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Abstract: Accurate state of charge (SOC) estimation can prolong lithium-ion battery life and 
improve its performance in practice. This paper proposes a new method for SOC estimation. The 
second-order resistor-capacitor (2RC) equivalent circuit model (ECM) is applied to describe the 
dynamic behavior of lithium-ion battery on deriving state space equations. A novel method for 
SOC estimation is then presented. This method does not require any matrix calculation, so the 
computation cost can be very low, making it more suitable for hardware implementation. The 
Federal Urban Driving Schedule (FUDS), The New European Driving Cycle (NEDC), and the West 
Virginia Suburban Driving Schedule (WVUSUB) experiments are carried to evaluate the 
performance of the proposed method. Experimental results show that the SOC estimation error can 
converge to 3% error boundary within 30 seconds when the initial SOC estimation error is 20%, and 
the proposed method can maintain an estimation error less than 3% with 1% voltage noise and 5% 
current noise. Further, the proposed method has excellent robustness against parameter 
disturbance. Also, it has higher estimation accuracy than the extended Kalman filter (EKF), but 
with decreased hardware requirements and faster convergence rate. 

Keywords: state of charge; lithium-ion battery; electric vehicles; novel observer 
 

1. Introduction 

In recent years, electric vehicles (EVs) have been of increased interest because of the global 
energy shortage and growing environmental pollution [1]. Many governments are promoting the 
use of electric vehicles, including battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), 
and hybrid electric vehicles (HEVs). Lithium-ion batteries (LIBs) have found wide application in EVs 
for their features of high energy/power density, tiny memory effect, and low self-discharge effect [2]. 
The battery management system (BMS) plays an essential role in improving the battery 
performance, prolonging battery life, and ensuring its safety [3]. Estimation of the battery state of 
charge (SOC) is one of the most important functions of BMS. An accurate SOC estimation can 
prevent the battery from over-charging or over-discharging, improve battery performance, and also 
help dispel driver anxiety about the potential range of operation [4]. As an indicator of the ratio of 
the remaining capacity to the rated capacity, SOC is an inner state of a battery, and as such, it cannot 
be measured directly. To estimate its value, we have to utilize specific mathematical methods 
incorporating measurable battery parameters, such as current, voltage, and temperature. 

In order to get an accurate SOC estimate, many estimation methods have been proposed. 
Generally, existing estimation methods are non-model-based methods and model-based methods. 
Some examples of non-model-based methods are the coulomb counting method (Ampere-hour 
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integral method) [5,6], open circuit voltage method [7,8], artificial neural network method (ANN) 
[9–12], fuzzy logic method (FL) [13–15], and support vector machine method (SVM) [16–18]. The 
coulomb counting method is the most commonly-used method due to its simplicity and low 
computation cost. However, this method suffers from accumulated errors caused by current 
measurement noises. Additionally, if the initial SOC estimate is not accurate, the coulomb counting 
method cannot correct this initial error. The open circuit voltage approach can specify the battery 
SOC value based on the monotonous relationship between the open circuit voltage and SOC, but it 
takes several hours for the terminal voltage to reach the equilibrium state, which is obviously 
impractical in reality. Artificial neural networks, fuzzy logic, and support vector machine methods 
are intelligent computational algorithms that can theoretically calculate SOC with high precision, 
but these methods require a significant amount of training data. This training process is 
time-consuming and almost impossible to accomplish because of the complexity of practical driving 
conditions. Additionally, these three methods require a powerful microchip to perform the data 
processing, which will inevitably increase the hardware cost. 

