Lr

(ωe −ωr)
2e−

Rrt
Lr + Rr

Lr

(
sin
[
(ωe−ωr)t−arctan

[
(ωe−ωr)Lr

Rr

]]
cos
[
arctan

[
(ωe−ωr)Lr

Rr

]]
)

(Rr
Lr

)
2
+ (ωe −ωr)

2
(16)

with ir(t) = (∗) + (∗∗). The conclusion that is the first major contribution of this work, is that the
stator’s current first harmonic conjures in the rotor’s two harmonic components of the form:

IsM
2Lr

(ωe ±ωr)
Rr
Lr

(
sin
[
(ωe±ωr)t−arctan

[
(ωe±ωr)Lr

Rr

]]
cos
[
arctan

[
(ωe±ωr)Lr

Rr

]]
)

(
Rr
Lr

)2
+ (ωe ±ωr)

2
(17)

as well as two evanescent components of the form:

IsM
2Lr

(ωe ±ωr)
2(

Rr
Lr

)2
+ (ωe ±ωr)

2
e−

Rrt
Lr (18)

These two components appear at the “switch on” (or fault) of the machine and subside quickly.
More importantly, there are two frequencies of the harmonic components, namelyωe ±ωr.

To obtain the stator resistance, Equation (2), v = Rsis + Ls
dis
dt + d(mir)

dt , now needs to be resolved.
As before, m(t) = Mcos(ωrt) and ir(t) had just been developed. The full resulting calculation is
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arduous and will be omitted here. However, a shorthand calculation is, if marking b1 = ωe +ωr and
b2 = ωe −ωr, then:

m(t)ir(t)=
e−atIsM2 cos[tωr]

2Lr

 b1

(
b1+a

√
1+ b1

2

a2 eat sin
[
b1t−arctan

[
b1
a

]])
a2+b1

2

+
b2

(
b2+a

√
1+ b2

2

a2 eat sin
[
b2t−arctan

[
b2
a

]])
a2+b2

2


(19)

Distribute to obtain:

m(t)ir(t) =
b1

2e−atIsM2 cos(tωr)
2(a2+b1

2)Lr
+ b2

2e−atIsM2 cos(tωr)
2(a2+b2

2)Lr

+
ab1

√
1+ b1

2

a2 IsM2 cos(tωr) sin (b1t−arctan( b1
a ))

2(a2+b1
2)Lr

+
ab_2

√
1+ b2

2

a2 IsM2 cos(tωr) sin (b2t−arctan( b2
a ))

2(a2+b2
2)Lr

(20)

From here, the identity sin(α− β) = cos(β) sin(α)− cos(α) sin(β) is used, omitting the arduous
parts of the calculation, giving the result:

m(t)ir(t) =
b1

2e−atIsM2 cos(tωr)
2(a2+b1

2)Lr
+ b2

2e−atIsM2 cos(tωr)
2(a2+b2

2)Lr
− b1

2IsM2 cos[b1t] cos[tωr]
2(a2+b1

2)Lr

+ ab1IsM2 cos[tωr] sin[b1t]
2(a2+b1

2)Lr
− b2

2IsM2 cos[b2t] cos[tωr]
2(a2+b2

2)Lr

+ ab2IsM2 cos[tωr] sin[b2t]
2(a2+b2

2)Lr

(21)

This is, of course, not the end. Next, the known identities:
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cos(α) cos(β) = 1
2 (cos(α− β) + cos(α+ β)), cos(α) sin(β) = 1

2 (sin(a + b)− sin(a− b)) are
used, and in the end b1 = ωe + ωr and b2 = ωe − ωr are re-introduced. After simplification,
the resulting formula is Equation (22):

m(t)ir(t) = − IsM2ωe
2 cos(tωe)

4Rr2
Lr +4Lrωe2−8Lrωeωr+4Lrωr2

+ 2IsM2ωeωr cos(tωe)
4Rr2

Lr +4Lrωe2−8Lrωeωr+4Lrωr2

− IsIsM2ωr
2 cos(tωe)

4Rr2
Lr +4Lrωe2−8Lrωeωr+4Lrωr2

− IsM2ωe
2 cos(tωe)

4Rr2
Lr +4Lrωe2+8Lrωeωr+4Lrωr2

− 2IsM2ωeωr cos(tωe)
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2
− IsM2ωr

