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Abstract: Today’s buildings are responsible for about 40% of total energy consumption and 30–40%
of carbon emissions, which are key concerns for the sustainable development of any society.
The excessive usage of grid energy raises sustainability issues in the face of global changes, such as
climate change, population, economic growths, etc. Traditionally, the power systems that deliver
this commodity are fuel operated and lead towards high carbon emissions and global warming.
To overcome these issues, the recent concept of the nearly zero energy building (nZEB) has attracted
numerous researchers and industry for the construction and management of the new generation
buildings. In this regard, this paper proposes various demand side management (DSM) programs
using the genetic algorithm (GA), teaching learning-based optimization (TLBO), the enhanced
differential evolution (EDE) algorithm and the proposed enhanced differential teaching learning
algorithm (EDTLA) to manage energy and comfort, while taking the human preferences into
consideration. Power consumption patterns of shiftable home appliances are modified in response
to the real-time price signal in order to get monetary benefits. To further improve the cost and user
discomfort objectives along with reduced carbon emission, renewable energy sources (RESs) are
also integrated into the microgrid (MG). The proposed model is implemented in a smart residential
complex of multiple homes under a real-time pricing environment. We figure out two feasible regions:
one for electricity cost and the other for user discomfort. The proposed model aims to deal with the
stochastic nature of RESs while introducing the battery storage system (BSS). The main objectives of
this paper include: (1) integration of RESs; (2) minimization of the electricity bill (cost) and discomfort;
and (3) minimizing the peak to average ratio (PAR) and carbon emission. Additionally, we also
analyze the tradeoff between two conflicting objectives, like electricity cost and user discomfort.
Simulation results validate both the implemented and proposed techniques.

Keywords: microgrid (MG); renewable energy sources (RESs); demand side management (DSM);
heuristic techniques; planning and scheduling; storage system; zero energy buildings
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1. Introduction

According to the European commission’s report [1], buildings consume about 40% of overall
energy and are responsible for 30–40% of carbon emissions. As energy, water, land and other resources
are required for the construction, maintenance, control and demolition of all buildings [2,3], so the
carbon emissions and wastes due to building construction and maintenance cannot be neglected.
Due to all of these reasons, scientist and researchers began to start using passive techniques for
building construction and active techniques for control and management while taking into account
human needs regarding comfort and green environment.

In addition, the European “Energy Performance of Buildings Directive (EPBD)” released in 2010
and “Energy Efficiency Directive (EED)” released in 2012 led the member countries of the European
Union to readjust their legislation regarding building energy management for sustainable development
of society. According to this, from the year 2019, all new buildings will be nearly zero energy buildings
(nZEBs), and by the end of year 2020, all buildings will have to maintain nZEB [4,5]; where the
term zero energy building (ZEB) is defined as: “an energy efficient buildings where annual energy
delivered to home/residential sector is less than or equal to the total energy generation from on-side or
standalone renewable energy sources (RESs)” [6]. However, the concept of ZEB can be characterized
as: (i) grid-connected ZEB; and (ii) stand-alone or autonomous ZEBs. The stand-alone ZEBs are further
separated into three categories [7]; Figure 1.

1. nZEB: a ZEB connected to grid having a nearly zero energy balance. This means that the energy
consumption in any building or sector is slightly greater than the total renewable energy.

2. net zero energy building (NZEB): a ZEB connected to grid having zero energy balance. The total
energy consumption and generation are almost equal.

3. positive energy building (PEB): has a positive energy balance. The energy consumption in PEB
is less than the energy generation from renewable sources where surplus energy is sold back to
the grid.

Energy 
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Figure 1. Graphical representation of nearly zero energy building (nZEB) balance concept.