Examples of model-based estimation methods include methods based on the Kalman filter (KF) 
[3,4,17,19–28], the sliding mode observer (SMO) [29–32], and the Luenberger observer [33–36]. The 
Kalman filter is an optimal recursive estimation method for linear dynamic system. To extend this 
method to a nonlinear dynamic system, the extended KF (EKF), sigma-point KF (SKF), and 
unscented KF (UKF) methods for SOC estimation have been proposed. The EKF method uses a 
first-order Taylor series expansion at each time step to approximate the nonlinear observation 
function [20,21]. However, a significant problem of EKF is that the estimation errors caused by the 
local linearization will increase greatly when the battery model has significant nonlinearity. 
Additionally, the EKF method requires calculation of the Jacobian matrix, which may result in 
instability of the filter for a strongly nonlinear LIB system. The UKF and SKF methods utilize an 
unscented transformation to approximate the probability density function of the battery state with a 
set of sample points. Previous studies have shown that these two methods can effectively improve 
estimation accuracy, but the computation costs of these two methods are tremendous due to mass 
matrix calculations during the estimation process [24,26]. Further, all KF-based methods require 
statistical knowledge of the noises to ensure their estimation accuracy, which we cannot obtain 
easily in practice. The sliding mode observer (SMO) is an effective SOC estimation method against 
model uncertainties and external disturbances. However, it is difficult to design optimal parameters 
such as the switching gains and the uncertainty boundaries for the observer. Additionally, the SMO 
requires a piecewise linearization method to approximate LIB systems, which will inevitably lead to 
linearization errors [30]. The Luenberger observer is another commonly used strategy for SOC 
estimation, but its general applicability is limited, as its parameters are difficult to design [33]. 

In this paper, a novel method for SOC estimation with a second-order resistor-capacitor (2RC) 
equivalent circuit model (ECM) is proposed. The validation results show that the proposed method 
has good performance in terms of estimation accuracy and robustness against measurement noise 
and parameter uncertainty. This method does not require matrix calculation, so the computation 
cost is significantly low. Furthermore, the presented method has a higher estimation accuracy and 
faster convergence rate compared to EKF method. Above all, the proposed method is appropriate for 
implementation in LIB systems in electric vehicles. 

The remainder of this paper is organized as follows. In Section 2, the widely-used 2RC 
equivalent circuit model is introduced and the state space equations are derived. In Section 3, the 
design of the proposed method is presented in detail. The experimental configuration and 
discussion are presented in Section 4. Section 5 concludes the paper.  

2. Battery Model 

2.1. Battery Equivalent Circuit Model 

Selection of the appropriate battery model is required for an accurate model-based estimation 
method. To accurately simulate the battery characteristics, various battery models have been 
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proposed, such as the thermal model [37], the equivalent circuit model, and the electrochemical 
model [38]. Of these, equivalent circuit models (ECMs) are commonly-used to simulate the dynamic 
behavior of the battery, including the voltage response to different current condition. ECMs include 
the partnership for a new generation of vehicle (PNGV) model, the Rint model, the Thevenin model, 
and the second-order resistor-capacitor (2RC) model [39]. These modes consist of basic circuit 
components such as voltage sources, resistors, and capacitors. Generally speaking, adding 
resistor-capacitor (RC) series will improve model accuracy and increase the structural complexity of 
the model [40]. In this paper, an equivalent circuit model with two RC networks was selected and it 
consists of a resistor Ro, two RC networks, and a voltage source Uoc (SOC). The schematic diagram of 
the model is shown in Figure 1. In the model, Ro denotes the ohmic resistance of the lithium-battery. 
R1 and C1 denote the electrochemical polarization resistance and capacitance, respectively. R2 and C2 
denote the concentration polarization resistance and capacitance, respectively. It represents the 
current flowing through the voltage source. The output voltage of the voltage source is denoted by 
Uoc, which has a monotonous relationship with the SOC of the battery.  

 

Figure 1. Schematic diagram of the second-order resistor-capacitor (2RC) equivalent circuit model. 

Here, U1, U2 and SOC are taken as state variables and UL is the observation variable. The state 
equations of the equivalent circuit model can be derived as: 

1 1
1 1 1

1 1
tU U I

R C C
= − +  (1) 

2 2
2 2 2

1 1
tU U I

R C C
= − +  (2) 

1SOC t
n

I
Q

= −  (3) 

where 1U , 2U , SOC  represent the derivative of 1U , 2U , and SOC ,respectively. Qn is the 
discharge capacity of the battery. The observation equation can be derived as: 

1 2(SOC)L OC t oU U U U I R= − − −  (4) 

