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Abstract: Aiming for large-scale renewable energy sources (RES) integrated to power systems with
power electronic devices, the technology of virtual synchronous generator (VSG) has been developed
and studied in recent years. It is necessary to analyze the damping characteristics of the power
system with RES generation based on VSG and develop its corresponding damping controller to
suppress the possible low frequency oscillation. Firstly, the mathematical model of VSG in a per unit
(p.u) system is presented. Based on the single-machine infinite bus system integrated with an RES
power plant, the influence of VSG on the damping characteristics of the power system is studied
qualitatively by damping torque analysis. Furthermore, the small-signal model of the considered
system is established and the damping ratio of the system is studied quantitatively by eigenvalue
analysis, which concluded that adjusting the key control parameters has limited impacts on the
damping ratio of the system. Consequently, referring to the configuration of traditional power system
stabilizer (PSS), an auxiliary damping controller (ADC) for VSG is designed to suppress the low
frequency oscillation of the power system. Finally, simulations were performed to verify the validity
of theoretical analysis and the effectiveness of designed ADC.

Keywords: renewable energy sources; virtual synchronous generator; auxiliary damping controller;
small-signal model; eigenvalue analysis

1. Introduction

The power system may experience sustained low frequency oscillation in the transmission lines
after being disturbed due to the lack of damping [1,2]. Low frequency oscillation may cause the
overcurrent of tie line, malfunction of the relay protection devices or even out-of-step oscillation,
which affects the secure and stable operation of the power system seriously. Nowadays, with the
development of prediction, operation and control technologies, the penetration level of RES, such as
photovoltaic and wind power, is gradually increasing, which means many synchronous generators
are being replaced by power electronic devices. Due to the randomness and intermittency of the
output power of RES generation, as well as the difference in grid-connected characteristics between
power electronic devices and synchronous generators, large-scale RES generation will reduce the
equivalent inertia and damping of the power system, and have negative impacts on the power system
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stability [3–7]. Therefore, it is of great theoretical and practical value to analyze the influence of RES
generation on the damping characteristics of the system and propose the corresponding solutions.

The virtual synchronous generator (VSG), which represents the voltage source converter operated
in a similar way as the synchronous generator [8,9], is regarded as a promising method of friendly
integration of RES generation. This strategy has been widely used in the field of micro-grid
inverter [10,11], wind and photovoltaic power generation [12,13], low frequency AC transmission
(LFAC) [14] as well as high voltage direct current (HVDC) [15,16], and achieves a good control effect.
However, the impacts of the RES generation controlled by VSG on the damping characteristics of the
power system have not been studied in depth. Most of the research simply assumes that VSG emulates
the characteristics of the synchronous generator. Thus, it can increase the equivalent damping of the
system. However, few of them conduct the in-depth analysis of this problem, prove its validity, explain
its mechanism and reveal its rules.

In recent years, there are several research results of damping control strategies or power system
stabilizers applied to RES generation [17–21]. However, these strategies can not be applied to VSG
directly, due to the difference between VSG and traditional control strategies. Some research about the
oscillation damping by VSG are presented in [22–28], and one of the main methods of suppressing
oscillation by VSG is to dynamically adjust the control parameters during the transient process in
existing research [22–25]. A self-tuning virtual synchronous machine (VSM) is proposed in [22].
By using optimization algorithms, the optimal parameters of virtual inertia and damping coefficient
is obtained through online calculations to minimize the frequency deviations. In [23], a new control
equation of VSG and a damping control approach based on linear control theory is proposed to solve the
output power oscillation of VSG. The self-adaptive parameter control is also used in VSG to realize the
power system stabilization [24,25]. However, the above research lacks the detailed theoretical analysis
of the influence of the VSG on the damping characteristics of the system. The dynamic adjustments of
the control parameters are mainly based on the experience or the optimization algorithms. Furthermore,
the virtual inertia and damping coefficients are directly related to the time constant of the active power
loop and the stability of the control system [29], so the adjustable range of these parameters is limited.

In this paper, the damping characteristics of the single-machine infinite bus system integrated
with renewable generation controlled by VSG are analyzed and an auxiliary damping controller (ADC)
suitable for VSG is proposed to suppress the oscillations of the synchronous generator. The main
contributions of this paper include the following: (1) based on the derived mathematical model of
the single-machine infinite bus system with an RES power plant controlled by VSG, the features
and conditions that VSG can provide positive damping torque to the power system are studied
by damping torque analysis, and the influence of the control parameters of VSG on the system
damping characteristics is analyzed qualitatively; (2) the influence rules of the key parameters of
VSG on the system damping characteristics are analyzed quantitatively based on the eigenvalue
method; (3) a simple ADC is designed for VSG, which can provide positive damping and suppress the
oscillation of the power system effectively.

The rest of the paper is organized as follows. Section 2 proposes the mathematical model
of VSG and analyzes its impacts on the system damping characteristics. Section 3 establishes the
differential-algebraic equation of the research object and makes the eigenvalue analysis for different
sets of control parameters. In Section 4, the novel ADC and the process of parameter design are
presented. Simulations are performed in Section 5 to verify the validity of theoretical analysis and the
effectiveness of ADC. Finally, Section 6 concludes this paper.

2. Modeling and Analysis of VSG

2.1. Mathematical Model of VSG

The typical structure of the VSG applied to the renewable generation is shown in Figure 1, which
consists of a power source composed of RES and a storage system, converter, filter circuit, step-up
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transformer and grid. If the power provided by the RES and storage system is regarded as the input
torque of the prime mover, the converter is regarded as the electromechanical energy conversion
process between the stator and rotor. Then, the fundamental component of midpoint voltage can
represent the electromotive force of the imaginary synchronous generator, and the inductances and
resistances of the filter circuit can represent the impedances of the stator windings. Therefore, the
circuit on the left of the step-up transformer can be regarded as a synchronous generator.
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Figure 1. Typical structure of VSG.