2 cos(tωe)
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2

+ IsM2ωe
2 cos(tωr)

2e
Rrt
Lr Rr2
Lr +2e

Rrt
Lr Lrωe2−4e

Rrt
Lr Lrωeωr+2e

Rrt
Lr Lrωr2

− 2IsM2ωeωr cos(tωr)

2e
Rrt
Lr Rr2
Lr +2e

Rrt
Lr Lrωe2−4e

Rrt
Lr Lrωeωr+2e

Rrt
Lr Lrωr2

+ IsM2ωr
2 cos(tωr)

2e
Rrt
Lr Rr2
Lr +2e

Rrt
Lr Lrωe2−4e

Rrt
Lr Lrωeωr+2e

Rrt
Lr Lrωr2

+ IsM2ωe cos(tωr)

2e
Rrt
Lr Rr2
Lr +2e

Rrt
Lr Lrωe2+4e

Rrt
Lr Lrωeωr+2e

Rrt
Lr Lrωr2

+ 2IsM2ωeωr cos(tωr)

2e
Rrt
Lr Rr2
Lr +2e

Rrt
Lr Lrωe2+4e

Rrt
Lr Lrωeωr+2e

Rrt
Lr Lrωr2

+ IsM2ωr
2 cos(tωr)

2e
Rrt
Lr Rr2
Lr +2e

Rrt
Lr Lrωe2+4e

Rrt
Lr Lrωeωr+2e

Rrt
Lr Lrωr2

− IsM2ωe
2 cos(tωe−2tωr)

4Rr2
Lr +4Lrωe2−8Lrωeωr+4Lrωr2

+ 2IsM2ωeωr cos(tωe−2tωr)
4Rr2

Lr +4Lrωe2−8Lrωeωr+4Lrωr2

− IsM2ωr
2 cos(tωe−2tωr)

4Rr2
Lr +4Lrωe2−8Lrωeωr+4Lrωr2

− IsM2ωe
2 cos(tωe+2tωr)

4Rr2
Lr +4Lrωe2+8Lrωeωr+4Lrωr2

− 2IsM2ωeωr cos(tωe+2tωr)
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2
− IsM2ωr

2 cos(tωe+2tωr)
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2

+ IsM2Rrωe sin(tωe)

Lr(
4Rr2

Lr +4Lrωe2−8Lrωeωr+4Lrωr2)
− IsM2Rrωr sin(tωe)

Lr(
4Rr2

Lr +4Lrωe2−8Lrωeωr+4Lrωr2)

+ IsM2Rrωe sin(tωe)

Lr(
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2)
+ IsM2Rrωr sin(tωe)

Lr(
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2)

+ IsM2Rrωe sin(tωe−2tωr)

Lr(
4Rr2

Lr +4Lrωe2−8Lrωeωr+4Lrωr2)
− IsM2Rrωr sin(tωe−2tωr)

Lr(
4Rr2

Lr +4Lrωe2−8Lrωeωr+4Lrωr2)

+ IsM2Rrωe sin(tωe+2tωr)

Lr(
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2)
+ IsM2Rrωr sin(tωe+2tωr)

Lr(
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2)

(22)

This formula contains frequencies such asωe ± 2ωr; however, since it was assumed that only the
basic harmonic appears in the stator, and this expression (or its derivative) appears as an additional
term in Equation (2), only terms which relate to ωe need to be considered, as all other terms have
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already been inherently neglected. Therefore, for the approximation of the stator current, Equation (23)
suffices:

m(t)ir(t) ≈ − IsM2ωee2 cos(tωe)
4Rr2

Lr +4Lrωe2−8Lrωeωr+4Lrωr2
+ 2IsM2ωeωr cos(tωe)

4Rr2
Lr +4Lrωe2−8Lrωeωr+4Lrωr2

− IsM2ωr
2 cos(tωe)

4Rr2
Lr +4Lrωe2−8Lrωeωr+4Lrωr2

− IsM2ωe
2 cos(tωe)

4Rr2
Lr +4Lrωe2+8Lrωeωr+4Lrωr2

− 2IsM2ωeωr cos(tωe)
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2
− IsM2ωr

2 cos(tωe)
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2

+ IsM2Rrωe sin(tωe)

Lr(
4Rr2

Lr +4Lrωe2−8Lrωeωr+4Lrωr)