2.2. Parameter Identification 

Before the ECM described above can be used for SOC estimation, the values of parameters (Uoc 
(SOC), Ro, R1, C1, R2, and C2) need to be identified. Uoc (SOC) describes the relationship between the 
output voltage of the lithium battery and SOC, which can be obtained by fitting experimental data. 
The experiment is implemented based on a Samsung ICR18650-22P lithium-ion battery under a 
constant temperature of 25 °C. More details about the battery are listed in Section 4.1. The test 
procedure is as follows: (1) fully charge the battery with constant current and constant voltage 
(CC-CV) method and then leave the battery in the open circuit condition for 30 minutes; (2) 
discharge the battery at a rate of 1 C until reaching the cut-off voltage at 2.75 V and then record the 
discharge capacity Qn; (3) fully charge the battery with CC-CV method and then leave the battery in 
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the open circuit condition for 2 hours; (4) record the voltage of the battery as the open circuit voltage 
of the battery with 100% SOC; (5) discharge the battery to 95% SOC at a rate of 1 C; (6) leave the 
battery in the open circuit condition for 2 hours, and record the voltage as the open circuit voltage of 
the battery with 95% SOC; and then (7) repeat steps (5) and (6) to separately measure the open circuit 
voltage of the battery with SOC of 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 15%, 10%, 5%, and 0%. 
Table 1 lists the measured voltage data. A sixth-order polynomial is then utilized to fit the 
experimental data. Equation (5) is the fitting result and the relationship between Uoc and SOC can 
been denoted as g(SOC). The measured data and the fitted curve are shown in Figure 2, in which the 
blue plus signs represent the measured data and the red solid line is the fitted curve. As shown, the 
sixth-order polynomial can approximate well the voltage property of the lithium-ion battery. 
Further, strong nonlinearity of the LIB can be observed from the data presented in Figure 2.  

6 5 4 3

2

12.2581 SOC 28.8126 SOC 20.7236 SOC 2.6045 SOC

1.9103 SOC 1.0889 SOC 3.4444
ocU = × − × + × − ×

− × + × +
 (5) 

 

Figure 2. Measured and fitted Uoc (open circuit voltage) vs. SOC (state of charge) for 25 °C. 

Table 1. Measured open circuit voltage (OCV) at different SOCs for 25 °C. 

SOC(%) 100 95 90 80 70 60 50 40 30 20 15 10 5 0 

OCV (V) 4.18 4.12 4.08 4.02 3.94 3.88 3.78 3.68 3.63 3.6 3.58 3.53 3.48 3.45 

The other parameters (Ro, R1, C1, R2, and C2) can be determined from measured voltage data 
from a pulse-current discharging process using an exponential-function fitting method [41]. The 
pulse-current profile consists of a 330-s discharging period with constant current of 2.2 A (about 1 C) 
and a 3600-s rest period. Here, the transient response of terminal voltage data at 60% SOC was 
utilized to calculate these parameters. Measured terminal voltage response is shown in Figure 3. 
According to Figure 3, the terminal voltage during the relaxation period can be fitted with the 
exponential function in the form of Equation (6). 

0 1 1 2 2exp( ) exp( )LU k k t k tλ λ= − − − −  (6) 
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Figure 3. Transient response of terminal voltage. 

At the same time, based on the ECM proposed in Section 2.1, the terminal voltage in relaxation 
period can be expressed as Equation (7): 

1 1 1 2 2 2exp( / ) exp( / )L oc o t t tU U R I R I t R C R I t R C= − − − − −  (7) 

Comparing Equation (6) with Equation (7), then we could obtain the values of R1, C1, R2, C2 as: 
1 1 2 2 1 1 1 2 2 2/ ,   / ,   1 / ( ),   1 / ( )t tR k I R k I C R C Rλ λ= = = =  

Ro can derive from the instant voltage increase when the discharging current stops, since the 
ohmic resistance can be taken as the only factor causing the voltage increase at first. The value of Ro 
can be obtained by Equation (8) in which ΔU is the step-variation of terminal voltage at the moment 
of discharging process stops. Here, ΔU is chosen as voltage increment of the first second in 
relaxation period. The values of the identified parameters are listed in Table 2. In practical 
application, the values of these parameters change dynamically due to various factors such as depth 
of discharge, ambient temperature, age effect, etc. Also, there are a number of studies about online 
parameter identification methods [42–45], which can be used to identify model parameters in real 
time. However, this is beyond the scope of this paper.  

/o tR U I= Δ  (8) 

Table 2. Parameters of the 2RC ECM (equivalent circuit model). 