The control diagram of VSG is shown in Figure 2, where the active power loop emulates the
inertial, damping and primary frequency regulation of synchronous generator to calculate the reference
frequency and phase of the modulation wave, while the reactive power loop emulates the voltage
regulation to calculate the amplitude of the modulation wave.
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Figure 2. Control diagram of VSG.

According to the control diagram shown in Figure 2, the mathematical model of VSG in a per unit
(p.u) system can be expressed as (1). The detailed derivation is demonstrated in Appendix A:

dδVSG

dt
= (ω∗VSG − 1)ω0

TJVSG
dω∗VSG

dt
= P∗ref − P∗VSG − D∗p (ω

∗
VSG − 1)

TK
dE∗

dt
= Q∗ref −Q∗e − D∗q

(
U∗pcc − 1

)
P∗VSG =

E∗U∗pcc

X∗s
sin δVSG

Q∗e =

(
E∗ −U∗pcc cos δVSG

)
E∗

X∗s

, (1)
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where δVSG is the phase difference between the internal potential and voltage of the point of common
coupling (PCC); ωVSG is the virtual angular speed and ω0 is the rated angular speed; Pref is the
reference of active power; PVSG is the output active power; E is the root-mean-square (rms) value
of internal potential; Upcc is the rms value of phase voltage of PCC; Qref is the reference of reactive
power; Qe is the output reactive power; Xs is the impedance of filter reactor; TJVSG = (Jω2

0)/SB is the
inertia time constant of VSG; J is the virtual inertia damping coefficient and SB is the base power of the
system; D∗p = (Dpω2

0)/SB is the p.u value of virtual damping coefficient Dp; TK = (
√

2UBK)/SB is the
time constant of reactive power loop of VSG; K is the integral coefficient and UB is the nominal rms
value of phase voltage; D∗q = (

√
2UBDq)/SB is the p.u value of voltage droop coefficient Dq. All the

variables superscripted with * denote the p.u value of corresponding one.

2.2. Damping Characteristics Analysis

A single-machine infinite bus system with an RES power plant, as shown in Figure 3, is considered
to analyze the influence of VSG on the damping characteristics.
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Figure 3. A single-machine infinite bus system with an RES power plant.

In Figure 3, the infinite bus is served as the swing node and the phase angle is set to 0. When the
resistances of the transmission lines are neglected, the loop current equation can be expressed as:

Up 6 δp −U 6 0
xΣ2

=
ESG 6 δSG −Up 6 δp

xΣ1
+

Upcc 6 δpcc −Up 6 δp

xΣ3
(2)

where U 6 0, Up 6 δp and Upcc 6 δpcc denote the voltage vector of infinite bus, grid connection point of the
RES power plant (bus 3) and PCC (bus 2) respectively; ESG 6 δSG denotes the vector of generator inner
potential; xΣ1, xΣ2 and xΣ3 are the sum of the reactances of the transmission lines.

According to Equation (2), the voltage vector of bus 3 can be expressed as:

Up 6 δp = (a1U + a2ESG cos δSG + a3Upcc cos δpcc) + j(a2ESG sin δSG + a3Upcc sin δpcc), (3)

where a1, a2 and a3 can be calculated as:
a1 = xΣ1xΣ3

/
(xΣ1xΣ2 + xΣ1xΣ3 + xΣ2xΣ3),

a2 = xΣ2xΣ3
/
(xΣ1xΣ2 + xΣ1xΣ3 + xΣ2xΣ3),

a3 = xΣ1xΣ2
/
(xΣ1xΣ2 + xΣ1xΣ3 + xΣ2xΣ3).

(4)

According to Equation (3), the phase angle of the bus 3 can be written as

δp = arctan
a2ESG sin δSG + a3Upcc sin δpcc

a1U + a2ESG cos δSG + a3Upcc cos δpcc
. (5)
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Differentiating δp, one can get

ωp = δ̇p =
b1ω + b2ωSG + b3ωpcc

b1 + b2 + b3
, (6)

where ωp, ω, ωSG and ωpcc denote the angular frequency of bus 3, infinite bus , bus 1 and bus 2,
respectively; b1, b2 and b3 can be calculated as:

b1 = a2
1U2+a1a2ESGU cos δSG+a1a3UUpcc cos δpcc,

b2 = a2
2E2

SG+a1a2ESGU cos δSG+a2a3ESGUpcc cos(δSG − δpcc),

b3 = a2
3U2

pcc+a1a3UUpcc cos δpcc+a2a3ESGUpcc cos(δSG − δpcc).

(7)

Considering the control diagram of VSG, the frequency of bus 2 is mainly decided by the virtual
angular frequency ωVSG calculated in the active power loop. Furthermore, VSG synchronizes with
grid after being connected to the grid, small deviation of frequency only exists in the transient state.
Therefore, one can obtain ωVSG = ωpcc ≈ ωp approximately; then, Equation (6) can be rewritten as

ωpcc = ωp =
b1ω + b2ωSG

b1 + b2
. (8)

Equation (8) is used to derive the small-signal model as

∆ωp = ∆ωpcc = c1∆δSG + c2∆δpcc + c3∆ω + c4∆ωSG + c5∆U + c6∆ESG + c7∆Upcc, (9)

where the expressions of c1, c2, c3, c4, c5, c6 and c7 are shown in Equation (10). The variables subscripted
with 0 denote the steady value of the corresponding ones:

c1 = m
[
a2a3ESG0Upcc0 sin(δSG0 − δpcc0)b10 − a1a2ESG0U0 sin δSG0(b20 − b10)