In traditional energy generation systems, fossil fuels dominate as the power generation sources
and are responsible for greenhouse gas (GHG) emissions. The challenge is not only to reduce GHG
emissions, but also to increase electricity generation in view of socio-economic aspects of generation.
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RESs are considered as future replacement with zero carbon emission and low price electricity
producers. RESs are intermittent, uncertain and random in nature; they do not produce a fixed
amount of energy and are heavily dependent on weather, season and area. Integration of advanced
information and communication technology (ICT) into the traditional power grid forms the smart
grid (SG) [8].

An emerging type of distributed generation network called the microgrid (MG) is perceived as
a medium voltage or low voltage power system with small distributed generation, few controllable
distributed loads and on-site energy storage. One of the key underpinnings of MG, which allows it to
dominate traditional grids, is the usage of RESs at the consumer level. Improvisation of the power grid
has led to many challenges and issues, e.g., protection, selectivity, security, adaptability, scalability,
reliability and many more [9]. Hybrid RESs with a battery storage system (BSS) are intensively
discussed in the literature and, therefore, are widely accepted in order to cater to the uncertainty of
RESs. Two major parties are involved in the operation of MG, i.e., consumers and the utility. Demand
side management (DSM) offers demand response (DR) programs to the residential consumers in order
to change daily electricity usage pattern in response to some incentives. These incentives are usually
monetary rebates.

Major objectives of SG include reduced electricity bill, reduced peak to average ratio (PAR),
maximized user comfort and balanced power consumption [10]. In [11], the authors use integer linear
programming (ILP) to reduce the daily electricity bill of residential consumers. An approximate
dynamic programming (DP) is used in [12] to reduce the electricity burden and PAR on the main
power grid. An energy sale mechanism among different MGs is proposed using the game theoretic
approach. A particle swarm optimization (PSO)-based DR program is discussed in [13] to curtail
PAR and minimize daily consumption cost in the presence of RESs. In [14], two heuristic techniques,
i.e., teaching learning-based optimization (TLBO) and the differential evolution (DE) algorithm are
used to reduce cost and increase the comfort level of users.

In this paper, we design an energy management model (EMM) in nZEB using genetic algorithm
(GA), TLBO, enhanced differential evolution (EDE) and our novel proposed EDTLA. Our main focus
is RE integration and local distributed energy resources (DERs) scheduling in order to meet electricity
and heat demands while reducing carbon emissions. We also compute the feasible regions for cost
and user discomfort. A tradeoff between cost and comfort is also shown under the four different
techniques. For this study, the time interval and time slot are used interchangeably. Similarly, electrical
loads and electric tasks can be referred to as home appliances.

The remainder of the paper is organized as follows. Section 2 is comprised of recent related work.
The problem description is provided in Section 3. Section 4 depicts the detailed description of the
proposed model. The heuristic techniques are described in Section 5. The linear optimizations model
is discussed in Section 6. Simulation findings and results are inscribed in Section 7. Lastly, in Section 8,
concluding remarks are presented followed by the future work.

2. Related Work

In order to optimally schedule home tasks and DERs in residential MG, several methods have
been proposed in the literatures [9–30]. Some of the recent approaches are discussed hereunder.

The analysis and sizing of RE in coordination with BSS is discussed in [15], and a hybrid model is
proposed using mixed ILP (MILP). One year of available weather data is used to predict the weather
profile of the next three years and then is used to figure out the optimal size of the wind turbine (WT),
photovoltaic (PV) and thermal load profile for the residential building. The authors maximize the use
of RE and reduce the burden of high power demand at the grid.

In [16], the authors present a complete nZEB framework and propose various methods regarding
the implementation point of view. In another work [4], the authors implement an NZEB concept and
propose a fuzzy logic-based energy management system for lighting, shading and HVAC systems. The
authors implement various configurations, while taking into consideration walls, window geometry
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and glass properties. Regarding implementation, it was found that for a given amount of solar
radiation, each room requires a diversified management system to maintain balance between comfort
and energy management. A GUI-based energy and comfort management system for ZEB is proposed
in [7]. A multiagent system is used to control distributed loads, while a particle swarm optimization
algorithm is used to manage comfort and energy in the residential sector.