Parameters Ro (Ω) R1 (Ω) R2 (Ω) C1 (F) C2 (F)
Values 0.03417 0.02221 0.01902 1498.26 65453.28 

2.3. Model Validation Test  

In order to verify the established 2RC ECM, the Urban Dynamometer Driving Schedule (UDDS) 
test is implemented. The complete current profile is shown in Figure 4a, and b is a magnified portion 
of the data in Figure 4a. Figure 4c depicts the comparison between the measured voltage and the 
model output voltage, and Figure 4d shows the model output voltage error for Figure 4c. The 
average voltage error between the measured voltage and the model output is 0.007 V, with a 
maximum error of 0.025 V. From Figure 4, we can see that the 2RC ECM can track the dynamic 
voltage properties of the lithium-ion battery precisely.  



Energies 2017, 10, 1150  6 of 19 

 

 

Figure 4. Model validation results under the UDDS test: (a) current profile; (b) magnified area 
indicated in (a); (c) voltage comparison between measurement and model output; (d) model output 
voltage error. 

3. Design of the Novel Observer 

Observers are widely-used in state estimation problems to eliminate state estimation error 
using deviation feedback. For SOC of a LIB, most existing observers utilize the difference between 
the estimation output voltage and the measured voltage multiplied by coefficients to correct all of 
the estimated states [46,47]. There are several disadvantages of these observers. First, the optimal 
gain coefficients are hard to determine. Second, some observers utilize a linearization method to 
approximate the nonlinear relationship between the open circuit voltage and SOC, which inevitably 
causes linearization error [29]. 

According to Equations (1)–(3), the three state variables change independently. The estimation 
error is mainly caused by an inaccurate SOC estimated value. To improve estimation accuracy and 
simplify the structural complexity of the observer, we designed a new observer as follows: 

1 1
1 1 1

1 1ˆ ˆ
tU U I

R C C
= − +  (9) 

2 2
2 2 2

1 1ˆ ˆ
tU U I

R C C
= − +  (10) 

ˆ ˆSOC ( )t
L L

n

I c U U
Q

= − + −  (11) 

The corresponding observation equation is:  

1 2
ˆˆ ˆ ˆ(SOC)L t oU g U U I R= − − −  (12) 

In which 1̂U , 2Û , and ŜOC  are the estimations of the state variables 1U , 2U , and SOC , 

respectively. ˆ
LU  is the estimation of the observation variable LU , and c is the observer gain. By 

assuming that 1 1 1
ˆU U U= − , 2 2 2

ˆU U U= − , ˆSOC=SOC-SOC , the dynamic equation for errors could 
be derived as: 

1 1
1 1

1U U
RC

= −   (13) 

2 2
2 2

1U U
R C

= −   (14) 
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ˆSOC ( )L Lc U U= − −  (15) 

Generally, the Lyapunov stability theory is utilized to prove the stability of observers. Here, 
considering the specific characteristic of the proposed observer, we do not require Lyapunov 
stability theory because as long as we have some knowledge of the solution for ordinary differential 
equations, we can prove that 1U , 2U , SOC  asymptotically converge to zero. For Equation (13), this 
is solved as: 

1 1
1 1( ) (0)

t
R CU t U e

−
=   (16) 

Since 1 1RC > 0 , we have 1lim ( ) 0
t
U t

→∞
=  despite 1(0)U . 

Also, for Equation (14), it has the solution as 

2 2
2 2( ) (0)

t
R CU t U e

−
=   (17) 

Since 2 2R C > 0 , we have 2lim ( ) 0
t
U t

→∞
=  despite 2 (0)U . 

Substitution of Equations (4) and (12) into Equation (15) allows simplification as Equation (18) 
according to the Lagrange Mean Value Theorem. 

1 2 1 2 1 2
ˆ ˆ ˆSOC (( (SOC) ) ( (SOC) )) ( ( )SOC )t o t oc g U U I R g U U I R c g U U= − − − − − − − − = − η − −     (18) 

Where η  is between SO C  and ŜOC . Considering that 1lim ( ) 0
t
U t

→∞
=  and 2lim ( ) 0

t
U t

→∞
= , then 

Equation (18) could be simplified as: 

SOC ( )SOCcg≈ − η   (19) 

Since the expression (SOC)g  has been determined in Equation (5), we can easily calculate the 
(SOC)g . In this case, 0 ≤ η ≤ 1 , 0.4 (SOC)g≤  . According to differential equation theory, as long as 