]
,

c2 = m
[
−a1a3U0Upcc0 sin δpcc0b20 − a2a3ESG0Upcc0 sin(δSG0 − δpcc0)b10

]
,

c3 = b10/(b10 + b20),

c4 = b20/(b10 + b20),

c5 = m
[
2a2

1U0b20 + a1a2ESG0 cos δSG0(b20 − b10) + a1a3Upcc0 cos δpcc0b20

]
,

c6 = m
[
−2a2

2ESG0b10 − a1a2U0 cos δSG0(b10 − b20)− a2a3Upcc0 cos(δSG0 − δpcc0)b10

]
,

c7 = m
[
a1a3U0 cos δpcc0b20 − a2a3ESG0 cos(δSG0 − δpcc0)b10

]
,

m = (ω0 −ωSG0)/(b10 + b20)
2.

(10)

The frequency of each bus is equal in the steady state, so ω0 = ωSG0 and m is equal to 0. Thus,
c1, c2 and c5, c6, c7 are also equal to 0. Since the frequency of infinite bus is not changed, ∆ω = 0,
Equation (9) can be simplified as

∆ωVSG = ∆ωpcc = c4∆ωSG. (11)

When the power loss on the transmission lines is neglected, the active power transmission
equation of the grid shown in Figure 3 can be expressed as Equation (12):

ESGUp

xΣ1
sin(δSG − δp) + PVSG =

UUp

xΣ2
sin(δp). (12)
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Assuming the inner potential of generator ESG is constant, the small-signal model of Equation (12)
is shown as follows:

ESG0Up0

xΣ1
cos(δSG0 − δp0)(∆δSG − ∆δp) +

ESG0

xΣ1
sin(δSG0 − δp0)∆Up

+ ∆PVSG =
U0Up0

xΣ2
cos(δp0)∆δp +

U0

xΣ2
sin(δp0)∆Up.

(13)

According to Equation (13), the small disturbance of the phase angle of bus 3 can be written as

∆δp =
k1∆δSG

k1 + k2
+

∆PVSG

k1 + k2
+

(k3 − k4)∆Up

k1 + k2
, (14)

where k1, k2, k3 and k4 are 

k1 =
ESG0Up0

xΣ1
cos(δSG0 − δp0),

k2 =
U0Up0

xΣ2
cos(δp0),

k3 =
ESG0

xΣ1
sin(δSG0 − δp0),

k4 =
U0

xΣ2
sin(δp0).

(15)

The output active power of the synchronous generator is calculated as

∆Pe = k1(∆δSG − ∆δp) + k3∆Up =
k1k2

k1 + k2
∆δSG −

k1

k1 + k2
∆PVSG +

k2k3 + k1k4

k1 + k2
∆Up. (16)

It can be found in Equation (16) that the electromagnetic power of the synchronous generator
consists of three parts. Since the active power is mainly related to the frequency and phase in the power
system, the variation of voltage caused by the variation of the active power can be neglected in the third
part of Equation(16). According to the damping torque analysis, the impacts of the electromagnetic
power of the generator ∆Pe on the system can be explained in the ∆ωSG−∆δSG plane, which is shown
in Figure 4. The first part is proportional to the variation of rotor angle ∆δSG, so it is aligned with the
horizontal axis, which can be regarded as synchronizing torque. The second part is proportional to
the variation of output active power of VSG, whose impacts on the system may have the following
four cases or their combinations: (1) positive damping torque; (2) negative damping torque; (3) positive
synchronizing torque; and (4) negative synchronizing torque. How the variation of output active
power from VSG affects the system mainly depends on the phase relationship between ∆PVSG and
∆ωSG. When ∆PVSG is −90◦∼90◦ ahead of ∆ωSG, it is located in the first quadrant or second quadrant.
Due to the existence of the minus sign, the second part of Equation (16) is located in the third or fourth
quadrant. The component of the second part of Equation (16) on the negative vertical axis can be
regarded as the negative damping torque. However, when ∆PVSG is 90◦∼270◦ ahead of ∆ωSG, it is
located in the third quadrant or fourth quadrant, and the second part of Equation (16) is located in the
first or second quadrant consequently, whose component on the positive vertical axis can be regarded
as the positive damping torque. Furthermore, the positive damping is the strongest when the leading
angle is 180◦.
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Figure 4. Damping torque analysis on the electromagnetic power of the synchronous generator ∆Pe.

Substituting the mathematical model of active power loop in Equation (1) and Equation(11) into
Equation(13), the small disturbance of the phase angle of bus 3 can be rewritten more specifically as:

∆δp =
k1

k1 + k2
∆δSG −

TJVSGc4

k1 + k2
(s2∆δSG)−

D∗pc4

k1 + k2
(s∆δSG) +

(k3 − k4)∆Up

k1 + k2
, (17)

where s denotes the differential operator.
Then, the output active power of synchronous generator can also be calculated as Equation (18).