− IsM2Rrωr sin(tωe)

Lr(
4Rr2

Lr +4Lrωe2−8Lrωeωr+4Lrωr2)

+ IsM2Rrωe sin(tωe)

Lr(
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2)

+ IsM2Rrωr sin(tωe)

Lr(
4Rr2

Lr +4Lrωe2+8Lrωeωr+4Lrωr2)

(23)

which simplifies to:

m(t)ir(t) ≈−
IsM2(Lr cos(tωe)(Lr

2(ωe
2−ωr

2)
2
+Rr

2(ωe
2+ωr

2))−Rrωe sin(tωe)(Lr2(ωe−ωr)(ωe+ωr)+Rr
2))

2(Lr2(ωe−ωr)
2+Rr2)(Lr2(ωe+ωr)

2+Rr2)
(24)

This is the rebound effect of the basic harmonic of the stator current on m(t)ir(t), which is used in
solving Equation (2), v(t) = Rsis(t) + Ls

dis(t)
dt + dm(t)ir(t)

dt together with is(t) = Is cos(ωet) and v(t) =

− 1
c

∫ t
0 is(t)dt = − Is(t) sin(tωe)

cωe
. Arduous calculations follow, which yields the following equation:

0 = Is sin(tωe)
cωe

+
IsM2ωe(Lr sin(tωe)(Lrr2(ωe

2−ωr
2)

2
+Rr

2(ωe
2+ωr2))+Rrωe cos(tωe)(Lr

2(ωe−ωr)(ωe+ωr)+Rr
2))

2(Lr2(ωe−ωr)
2+Rr2)(Lr2(ωe+ωr)

2+Rr2)
(25)

Dividing to orthogonal terms multiplying sin(tωe) and cos(tωe), the following formula is
obtained:

0 =

(
Is

cωe
+

IsM2ωe(Lr(Lr r2(ωe
2−ωr

2)
2
))

2(Lr2(ωe−ωr)
2+Rr2)(Lr2(ωe+ωr)

2+Rr2)
− IsLsωe

)
sin(tωe)

+

(
IsM2ωeRrωe(Lr

2(ωe−ωr)(ωe+ωr)+Rr
2))

2(Lr2(ωe−ωr)
2+Rr2)(Lr2(ωe+ωr)

2+Rr2)
+ IsRs

)
cos(tωe)

(26)

so,
1

cωe
+

M2ωe(Lr(Lrr2(ωe
2 −ωr

2)2
))

2(Lr2(ωe −ωr)
2 + Rr2)(Lr2(ωe +ωr)

2 + Rr2)
− Lsωe = 0 (27)

and
M2Rrω

2
e
(
Lr

2(ωe −ωr)(ωe +ωr) + Rr
2)

2(Lr2(ωe −ωr)
2 + Rr2)(Lr2(ωe +ωr)

2 + Rr2)
+ Rs = 0 (28)

Equation (28) finally gives:

Rs(ωe) = −
M2Rrω

2
e
(
Lr

2(ωe −ωr)(ωe +ωr) + Rr
2)

2(Lr2(ωe −ωr)
2 + Rr2)(Lr2(ωe +ωr)

2 + Rr2)
(29)

The substitution of Rr = 3.9 Ω,ωr = 420 r
s , Lr = 0.52 H, M = 0.3 H gives a result similar to the

results described in a previous study [1]. The resulting Rs(ωe) graph is similar, and is given in Figure 2.
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Figure 2. The critical resistivity relative to the angular speed as obtained in Equation (29).

However, this is not exactly the same graph. The difference between the results obtained in the
previous study [1] and the current offered Rs(ωe) function is, analytically:

Rs(ωe)− R[1]
s (ωe) =

M2Rr
3ωe

4Lr2(ωe +ωr)(Rr2 + Lr2(ωe +ωr)
2)

(30)

A plot of the difference between the two graphs shows it to be almost insignificant at these values,
as shown in Figure 3.
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Figure 3. The difference between Equation (29) and the equation given in Reference [1], for the
critical resistivity.

This difference could be more significant with other values. In any case, every value of Rs fits to
two-field frequencies, the higher of which is in the stable region of the generator. Currently, research
interest lies in finding an analytical formula for the single frequency at which Rs is maximal,ωeRsmax

.
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This formula can be easily obtained from Equation (29). Derivation and equating to zero gives five
solutions, only one of which fits the physical mode of the machine.