0c > , we have limSOC( ) 0
t

t
→∞

=  despite SOC(0) . Thus, we can prove that the proposed observer is 

stable. 
When using this observer for SOC estimation, the value of c cannot be selected arbitrarily. If 

the value of c is too small, the convergence rate is slow. In contrast, the estimation process may 
diverge from the true SOC when the value of c is too large. Here, we design an adaptive law in the 
form of Equation (20) that allows the value of c change dynamically according to the deviation 
between the measured voltage and model output voltage. In Equation (20), c0， α , β  are 
parameters designed to adjust the adaptive property of c. Among them, c0 determines the 
convergence rate of the proposed observer at first “inaccurate” stage. α  and β  are used to 
adjust observer gain when the SOC estimation reach “accurate” stage. There are several 
requirements need to be met when trying to determine the value of c0, α , and β : (1) the value of c 
should be bigger than zero to ensure the stability of the proposed observer; (2) when the voltage 
estimation error is large, which usually means that SOC estimation error is large, the value of c 
should be big enough to ensure a fast convergence rate; (3) when the voltage estimation error is 
small, the value of c should be small enough to avoid SOC estimation “jitter” effect. Considering the 
aforementioned requirements and characteristics of exponential function in Equation (20), c0, α , 
and β  were selected as 0.1, −0.09, −10, respectively. Figure 5 shows the relationship between c and 

ˆ| |L LU U− . Figure 6 shows the schematic diagram of the proposed observer. 

0
ˆexp( )L Lc c U Uα β= + −  (20) 
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Figure 5. Observer gain variation curve with terminal voltage estimation error. 

 

Figure 6. Schematic diagram of the proposed observer. 

4. Experiments and Discussion 

4.1 The Test Bench 

The schematic diagram of the test bench is shown in Figure 7. It consists of battery testing 
equipment (Arbin BT-5HC, Arbin Instruments, College Station, TX, USA), temperature chamber 
(Sanwood SC-80-CC-2, Sanwood, Dongguan, China), a lithium-ion battery (ICR18650-22P, Samsung 
SDI,, Shenzhen, China), and a personal computer (PC) with Arbin’ Mits Pro Software (v7.0), used for 
battery charging/discharging control and recording data. Detials about the tested battery include: 
nominal capacity 2200 mAh, nominal voltage 3.6 V, charging end voltage 4.2 V, discharging end 
voltage 2.75 V, and maximum continuous discharging current 10 A. The voltage and current 
measurement errors of the battery testing equipment are less than 0.02% full scale range (FSR). The 
study was implemented under controlled temperatures. Except Section 4.5, all the other experiments 



Energies 2017, 10, 1150  9 of 19 

 

mentioned in this paper were implemented under 25 °C. During battery test operation, a one second 
measurement sampling time for voltage and current was used. 

 

Figure 7. Schematic diagram of the battery test bench. 

4.2. Federal Urban Driving Schedule (FUDS) Test 

To evaluate the performance of the proposed SOC estimation algorithm, the Federal Urban 
Driving Schedule (FUDS) test was implemented to simulate a typical loading condition. The current 
profile of the FUDS test is showed in Figure 8, in which the positive values represent the 
discharging process and the negative values represent the charging process. Figure 8a displays the 
complete current vs. time during the FUDS condition, and Figure 8b displays a zoomed part of 
Figure 8a, as indicated. The measured voltage and estimated voltage under the FUDS test are 
shown in Figure 9a, and the corresponding voltage estimation error is shown in Figure 9b. In  
Figure 9a, the blue dotted line is the reference voltage measured with a high precision sensor, and 
the red solid line is the voltage estimated with the proposed observer. It is obvious that the 
measured voltage fluctuates greatly due to the sharply changing current, but the estimated voltage 
can track the measured voltage accurately with a maximum voltage error less than 0.01 V. 

 
Figure 8. Current profile under the Federal Urban Driving Schedule (FUDS) test: (a) current vs. time; 
(b) zoomed figure of the area indicated in (a). 
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Figure 9. Voltage estimation under the FUDS test: (a) voltage; (b) voltage error. 

The SOC estimation results under the FUDS test are shown in Figure 10a. The blue dotted line is 
the reference SOC obtained by the coulomb counting method with high precision sensors, and the 
red solid line is the estimated SOC. Figure 10b shows the SOC estimation error. From Figure 10b, we 
can see that the maximum error is lower than 3%. This indicates that the proposed method has good 
performance for voltage and SOC estimation accuracy. 

 
Figure 10. SOC estimation under the FUDS test: (a) SOC; (b) SOC error. 