Similarly, the variation of voltage caused by the variation of the active power is neglected:

∆Pe = k1

[
k2

k1 + k2
∆δSG +

TJVSGc4

k1 + k2
(s2∆δSG) +

D∗pc4

k1 + k2
(s∆δSG)

]
. (18)

Adopting the classical second-order model of synchronous generator, the small signal model of
the rotor motion equation is shown as follows:

TJ(s2∆δSG) + D(s∆δSG) + ∆Pe = 0, (19)

where TJ is the inertia time constant; D is the damping coefficient; and Pe is the electromagnetic power.
Substituting Equation (18) into Equation (19), we have(

TJ + d1
)

s2∆δSG + (D + d2) s∆δSG + d3∆δSG = 0, (20)

where d1 =
TJVSGc4k1

k1+k2
, d2 =

D∗pc4k1
k1+k2

and d3 = k1k2
k1+k2

.
It can be observed that the equivalent inertia time constant of the synchronous generator is

increased from TJ to (TJ + d1), and the equivalent damping coefficient is increased from D to (D + d2),
which indicates that an RES power plant controlled by VSG can truly increase the equivalent damping
of the power system. According to Equation (20), the damping ratio can be calculated as

ξ =
D + d2

2
√
(TJ + d1)d3

, (21)

where d1 and d2 are closely related to TJVSG and D∗p. Therefore, the selection of control parameters of
VSG has impacts on the damping ratio of the system. With the increase of the D∗p, d2 increase and the
damping ratio increase consequently, while d1 increases with the increase of TJVSG, which means the
damping ratio is decreasing.
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3. System Modeling and Small-Signal Analysis

The qualitative analyses are made qualitatively with some simplification in last section. To study
this problem in more detail, the small-signal stability analysis model of the system shown in Figure 3
is built and the eigenvalue analysis method is used to do some analysis quantitatively in this section.

3.1. Modeling of RES Power Plant Controlled by VSG

The mathematical model of VSG can be derived as Equation (1) from the control diagram shown
in Figure 2. When the time delay of pulse-width modulation (PWM) is neglected, the midpoint voltage
of the inverter is approximately equal to the modulation wave. Therefore, the rms value of midpoint
voltage is E, which is determined by the reactive power loop of VSG. The phase relationship between
midpoint voltage and the voltage of PCC is shown in Figure 5, where the phase difference is δVSG.
The interface equations between VSG and power system is derived as Equation (22) according to
Figures 3 and 5: 

Ipx + jIpy =

(
Ex + jEy

)
−
(
Upccx + jUpccy

)
jXs

,

Ex = E cos
(
δVSG + δpcc

)
,

Ey = E sin
(
δVSG + δpcc

)
,

δpcc = arctan(Upccy/Upccx),

(22)

where Ip is the injected grid current of VSG; and δpcc is the leading angle of bus 2 relative to infinite bus.
All the variables subscripted with x or y denote the components of corresponding physical quantity in
the xy frame.

y

Upcc

δVSG

x

E

δpcc

Upccx

Upccy

Ey

Ex

Figure 5. The phase relationships between E and Upcc.

3.2. Modeling of Synchronous Generator

In order to take into account the dynamics of the excitation system and the salient pole effect of
the generator, third-order utility models of synchronous generators and first-order excitation systems
are adopted to make the small-signal stability analysis. The mathematical model is shown as

dδSG

dt
= (ωSG − 1)ω0

TJ
dωSG

dt
= Pm − Pe − D (ωSG − 1) ,

T′d0
dE′q

dt
= Ef − E′q −

(
xd − x′d

)
Id,

Ta
dEf
dt

= (USG_ref −USG)Ka − Ef,

Pe = E′q Iq −
(
x′d − xq

)
Id Iq,

USGd = xq Iq − ra Id,

USGq = E′q − x′d Id − ra Iq,

(23)
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where δSG is the power angle; ωSG is the angular speed; ω0 is the rated angular speed; TJ is the inertia
time constant; Pm is the mechanical power of prime mover; Pe is the electromagnetic power; D is
the constant damping coefficient; T′d0 is the direct-axis transient open-circuit time constant; E′q is
quadrature-axis transient electromotive force; Ef is excitation electromotive force; xd and x′d are the
direct-axis synchronous reactance and transient reactance; xq is the quadrature-axis synchronous
reactance; Id and Iq are the direct-axis current and quadrature-axis current; USGd and USGq are the
direct-axis terminal voltage and quadrature-axis terminal voltage. ra is the stator resistance; Ta and Ka

are the time constant and gain of automatic voltage regulator (AVR); USG_ref and USG are the reference
and actual value of terminal voltage.

The coordinates transform relationship between dq synchronous rotating frame and xy stationary
frame is expressed in Equation (24), where f denotes electrical variables in the synchronous generator,
which can be current, voltage or magnetic linkage, etc.:{

fx = fd sin δSG + fq cos δSG,

fy = − fd cos δSG + fq sin δSG.
(24)

3.3. Modeling of Transmission Lines

According to the topology shown in Figure 3, the following constraint equations can be obtained:

Ix + jIy =

(
USGx + jUSGy

)
−
(
Upx + jUpy

)
r1 + jx1

,

Ipx + jIpy =

(
Upccx + jUpccy

)
−
(
Upx + jUpy

)
r3 + jx3

,(
Upx + jUpy

)
−U

r2 + jx2
=

(
USGx + jUSGy

)
−
(
Upx + jUpy

)
r1 + jx1

+

(
Upccx + jUpccy

)
−
(
Upx + jUpy

)
r3 + jx3

,

(25)

where I is the injected grid current of the synchronous generator; USG is the terminal voltage of
generator; r1 + jx1, r2 + jx2 and r3 + jx3 are the impedance of the transmission lines. All the variables
subscripted with x or y denote the components of corresponding physical quantity in the xy frame.