{{ωe → 0}, {ωe → −
√
−Rr 3+LrRr2ωr−Lr2Rrωr2+Lr3ωr3√

Lr2Rr+Lr3ωr
}, {ωe

→
√
−Rr3+LrRr2ωr−Lr2Rrωr2+Lr3ωr3√

Lr2Rr+Lr3ωr
}, {ωe

→ −
√

Rr3+LrRr2ωr+Lr2Rrωr2+Lr3ωr3√
−Lr2Rr+Lr3ωr

}, {ωe

→
√

Rr3+LrRr2ωr+Lr2Rrωr2+Lr3ωr3√
−Lr2Rr+Lr3ωr

}}

(31)

The negative solutions are not physical, nor is zero a valid solution. This leaves two solutions for

ωeRsmax
:
√
−Rr3+LrRr2ωr−Lr2Rrωr2+Lr3ωr3√

Lr2Rr+Lr3ωr
and
√

Rr3+LrRr2ωr+Lr2Rrωr2+Lr3ωr3√
−Lr2Rr+Lr3ωr

.

However, the solution with the smaller denominator gives a frequency which is higher than that
of the rotor. In short, it describes the machine working as a motor, but not as a generator. For example,
with the parameters as before:√

Rr3 + LrRr2ωr + Lr2Rrωr2 + Lr3ωr3√
−Lr2Rr + Lr3ωr

= 427.636
rad

s
.

Therefore, the only physical solution is:

ωeRsmax
=

√
−Rr3 + LrRr2ωr − Lr2Rrωr2 + Lr3ωr3√

Lr2Rr + Lr3ωr
(32)

Maintaining parameters as before, this would yieldωeRsmax
= 412.632 rad

s .
Substitution of Equation (32) into Equation (29) results in:

Rsmax =
M2(Rr − Lrωr)

2

8Lr3ωr
(33)

which is an improvement to the equation in Reference [1] (Rsmax = M2

8Lr
·ωeRsmax

). Practically, with
the parameters designated as in a previous study [1], the approximation from this study yields
Rsmax = 8.7649 Ω, while by the previous approximations [1], the value would be 8.927 Ω. Therefore,
the machine would cease to operate as a generator for a slightly lower value using the current
approximation than previous results suggest [1]. Combining the last results to obtain the curve in
Figure 4:
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This result is more accurate than that given in Reference [1], where it was approximated as:

ωeRsmax2
= ωr −

Rr

Lr
= 412.5

rad
s

4. Numerical Analysis on the Stator Current Frequency

The exploration of Equation (27), 1
cωe

+
M2ωe

(
Lr

(
Lrr2(ωe

2−ωr
2)

2))
2(Lr2(ωe−ωr)

2+Rr2)(Lr2(ωe+ωr)
2+Rr2)

− Lsωe = 0, is more

difficult than that of Equation (29). The aim here, as in previous analyses [1], is to deduce the limits
of ωe. Therefore, a solution for Equation (27) for ωe is required. This solution yields six huge
multi-term solutions in positive/negative pairs, which can only be explored numerically under the
same parameters as before. For example, using previous parameters, a plot of the imaginary part of
the first solution ofωe (LS) yields the curve depicted in Figure 5.
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This is simply not interesting, as with a zero or positive imaginary part, this solution is evanescent,
and does not deliver a stable solution. Thus, the first solution does not satisfy our requirements.

The second solution is more interesting, as its real part is depicted in Figure 6:
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Overall, this curve (Figure 6) is a description of a motor. At Ls = ~0.22 H, there is a dip to a stable
generator mode, which becomes evident when viewing the imaginary part (Figure 7).
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The results shown in Figures 6 and 7, which correspond to the second solution, represent the first
solution that implies a stable generator mode.

Solutions three and four are a positive-negative pair, as solution three has a real negative rotation
(Figure 8), and only a small interval of a negative imaginary part, as shown in Figure 9.