4.3 Convergence Rate Test 

As presented in Section 4.2, we assume that the initial SOC value is equal to the true SOC value. 
However, in practice, the initial SOC value may not be accurate due to various factors, such as the 
self-discharge phenomenon and the capacity recovery effect. A good SOC estimation method should 
compensate for the effect caused by the initial SOC estimation error and converge to the true SOC 
value within a limited time. In this section, different initial SOC values were set to verify the 
performance of the proposed observer against the initial SOC estimation error. To be more specific, 
the initial SOC values are set as 0, 0.5, or 0.8 when the true SOC value is 1. The SOC estimation 
results are shown in Figure 11a, in which the blue dotted line is the reference SOC. The red solid line, 
green dash-dotted line, and magenta dash line are the estimated SOCs with an initial SOC 
estimation error of 0.2, 0.5, and 1, corresponding to the initial SOC values of 0.8, 0.5, and 0, 
respectively. Figure 11b displays the SOC estimation error. From Figure 11, it is notable that the SOC 
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error decreases dramatically in the first few seconds. The proposed observer has considerable 
convergence rate. 

 

Figure 11. SOC estimation with different initial SOC error under the FUDS test: (a) SOC; (b) SOC 
error. 

4.4. Robustness Against Current and Voltage Noises 

In Sections 4.2 and 4.3, we assume that the current and voltage values are accurate, which 
could be guaranteed under laboratory conditions. However, in practice, the measured current and 
voltage values are inevitably mixed with noises due to various factors, such as errors in sensor 
precision, or electromagnetic interference (EMI). Thus, it is important to evaluate the robustness of 
the proposed observer against measurement noise. 

To evaluate the robustness of the proposed observer against the current noise, a sequence of 
stochastic normal distributed noises was attached to the measured current shown in Figure 8. The 
mean value of the noise is zero and its standard deviation can be obtained from Equation (21). 

max / 3Iσ ω=  (21) 

In Equation (21), σ  is the standard deviation, ω  is a scale factor, and maxI  represents the 
maximum current value from the data shown in Figure 8. We studied the conditions of ω  = 1%, 
5%, and 10%. The SOC estimation results are shown in Figure 12a,b displays the corresponding 
SOC estimation error. 

 
Figure 12. SOC estimation for different current noises under the FUDS test: (a) SOC; (b) SOC error. 
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In Figure 12a, the blue dotted line is the reference SOC. The red solid line, green dash-dotted 
line, and magenta dash line represent the estimated SOC with 1%, 5%, and 10% current noises, 
respectively. To quantitatively study the robustness of the proposed observer, the mean absolute 
error (MAE) and maximum error were calculated, as listed in Table 3. From Figure 12 and Table 3, 
we can see that although the SOC error fluctuates more intensely as the current noise increases, the 
mean absolute error and the maximum error of SOC estimation change only slightly. 

Table 3. SOC estimation errors with different current noises under the FUDS test. 

Current Noise Factor (ω) 1% 5% 10% 

MAE 0.97% 0.97% 0.98% 
Maximum error 2.58% 2.59% 2.59% 

In practical application, due to factors such as changing temperature and poor calibration, the 
current sensors may suffer from drift error. To further verify the robustness of the proposed 
observer against current noises, another test was conducted. Here, a combination of 5% maxI  
current offset noise and Gaussian noise in the form of Equation (21) with ω  = 5% was attached to 
the current profile, shown in Figure 8. Figure 13a shows the SOC estimation result for comparison 
with the coulomb counting method and Figure 13b displays the corresponding SOC estimation 
error. 

 

Figure 13. SOC estimation with current offset noises under the FUDS test: (a) SOC; (b) SOC error. 

In Figure 13a, the blue dotted line is the reference SOC. The red solid line and green 
dash-dotted line are the ones calculated by the proposed observer and coulomb counting methods, 
respectively. In Figure 13b, the black solid lines indicate the 3% SOC error boundary. From  
Figure 13, we can see that when the current data is inaccurate, the coulomb counting method 
suffers accumulated error, which is consistent with available literature. In contrast, the proposed 
observer can well compensate for the current noise and maintain high estimation accuracy. 