The mathematical model of each part shown in Figure 3 is proposed above. Without being
otherwise specified, all of the variables are per unit value. The mathematical model of the whole
system can be expressed in the form of differential-algebraic equations as follows:{

ẋ = f (x, y),
0 = g(x, y),

(26)

where x = (δSG, ωSG, E′q, Ef, δVSG, ωVSG, E) are the state variables; y = (Id, Iq, USGd, USGq, Ipx, Ipy, Upccx,
Upccy, Upx, Upy) are the algebraic variables. Based on the modeling method of the small-signal stability
analysis, linearize the differential-algebraic equations at steady-state operating point and eliminate the
algebraic variables. Then, the linear state equation of the whole system is derived as Equation (27).
The damping ratio and transient process of the system can be analyzed by calculating the eigenvalues:

∆ẋ =

[
∂ f
∂x
− ∂ f

∂y
(

∂g
∂y

)
−1 ∂g

∂x

]
∆x = A∆x. (27)

3.4. Eigenvalue Analysis

In this section, the eigenvalues of the system are quantitatively analyzed with specific parameters
to discuss the influence of control parameters of VSG on the damping characteristics. Electrical
parameters of the synchronous generator and RES power plants are listed in Tables 1 and 2.
The voltage rating of the transmission lines is 220 kV, and their equivalent impedances are all chosen
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as (7.875 + 40.5i) Ω. The RES power plant uses 10 kV collecting power lines, which connect to the grid
through a set-up transformer. The base power of the system is 100 MW, and the base frequency is
50 Hz. Virtual damping coefficient Dp is chosen as 10,000 (thus, D∗p = 9.8696), while voltage droop
coefficient Dq is chosen as 24,500 (D∗q = 2.0). It means that the torque (active power) changes by 100%
of nominal power when frequency change 1 Hz, and the reactive power change by 100% of nominal
power when grid voltage change is 10% of nominal voltage. Virtual inertia coefficient J and integral
coefficient K are chosen as 100 and 550 in accordance with the time constant of active power and
reactive power loop [9,29]. Thus, TJVSG and TK can be calculated as 0.1 and 0.045, respectively.

Table 1. Electrical parameters of the synchronous generator (AVR: automatic voltage regulator.)

Parameters Values Parameters Values

Nominal power (MVA) 100 Nominal voltage (kV) 13.8
Mechanical power (p.u) 0.8 D-axis synchronous reactance (p.u) 1.305
Inertia time constant (s) 7.4 Q-axis synchronous reactance (p.u) 0.474

D-axis transient time constant (s) 4.4529 D-axis transient reactance (p.u) 0.296
Damping coefficient (p.u) 2.6 Stator resistance (p.u) 2.8544× 10−3

Proportional coefficient of AVR (p.u) 200 Time constant of AVR (s) 0.001
Reference Voltage of AVR (p.u) 1

Table 2. Electrical parameters of the RES power plant.

Parameters Values Parameters Values

DC voltage (kV) 20 Switching frequency (kHz) 20
Nominal AC voltage (kV) 10 Equivalent inductance at AC side (mH) 7

Reference of active power (MW) 20 Reference of reactive power (Mvar) 0

Firstly, the influence of virtual damping coefficient D∗p on the damping characteristic is analyzed.
The root locus plot is shown in Figure 6a as D∗p increases from 0 to infinity. Although several
eigenvalues exist for the total system, only the dominant one associated with oscillation is shown.
In addition, only the upper half of the s-plane is shown, as the lower half is a mirror image of the upper
half. It is shown in Figure 6a that the eigenvalue moves gradually to the left with the increase of D∗p,
which means that the damping ratio of the system is increasing. This influence law of D∗p is consistent
with theoretical analysis made in Section 2.2. The intuitive explanation of this phenomenon is that D∗p
can affect the output active power of VSG, and the change direction of output active power is opposite
to that of rotor angle. Specifically, when there is surplus active power and the rotor accelerates more
than the synchronous speed, the increase of power system frequency will reduce the output active
power of VSG, which alleviates the power oscillation to some extent. Figure 6b shows the trend of the
damping ratio with the increase of D∗p. As the change of the real part of the eigenvalue is significant at
the initial stage, the damping ratio of the system increases very quickly. After D∗p reaches a certain
value (about 100), the real part of eigenvalue changes slightly and gets close to the adjacent zero.
Obviously, the damping ratio is maximized (about 0.01439) when D∗p is infinite, which is also the
damping ratio corresponding to the zero point.

Root locus plot and the trend of damping ratio for different sets of inertia time constant TJVSG are
shown in Figure 7a,b. As observed, the trend of the damping ratio is non-monotonic. The real part of
the eigenvalue first increases and the system damping ratio decreases. When TJVSG increases to about
1.5, continuing to increase TJVSG will enhance the damping ratio. Finally, the eigenvalue will reach
the adjacent zero, where the damping ratio is the largest, about 0.01439. Compared with the analysis
of Equation (21), it can be found that the theoretical analysis is only consistent with the result of the
eigenvalue calculation before TJVSG reaches the inflection point. Because the theoretical analysis uses
the simplified second-order model of the synchronous generator, and many influencing factors are
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neglected and linearized, the damping ratio enhances with the increase of TJVSG after the inflection
point is not reflected in the theoretical analysis.

Figures 8 and 9 show the influence of the voltage droop coefficient D∗q and the time constant
of reactive power loop TK on the damping characteristics of the system respectively. It is shown in
Figure 8a that the real part of the eigenvalue is decreased with the increase of D∗q on a large scale. Only
when the eigenvalue is close to the zero point, the real part of eigenvalue increases slightly, which
has fewer impacts on the damping ratio. Thus, the trend of the damping ratio with the change of D∗q
shown in Figure 8b is almost monotonic. Finally, the influence of TK on the damping ratio of the system
is analyzed. Similar to TJVSG, the trend of damping ratio with the change of TK is also non-monotonic.
As can be seen from Figure 9, increasing TK causes the eigenvalues to move to the left, which will
enhance the damping ratio. After TK reaches the inflection point (about 0.045), the eigenvalue moves
slowly to the zero and the damping ratio decreases from the maximum (about 0.01428) to the minimum
(about 0.0138).
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Figure 6. The influence of D∗p on the damping characteristics: (a) root locus plot; (b) trend chart of
damping ratio.
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Figure 7. The influence of TJVSG on the damping characteristics: (a) root locus plot; (b) trend chart of
damping ratio.
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Figure 8. The influence of D∗q on the damping characteristics: (a) root locus plot; (b) trend chart of
damping ratio.
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Figure 9. The influence of TK on the damping characteristics: (a) root locus plot; (b) trend chart of
damping ratio.