An active controller is proposed in [13] to optimally integrate the heating and cooling system
in MG. The research improves the reliability of MG and minimizes the cost of MG, the size of RE
resources and imported energy from the grid. The main purpose of this study is to minimize peak
load and consumption cost.

In [17], the authors propose an SG equipped with 100% RESs to satisfy electricity and heating
demands. BSS is used to deal with the fluctuating behavior of RESs. Combined heat and power (CHP)
plants and district heating and cooling systems are introduced, which are responsible for providing
heating and cooling loads to the households and other commercial buildings.

A cooperative interaction between the AD system (ADS) connected to multiple grids and the
energy system is formulated in [18], and a dynamic energy management strategy is proposed. The
first interaction is between MG and ADNs, whereas, the other is among different MGs. The authors
propose a dynamic energy management technique for cooperation between MG and ADSs that caters
to the influences of the high penetration of RESs. The work in [19] considered real-time energy storage
management to increase the RE share in MG. The authors use an off-line algorithm for optimization
and proposed a novel sliding window-based on-line algorithm. The main objectives of the research are
to minimize the cost of power purchased from the grid and to maximize the penetration of RESs in
MG. The cost function is formulated by the strictly convex function and solved using DP.

In [20], the joint operation of energy storage and load scheduling with RESs is considered in the
residential domain. Electricity demand, starting times of appliances, the length of operation times of
appliances and RE generation are considered as random and stochastic. The stochastic nature of the
problem is solved by modifying the Lyapunov optimization technique. Regarding ZEB, an nZEB can
be achieved by integrating RESs, such as solar and wind. In [21], the authors consider Vietnam, where
solar energy is infrequently used in residential sectors. To promote energy management along with the
integration of solar energy, a solar panel of 15-kW capacity is installed in the rooftop to compensate
energy demand. However, prior to the installation of the solar panels, it is required to estimate the
energy obtained from these panels. For this purpose, the PVSYST simulation tool has been used.

A home energy management system (HEMS) is proposed in [22,23], using different heuristic
techniques. GA, BPSO and ACO are used to design a HEMS scheduler, which optimally schedules
home appliances under large-scale penetration of RESs. The main objectives are to reduce the daily
electricity bill and PAR.

In [11], an energy control system is proposed in a smart home of the residential domain. Different
types of appliances are scheduled according to the given time frame. The optimization problem is
solved using LP. The major objective is to reduce the electricity bill. A tradeoff between cost and
discomfort is also analyzed using the Taguchi loss function.

Day-ahead scheduling of all resources for optimal operation of MG is proposed in [24]. The
authors claim that one-day-ahead scheduling can avoid vulnerabilities and ensures the consistent
operation of MG. An agent-based modeling (ABM) technique is used where each agent acts as a bus
and provides information about losses and other attacks.

The participation of different DSM strategies in HEMS is analyzed in [25]. The major focus of
this paper is to develop HEMS and DSM systems in order to reduce the electricity bill and maximize
RE usage. The use of different incentive-based algorithmic techniques in DSM is analyzed, and their
impact is elaborated.

The load scheduling and power trading problems in the residential area of MG with a large
share of RE are discussed in [12]. An approximate DP is used for appliance scheduling, and a game
theoretic approach is used for power trading among different users. All users, having excess generation,
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participate in a gamble, and the first winner is prioritized to sell excess generation first. In this way,
every user reduces power usage and tries to sell maximum energy, which generates revenue and
lowers the electricity bill.

In [26], electric vehicles (EVs) are integrated with MG in the presence of RESs. The major focus is
to reduce power losses and improve the stability of MG under the large-scale integration of EVs. The
DE algorithm is used to solve the multi-objective nature of the problem.