Similarly, the robustness of the proposed observer against voltage noise was studied. In this 
test, the voltage noise was assumed to obey a stochastic normal distribution. The mean of the 
voltage noise is zero, and the standard deviation can be obtained by Equation (22). 

max / 3Uσ ω=  (22) 

Where σ  is the standard deviation, ω  is a scale factor, and maxU  denotes the maximum 
measured voltage in the FUDS test described in Section 4.2. In this paper, the conditions of  
ω  = 1%, 5%, and 10% were studied. The SOC estimation results shown in Figure 14a,b display the 
corresponding SOC estimation error. In Figure 14a, the blue dotted line represents the reference 
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SOC. The red solid line, green dash-dotted line, and magenta dash line are the SOC estimation 
results for 1%, 5%, 10% voltage noise, respectively. Table 4 lists the estimation errors. 

Table 4. SOC estimation errors with different voltage noises under the FUDS test. 

Voltage Noise Factor (ω) 1% 5% 10% 
MAE 1.00% 1.23% 1.59% 

Maximum error 2.76% 4.61% 6.40% 

 
Figure 14. SOC estimation with different voltage noises under the FUDS test: (a) SOC; (b) SOC 
error. 

As shown in Figure 14a, the estimated SOC fluctuated greatly with the increase of voltage 
noise. This result is confirmed by Figure 14b, as well as Table 4. Considering that the proposed 
observer relies on the difference between the measured voltage and the estimated voltage to correct 
the estimated SOC value, it is of vital importance to obtain accurate voltage values. 

Finally, to verify the performance of the proposed observer for an environment containing 
both current and voltage noise, another test was conducted. In this test, 5% current noise and 1% 
voltage noise were added to the current profile and voltage profile described in Section 4.2. The 
estimation results are shown in Figure 15a,b displays the SOC estimation error. In Figure 15a, the 
blue dotted line is the reference SOC, and the red solid line represents the estimated SOC calculated 
by the proposed observer in the presence of both current and voltage noises. Table 5 lists the 
estimation error.  

 
Figure 15. SOC eatimation with both current and voltage noises under the FUDS test: (a) SOC; (b) 
SOC error. 
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Table 5. SOC estimation error in the presence of both current and voltage noises. 

Method The Proposed Observer
MAE 0.98% 

Maximum error 3.10% 

4.5. Robustness Against Parameter Disturbance 

In practice, the LIBs serve in a complicated condition, and the parameters of the 2RC ECM can 
change greatly due to age effect or varying ambient temperature. The observer should have good 
performance in terms of robustness against parameter disturbances. In this section, a series of 
experiments using the procedure described in Section 2.2 were implemented under 5, 25, and 45 °C, 
respectively. Table 6 lists the capacities and parameters of ECM for the battery under these 
temperature conditions. Figure 16 dipicts the relationship between the OCV and SOC under these 
conditions. We can see that the characteristics of the LIB changes greatly with the change of ambient 
temperature. 

Table 6. Capacities and parameters of equivalent circuit model (ECM) under different temperatures. 

Temperature (°C) 5 25 45
Capacity (Ah) 1.86 2.05 2.16 

Ro (Ω) 0.07846 0.03417 0.02802 
R1 (Ω) 0.03811 0.02221 0.01828 
R2 (Ω) 0.04604 0.01902 0.00338 
C1 (F) 2040.80 1498.26 1555.99 
C2 (F) 19,450.10 65,453.28 123,611.83 

 

Figure 16. Fitted SOC-OCV curve under different temperatures. 

The New European Driving Cycle (NEDC) profile is applied in this experiment. Figure 17 
shows the current profile under NEDC profile. The SOC estimation results are displayed in  
Figure 18. Table 7 lists the estimation errors with the proposed observer under different 
temperature conditions. From Figure 18, it is clear that the proposed observer can remain stable in a 
wide range of temperature conditions. This indicates that the proposed method is robust against 
parameter disturbance. However, when the temperature deviates from room temperature, the 
estimation error increases rapidly, which is especially obvious in low temperature environments. 
The decline in estimation accuracy attributes to the change of parameters of battery model. One 
possible solution is adopting an online parameter identification method to obtain the battery model 
parameters [42,43]. However, this is beyond the scope of this paper. 
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Figure 17. Current profile under the New European Driving Cycle (NEDC) test: (a) current vs. time 
profile; (b) zoomed region indicated in (a). 

 

Figure 18. SOC estimation results under the NEDC test for different temperature conditions: (a) 5 °C; 
(b) 25 °C; (c) 45 °C. 