In summary, integrating an RES power plant controlled by VSG into a power system has some
impacts on the damping characteristics. Adjusting the control parameters of VSG can regulate the
system damping ratio. However, the effect of each parameter on the damping ratio is limited and
slight. Among them, the greatest impact on the damping ratio is only 0.0018, which has a neglectable
impact on actual system operation.

4. Auxiliary Damping Controller for VSG

The control parameters of VSG have slight impacts on the system damping ratio. Furthermore,
each control parameter should be designed in accordance with the grid code, converter capacity and
stability of the control system etc, which is usually no longer changed under normal operation (or
only changed within a limited range). Therefore, it is difficult for VSG itself to provide additional
damping to the power system. In order to further improve the ability of oscillation damping of VSG, it
is necessary to design the auxiliary damping controller (ADC).

Inspired by the theoretical analysis that the output active power of VSG can provide positive
damping torque in Section 2.2, if the speed signal of the synchronous generator (or other signals
associated with the speed) can be added in the active power loop of VSG and the output active
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power of VSG is reversed from the speed signal, then VSG can provide positive damping torque for
the system.

Figure 10 shows the control diagram of VSG with the ADC. The configuration of ADC is very
similar to traditional PSS, which consists of three main parts. Among them, the controller gain KADC
can adjust the amplitude of additional damping; washout component filters the DC signal and ensures
no side effects of the ADC on VSG when the system works steadily; lead/lag components compensate
the phase difference caused by control, measurement, etc. and ensure that the output active power
of VSG can provide a positive damping torque to the grid. The input signal of ADC is chosen as
the variation of generator speed, which can also be chosen as the variation of electromagnetic power
or some signals associated with the speed. Generally, the synchronous generator may not work in
parallel with an RES power plant, so the implementation of ADC needs the deployment of a wide
area measurement system (WAMS) [3]. The input signals of ADC are measured by the sensors and
phasor measurement units (PMUs) located at the synchronous generators. Then, the signals are sent to
the damping controller through dedicated communication links. The ADC calculates and discretizes
modulation signals to actuate the VSG. For a more complex system, a data concentrator may need to
collect the signals from the sensors and distribute these to the actuators [30,31]. Time delay varying
from a few milliseconds to several hundreds of milliseconds exists during real application mainly due
to communication and measurement [3,31]. The performance of ADC and the stability of the control
system may be affected because of the time delay. Therefore, the algorithm of time delay compensation
has to be considered in practical applications [31–33].
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Figure 10. Control diagram of VSG with the ADC.

As the configuration and purpose of the ADC are basically consistent with the PSS, the parameters
design can also refer to the existing experience of PSS. The phase compensation method is used in this
paper to determine the parameters of ADC. Because the active power loop and the reactive power loop
are approximately decoupled [29], and the output signal of ADC only affects the active power loop, it
is feasible to only analyze the active power loop. The mathematical model of the active power loop
contained with ADC can be expressed as

TJVSG
dω∗VSG

dt
= P∗ref − P∗VSG − D∗p (ω

∗
VSG − 1)− K∗ADCGADC(s) (ω∗SG − 1) , (28)

where K∗ADC = (KADCω2
0)/SB is the p.u value of gain; GADC(s) is the transfer function of washout and

lead/lag component; ω∗SG is the p.u value of generator speed. The definition of other variables is the
same as above.
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According to the small-signal model of Equation (28), the transfer function of the active power
loop contained with ADC is shown in Figure 11. As the theoretical analysis made in Section 2.2, the
positive damping torque provided by VSG is the strongest when the phase difference between ∆PVSG
and ∆ωSG is 180◦, which means the lead/lag components need to compensate for the phase delay of
the active power loop of VSG.
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∆PVSG

* 

-∆ωSG
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1+αTs
∆TADC

*

GVSG(s)

KADC
*

1+Twashs

Twashs

Figure 11. Transfer function of active power loop with ADC.

There is only one dominant electromechanical oscillation mode in the system shown in Figure 3.
The damped natural oscillation frequency of this mode can be calculated approximately by the
second-order rotor motion equation as

ωd =

√
4TJK− D2

2TJ
, (29)

where K = ∂Pe/∂δ ≈ ESG0U cos δSG0/xΣ, ESG0U cos δSG0 can be obtained from the steady-state values
of power flow calculation, or be approximated as ESG0U cos δSG0 ≈ 1; xΣ = xΣ1 + xΣ2 + x′d is the
sum of impedances from the generator to the infinite bus. TJ is the inertia time constant; D is the
damping coefficient. Substituting relevant parameters and let ESG0U cos δSG0 ≈ 1, the damped natural
oscillation frequency can be obtained as ωd = 3π, which basically corresponds to the eigenvalue
analysis in Section 3.4.