However, the negative rotation strongly implies that this solution describes the action mode as a
brake, rather than as a generator. Solution four fails to meet our requirements, as, similar to the first
solution, its real part is demonstrated by the curve in Figure 10.
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Figure 10 depicts a motor, not a generator, as its stator current rotation speed is higher than the
physical speed of the rotor (420 rad/s). Solutions five and six are, again, a positive-negative pair.
Solution five gives real negative speed, making it uninteresting in the scope of the IG. Its real part is
demonstrated in Figure 11. Solution six is not interesting either, as its imaginary part, using the same
parameters, produces the curve shown in Figure 12.
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Figure 11. Plot of the real part of the fifth solution ofωe (LS).
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This solution has only a positive imaginary part, making it evanescent. Additionally, its imaginary
part between Ls ≈ 0.185 H to Ls ≈ 0.215 H is zero, and as such no fluctuations at all are predicted by it
in this range.

In short, solution two best describes a stable IG. However, the conclusion is that Ls is highly
limited to the range above 0.21 H, maintaining the previously outlined parameters [1].

5. Computer Simulation of a Single-Phase Rotor, Single-Phase IG

It remains to be shown that the current in the rotor has a frequency that is twice the frequency of
the stator. Since this is an asymmetrical machine and therefore reacts not unlike a Variable Reluctance
Machine (VRM)—and unless Ls > ∼ 0.21 H—the IG is not stable.

To prove this, a computer simulation of the machine was constructed using MATLAB based on
Equations (1)–(3), which were solved using ode45. The resulting wave form was also pumped through
FFT (Fast Fourier Transform) to obtain the frequency of the rotor. As this is a numerical simulation of
the system of differential equations, it is devoid of approximations, enabling the validation of earlier
approximations through deduction.

In this computer simulation, the core saturation was not taken into account. Therefore, the IG
is stable when the simulation is exploding to infinity. This is valid since, as the stator currents grow,
eventually the core is saturated and this makes them stabilize [7].

The simulation parameters, simulating a system with some losses, are identical to the machine
parameters outlined previously [1]: a TERCO 1.5 kW Model MV-121 Slip Rings Induction Machine
(Terco, Stockholm, Kungens Kurva industrial park, Sweden),

Ls = 0.22
Lr = 2.36·Ls~0.52 H
Rr = 3.9
Rs = 5.4
ωr = 420
M = 1.38·Ls~0.3 H
c = 4.1 × 10−5

As expected, the result with Ls = 0.22, indicates that a stable IG would be obtained. It should be
clear in this context that the magnetic saturation of the machine is not modeled here. A stable run
of the machine has been previously conducted [1]. A simulation without magnetic saturation yields
Figure 13:
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Therefore, it is demonstrated that for Ls < ∼ 0.21 H, the IG is not stable.
It remains to be seen that the rotor current frequency basic harmonics is at twice the stator current.

This can be easily shown by plotting the rotor current as well, and pumping both through FFT. The
results are given in Figure 16:
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At this point, the stability of the machine is highly dependent on the value of Rs. For example,
increasing its value above Rsmax would yield an evanescent response. Figure 18 shows the simulation
response if Ls = 0.21 H, Rs = 9 Ω, which is slightly above Rsmax.
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6. Conclusions

A model for an IG was explored with in-depth investigation into first harmonics of the mutual
inductance effect on the machine. Additionally, the resulting solutions for the stator field’s angular
frequency as a limiting factor for the stability of the IG were studied.

An improved exact equation for the maximum allowable resistivity of the stator circuit, allowing
stable operation as a single-phase stator, single-phase rotor machine was reached. In addition, the
frequency of the stator current in such a mode was determined.

A simulation of the IG was then run, verifying the approximations done in exploration of the
IG model. It was shown that the rotor current frequency is twice that of the stator current, and the
stability region of the IG coincides with the theoretical analysis. On the boundary, the value of the
resistivity of the stator circuit model was validated as well.

Practical uses of this work could involve the use of any of the physical solutions found in Section 4.
These uses may include new types of machines, working as a single-phase brake, generator, or motor,
in a multiple-phase system. However, this exceeds the scope of this article, and as such is left for
future research.
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List of Principal Symbols

ω rotor angular speed
ωr rotor electrical angular frequency
ωe stator current angular frequency
P machine pole pairs
is stator winding current
ir rotor winding current
v stator output voltage
Rs stator circuit resistance
Rr rotor winding resistance
Ls stator winding inductance
Lr rotor winding inductance
C external capacitor

m
mutual inductance between the stator and rotor
windings

M
maximum mutual inductance between the stator and
rotor windings
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