Table 7. Estimation errors under NEDC test for different temperature conditions. 

Temperature (°C) 5 25 45
MAE 3.63% 0.89% 1.83% 

Maximum error 30.26% 2.68% 7.14% 

4.6. Comparison with Extended Kalman Filter (EKF) Method 

To further demonstrate the advantage of the proposed observer, the estimation results were 
compared with that calculated by another well used algorithm, the extended Kalman filter (EKF). 
Details about EKF can be found in References [19–22]. The parameters used in EKF method are listed 
in Table 8. In Table 8, P0, Q and R represent initialized state covariance, process noise covariance and 
measurement noise covariance, respectively. The West Virginia Suburban Driving Schedule 
(WVUSUB) test was applied in this experiment. Its current profile is shown in Figure 19. 

Table 8. Values of the parameters used in the extended Kalman filter (EKF) method. 

Parameters Values
P0 [0.01, 0, 0; 0, 0.001, 0; 0, 0, 0.000001] 
Q [0.0001, 0, 0; 0, 0.0002, 0; 0, 0, 0.0017] 
R 0.02 
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Figure 19. Current profile under the West Virginia Suburban Driving Schedule (WVUSUB) test: (a) 
current vs. time profile; (b) zoomed region indicated in (a). 

Here, we mainly focus on three aspects of the algorithms, estimation accuracy, computation 
cost, and convergence rate. In this test, the program running time for each algorithm was recorded to 
reflect the computation costs of the algorithms. Further, the time for SOC estimation error to 
converge to 3% for the first time was recorded to evaluate the convergence performance of the 
algorithms. First, the initial SOC estimation error was set to 0, and the SOC estimation results are 
shown in Figure 20 and Table 9. In Figure 20a, the blue dotted line is the reference SOC. The red solid 
line and green dash-dotted line represent the ones calculated by the proposed observer and EKF 
methods, respectively. Figure 20b displays the SOC estimation error. From the results, it is clear that 
the proposed observer has a notably lower computation cost than the EKF method. Further, the 
estimation accuracy of the proposed observer is higher than that of EKF method. Second, in order to 
compare the convergence performance of the algorithms, the initial SOC was set to 0.8—thus, the 
initial SOC estimation error is 0.2. The estimation results are shown in Figure 21 and Table 10.  

 

Figure 20. Comparison of SOC estimation under the WVSUB test: (a) SOC; (b) SOC error. 
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Table 9. Comparison of computaion cost and SOC estimation error. 

Methods The Proposed Observer EKF 

Computation time (s) 0.1034 0.4184 

MAE 0.86% 1.28% 
Maximum error 2.53% 4.26% 

 
Figure 21. Comparison of SOC estimation with the initial SOC error under the WVUSUB test: (a) 
SOC; (b) SOC error. 

Table 10. Comparison of convergence rate. 

Methods The Proposed Observer EKF
Convergence time (s) 28 117 

From Figure 21 and Table 10 we can see that, under the WVUSUB condition, the time that takes 
the proposed observer to converge to 3% error boundary is 28 seconds, compared to 117 seconds for 
the EKF method. It is clear that the proposed observer has a much faster convergence rate than the 
EKF method. 

5. Conclusions 

This paper proposes a novel method for LIB SOC estimation. First, the commonly used 2RC 
ECM is applied allowing derivation of the state space equations. Next, the exponential fitting 
method is used to determine the parameters of the model. A six-order polynomial is used to describe 
the strongly nonlinear relationship between the open circuit voltage and SOC. Then, a novel 
observer for SOC estimation is proposed. The differential equation theory is utilized to prove the 
stability of the proposed observer. The FUDS and NEDC experimental results show that the 
proposed method has good performance in terms of estimation accuracy, convergence rate, 
robustness against measurement noises, and parameter disturbance. Comparison results with the 
EKF method also confirm this conclusion. The proposed observer has higher estimation accuracy, 
and a faster convergence rate than the EKF method, but with lower computational costs. Therefore, 
the proposed method is more suitable for online SOC estimation. 

In Section 4.5, it has been shown that when the parameters change greatly, the estimation 
accuracy of the proposed observer declines correspondingly. Thus, our future work will be focus on 
study on combination the proposed method with online parameter identification to improve the 
robustness against the parameter uncertainty, ambient temperature, age effect, and estimation accuracy.  
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