The transfer function of the active power loop is:

GVSG(s) =
∆P∗VSG
∆T∗ADC

=
ω0E∗U∗pcc

TJVSGX∗s s2 + D∗pX∗s s + ω0E∗U∗pcc
=

100π

0.217s2 + 21.7s + 100π
. (30)

The frequency characteristic of Equation (30) at the damped natural oscillation frequency is

GVSG(jωd) = 0.875376 6 − 34.75◦. (31)

In order to filter the DC signals and pass through all the signals with damped natural oscillation
frequency, the time constant of the washout component should satisfy the requirements of ωdTwash � 1.
Normally, Twash can be selected from 3 to 10, while we chose Twash = 5 here. The frequency
characteristic of the washout component at the damped natural oscillation frequency can be written as

Gwash(jωd) =
5s

1 + 5s

∣∣∣∣
s=jωd

= 0.99977 6 1.216◦. (32)

When the sum of phase angles of lead/lag component and washout component is equal to the
phase delay caused by the active power loop of VSG, the output active power ∆PVSG can provide
maximum damping torque to the system. Therefore, the lead/lag component is designed as a lead
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component and the lead angle is chosen as 33.5◦. Because the maximum angle correction of one lead
component is 30∼40◦, only one lead component is chosen here. The time constant of lead component
is chosen as 0.05, which should be selected from 0.05 to 0.1 typically. Then, according to Equation (33),
the variables α of lead component can be calculated as α = 3.49:

ϕc(ω) = arctan αTω− arctan Tω = arctan
(α− 1)Tω

1 + αT2ω2 . (33)

Finally, the gain of ADC is designed in accordance with the desired damping ratio of the system,
which can be expressed as

K∗ADC =
2ξTJωd∣∣∣ Twashs

1+Twashs

∣∣∣ ∣∣∣ 1+αTs
1+Ts

∣∣∣ |GVSG(s)| k1
k1+k2

, (34)

where ξ is the desired damping ratio. Normally, it satisfies ξ > (0.1 ∼ 0.3). The first three items in
the denominator are the amplitude of washout component, lead component and transfer function
of active power loop at damped natural frequency, respectively; the last item in the denominator is
the proportional relationship between the output active power and the damping torque shown in
Equation (16). According to Equation (34), when the ξ is equal to 0.1, the gain K∗ADC can be calculated
as 18.29.

At this point, the parameters of the ADC are all designed. In order to verify the effectiveness of
the controller and parameter design, eigenvalue analysis of the system integrated with ADC is made
under the same circumstances and parameter settings. As shown in Figure 12, the initial dominant
poles is (−0.118 ± 8.262i) and the damping ratio is 0.01428 without ADC. After adopting the ADC and
the K∗ADC is chosen as 18.29, the dominant poles move to (−0.258 ± 8.147i), where the damping ratio
increases to 0.03164. It can be found that the actual damping ratio is not consistent with the desired one
(ξ = 0.1), which is the inherent drawback of the phase compensation method to design the gain. Due to
the simplicity and approximation in the process of design, the designed system may not meet the
requirements completely and accurately. However, this method can be used to provide a reasonable
initial value for the parameters. Then, parameter modification can be accomplished according to the
results of eigenvalue analysis, time-domain simulation or field test [2]. Continuing to increase the
gain to 100, the dominant poles move further to the left to (−0.761 ± 7.556i), and the damping ratio
increases to 0.1.
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5. Simulation Results

The single-machine infinite bus system integrated with the RES power plant shown in Figure 3 is
modeled in Matlab/Simulink (R2013a, The MathWorks, Inc. Natick, MA, USA) to verify the validity of
the theoretical analysis and the proposed ADC. The key parameters are the same as that used in the
eigenvalue analysis, which are listed in Tables 1 and 2. The system initially operates in a steady state.
A three-phase ground fault occurs at bus 3 when t = 1 s. After the fault lasts for 0.1 s, the system is
back to normal again after a transient process.

5.1. Dynamic Response for Different Sets of Control Parameters

Firstly, the influence of control parameters of VSG on the damping characteristics, which is
analyzed in Section 3.4, is analyzed and verified. The dynamic response of generator speed is shown
in Figure 13a. Due to the lack of damping, the synchronous generator has experienced an obvious
oscillation process after the ground fault. To improve the system damping, increasing the virtual
damping coefficient D∗p to 19.74 and 39.48, respectively (other parameters remain unchanged), the
other two sets of oscillation curves can be obtained. As observed, the amplitude of the rotor oscillation
is reduced and the system damping ratio is improved after the increase of D∗p. Similarly, the decrease
of D∗p will weaken the system damping.

Figure 13b depicts the oscillation curves of generator speed for different sets of inertia time
constant TJVSG. Considering that the influence of TJVSG on the system damping ratio is non-monotonic,
the parameters are chosen on both sides of the inflection point. The amplitude of oscillation is increased
when TJVSG is set to 1. However, when TJVSG is greater than the inflection point, continuing to increase
TJVSG can enhance the damping ratio.
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The influence rules of voltage droop coefficient D∗q and time constant of reactive power loop TK
are verified in Figure 13c,d. The simulation results under different sets of parameters can all correspond
to the theoretical analysis. However, by observing all of the simulation results, it can be found out that
adjusting the parameters of VSG truly has slight impacts on the damping ratio. It may be not practical
to provide additional damping torque to the power system only depending on the VSG.