In [27], the authors use the real time pricing (RTP) signal in DSM programs to reduce the daily
electricity bill and PAR. A new load scheduling learning (LSL) algorithm is proposed, which schedules
appliances after learning from a series of actions. The change in load scheduling, power demand and
pricing signal are modeled as a Markov decision process, and their information is stored with respect
to each time slot.

An MG is formed with local DERs in which heat and electricity demand is provided to consumers
in [28]. The former is provided by local generators like the CHP and boiler, whereas the latter is
provided by WT, PV generation and energy import from the main grid. The authors aim at reducing
the electricity expense and carbon emissions.

3. Problem Description

In SG, electricity bill minimization, power consumption minimization, PAR reduction,
user comfort maximization and RESs integration are key challenges. Numerous mathematical
and heuristic-based strategies have been proposed to deal with these optimization problems.
Predominantly, user comfort is ignored to minimize the inevitably growing electricity bill problem.
Existing DSM techniques target the electricity bill reduction while neglecting either PAR or the user
comfort level. The randomness of the power usage pattern affects the optimal energy consumption
schedule and user cost minimization at the consumer level. The authors in [28] proposed an
MILP-based energy consumption model to reduce electricity consumption cost and GHG emissions.
However, integration of RESs, PAR and user comfort are not tackled in the proposed model.
However, Ref. [11] considered the electricity bill minimization along with user comfort maximization.
The authors use ILP to solve the convex nature of the optimization problem, and a tradeoff between
cost and discomfort is also computed. Although the scheduling strategy reduces the energy expense,
RESs integration can further decrease the electricity bill, carbon emissions and PAR. Residential load
scheduling and power trading among different homes in the presence of RESs is discussed in [12].
Stochastic optimization is used for the residential scheduling, whereas a game theoretic approach is
adopted for power trading among multiple homes. PAR and user comfort level are not considered,
which are crucial parameters of SG. No proper mechanism is provided for power flow from one user
to another. A GA-based DR program for HEMS is proposed in [31]. The scope is limited to only one
home, and no RESs are incorporated. Furthermore, user comfort level is disturbed. Additionally,
mathematical methods also require long computational time. These proposed techniques are limited
to be applicable on a single home and may not result in the optimal solution when extended to a
large scale.

Therefore, in this paper, several smart homes in a smart residential complex are considered,
as depicted in Figure 2. The building has its own MG as the local energy provider. The smart building
demands electricity and heat, prior to scheduling daily appliances available in each smart home and
later to maintain the inner temperature of the building. DERs are also available in the smart building;
however, some resources only cater to the heat demand, while others deal with electricity demand.
The electricity demand is fulfilled by the energy generated by PV, WT and energy imported from the
main grid. A storage system is incorporated to store energy in order to use later whenever required.
We compute feasible regions, and heuristic techniques are applied to validate that the obtained solution
lies within the bounded region. Additionally, a feasible region of tradeoff between electricity cost and
delay is also obtained to show an equilibrium between cost and discomfort. Three heuristic-based
techniques, i.e., GA, TLBO and EDE, are employed on the aforementioned scenario, and a novel
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EDTLA is proposed in this study to minimize the total electricity cost and PAR. The newly-proposed
EDTLA is a hybrid of EDE and TLBO. TLBO sometimes gets stuck in local minima, so we increase the
diversity of the search by integrating mutation and crossover steps of EDE in TLBO. The procedural
steps of the novel hybrid algorithm are also provided in Algorithm 1. A tradeoff between cost and
user comfort is also analyzed. Moreover, the usage of local DERs contributes to lowering the harmful
carbon emissions. The comprehensive problem can be stated as hereunder:

Provided are: (a) the scheduling time window; (b) the earliest starting and latest finishing time
horizons; (c) the number of loads and respective power rating; (d) the length of the operation time
interval; (e) the total heat demand of smart building; (f) the specifications of DERs; (g) the RTP signal
and natural gas price; (h) the maintenance cost; (i) the minimum charge and maximum discharge
limits; (j) the capacity constraints of thermal and electrical storage; (k) the heat to power ratio.