5.2. Dynamic Response with Proposed ADC

Based on the controller proposed in Section 4, some simulations are also performed to verify its
effectiveness. The parameters of ADC are selected in accordance with the results of parameter design,
and other parameters and circumstances remain unchanged. The dynamic response of generator speed
before and after integration with the ADC is shown in Figure 14. It can be observed that the amplitude
of oscillation is reduced and the transient period is shortened significantly. The greater the gain of
K∗ADC is, the stronger the damping torque that can be provided by the ADC. However, it should be
noted that excessive gain will deteriorate the dynamic response and even cause the control system to
be unstable, and the stability boundary of the parameters of ADC for different systems can be obtained
by the root locus or time domain simulation. The relationship between output active power of VSG
and generator speed is shown in Figure 15. The phase of these two signals is approximately opposite
from each other, which means that ∆PVSG can provide a positive damping torque to the system and
contribute to the suppression of rotor oscillation.
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6. Conclusions

Large-scale renewable energy sources integrated by power electronic devices have impacts on
the damping characteristics and threaten the stable operation of the power system. In this paper,
the influence of an RES power plant controlled by VSG strategy on the damping characteristics is
studied by theoretical analysis and eigenvalue calculation. Based on the results of theoretical analysis
and the structure of traditional PSS, an auxiliary damping controller is proposed to provide a positive
damping torque to the system. There are three main conclusions that can be drawn:

(1) Due to the existence of a virtual damping coefficient, the integration of VSG can improve the
equivalent damping of the power system. In addition, when the variation of output active power
of VSG is 90∼270◦ ahead of the variation of generator speed, VSG can provide a positive damping
torque to the synchronous generator.

(2) The influence rules of the virtual damping coefficient and voltage droop coefficient on the
damping ratio are almost monotonic, while the influence rules of inertia time constant and time
constant of reactive power loop on the damping ratio are non-monotonic. However, all of these
parameters only have slight impacts on the system damping ratio. It is not practical to provide
additional damping torque to the power system only by adjusting the control parameters of VSG.

(3) Similarly to traditional PSS, the input signal of ADC can be chosen as the variation of generator
speed, the variation of electromagnetic power or some signals associated with the speed.
When the input signal is the variation of generator speed, ADC should compensate the phase
delay caused by the active power loop of VSG to obtain the greatest damping torque.

This paper only analyzes the influence of VSG on the system damping characteristics in the
single-machine infinite bus system. The influence of VSG and the generality of the conclusions
in multi-machine power systems need further study. The dynamics of RES generation need to be
considered when analyzing the impacts of VSG on the system damping characteristics. Furthermore,
an optimization method for the parameter design of ADC will be researched in future work.
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Appendix A

The derivation of VSG model presented in Equation (1) is demonstrated as follows.
According to the control diagram shown in Figure 2, the mathematical model of VSG in a real

unit system can be derived as:

dθVSG

dt
= ωVSG, (A1)

J
dωVSG

dt
= Tref − TVSG − Dp (ωVSG −ω0) , (A2)

K
d
(√

2E
)

dt
= Qref −Qe −

√
2Dq

(
Upcc −Un

)
, (A3)

Pref = TrefωVSG, PVSG = TVSGωVSG, (A4)

where θVSG is the phase angle of internal potential; ωVSG is the virtual angular speed; J is the virtual
inertia coefficient; Tref is the reference of input torque; TVSG is the output electromagnetic torque; Dp is
the virtual damping coefficient; K is the integral coefficient; E is the rms value of internal potential;
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Upcc is the rms value of phase voltage of the PCC and Un is the rated rms value of phase voltage; Qref
is the reference of reactive power; Qe is the output reactive power; Dq is the voltage droop coefficient;
Pref is the reference of active power; PVSG is the output active power.

The phase difference between the internal potential and the voltage of PCC can be calculated as

dδVSG

dt
= ωVSG −ω0 = (ω∗VSG − 1)ω0, (A5)

where δVSG is the phase difference between the internal potential and the voltage of PCC; ω0 is the
rated angular speed of grid. In most cases, the angular speed of PCC ωpcc is equal to ω0. Small
deviation only exists in the transient state. Therefore, we approximately assume that ωpcc is equal
to ω0.

Dividing both sides of (A2) by the TB = SB/ω0, where TB is the base value of torque and SB is the
base power of the system, Equation (A2) can be rewritten as

TJVSG
dω∗VSG

dt
= T∗ref − T∗VSG − D∗p (ω

∗
VSG − 1) , (A6)

where TJVSG = (Jω2
0)/SB is the inertia time constant; D∗p = (Dpω2

0)/SB is the p.u value of virtual
damping coefficient. Other variables have been defined above and all the variables superscripted with
* denote the p.u value of corresponding one.

Similarly, dividing both sides of (A3) by the base power SB, Equation (A3) can be rewritten as:

TK
dE∗

dt
= Q∗ref −Q∗e − D∗q

(
U∗pcc − 1

)
, (A7)

where TK = (
√

2UBK)/SB is the time constant of reactive power loop of VSG; D∗q = (
√

2UBDq)/SB is
the p.u value of voltage droop coefficient.

Because the deviation between ωVSG and ω0 is very small during normal operation, Equation (A4)
can be written approximately as

Pref = Trefω0, PVSG = TVSGω0. (A8)

Dividing both sides of Equation (A8) by SB = TBω0, one can obtain P∗ref = T∗ref and P∗VSG = T∗VSG.
Equation (A6) can also be expressed as

TJVSG
dω∗VSG

dt
= P∗ref − P∗VSG − D∗p (ω

∗
VSG − 1) . (A9)

In addition, when the active power loss of the filter circuit is neglected, the output active power
and reactive power from the inverter to the PCC can be calculated as

P∗VSG =
E∗U∗pcc

X∗s
sin δVSG,

Q∗e =

(
E∗ −U∗pcc cos δVSG

)
E∗

X∗s
,

(A10)

where the Xs is the impedance of filter reactor.
Finally, the mathematical model of VSG in a p.u system includes Equations (A5), (A7), (A9)

and (A10).
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