Figure out: (a) the appliance schedule plan; (b) PAR; (c) the waiting time; (d) the energy generation
plan; (e) the energy storage plan; (f) the power purchased from the grid; (g) the local energy harvesting
and import from the main grid.

So as to find: (a) the optimal consumption pattern; (b) the minimum electricity bill;
(c) meet electricity and heat demand; (d) the reduced PAR and discomfort; (e) economic and
environmentally-friendly generation.

Figure 2. Smart residential complex.

4. System Model

DSM plays a vital role in efficient and reliable operation of SG. Adopting different mechanisms,
DSM benefits the end users and utilities under two major functionalities, i.e., efficient energy
management and control over the end users’ activities. In the residential sector, each home is
equipped with advanced metering infrastructure connected to a central controller in order to ensure
stable and optimized energy consumption decisions under two-way communication between utilities
and consumers. A conceptual diagram of the proposed DSM mechanism is illustrated in Figure 3.
This structure enables users to reduce the electricity bill and the utility to curtail PAR for persistent
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operation of SG. All appliances request the central scheduler to execute the job, and the scheduler
makes the decision about the status of appliances at a particular hour. The scheduler must respect the
scheduling horizon provided earlier by users.

Figure 3. Architecture of the proposed demand side management (DSM).

Our system model is composed of a smart building of 30 homes in an MG scenario. Each home is
equipped with 12 smart appliances, which are to be scheduled within a given time window as shown
in Table 1. All appliances must not start before the earliest starting time and finish respective working
hours prior to finishing the time horizon. An assumption is made that all users are living with same
power consumption habits, and only once a day, an appliance is required to operate. The start and end
times of appliances are assumed to be provided by users, whereas other parametric values are listed in
Table 1 [32]. Figure 2 shows the block diagram of the smart building and local generation sources.

Table 1. Parameters of the appliances.

Task Power (kW) Earliest Starting
Time (h)

Latest Finishing
Time (h)

Time Window
Length (h) Duration (h)

Dish washer 1.5 9 17 8 2
Cloth washer 1.5 9 12 3 1.5

Spin dryer 2.5 13 18 5 1
Cooker hob 3 8 9 0.5 0.5
Cooker oven 5 18 19 0.5 0.5
Microwave 1.7 8 9 0.5 0.5

Lighting 0.84 18 24 6 6
Laptop 0.1 18 24 6 2

Desktop 0.3 18 24 6 3
Cleaner 1.2 9 17 8 0.5
Fridge 0.3 0 24 - 24

Electric car 3.5 18 8 14 3

A time interval of half an hour is considered because the minimum of one hour operation time for
home appliances seems impractical. Some home appliances like the coffee maker and the toaster work
for less than one hour a day. All appliances have constant power consumption rates; however, the
power consumption cost depends on the number of time intervals an appliance runs and the price of
electricity during execution cycle.

In addition to the above, the smart residential building also requires heat demand along with the
ground area of 2500 m2, calculated using CHP sizer Version 2 software (Oak Ridge, TN, USA) [33].
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No electricity from the utility is imported to satisfy the heat demand; instead, the smart building has
local DERs, which are to be scheduled according to the heat demand curve. DERs and their respective
capacities are assumed to be known, which are listed in Table 2 [28]. The operation and maintenance
costs of DERs are based on natural gas and other specifications are:

• a CHP production plant with a 1.2 heat to power ratio.
• a boiler of 120-kW capacity.
• one BSS with charge and discharge efficiencies of 90%.
• a gas connection for the CHP and boiler to run.
• the total payable cost depends on the electricity price, the natural gas price and the operation cost.

Table 2. Technical parameters of distributed energy resources (DERs).

Resource Capacity Efficiency (%) Operation/Maintenance Cost (%)

CHP 20 kW 40 2.7 cents/kWh
Boiler 120 kW 85 2.7 cents/kWh

Storage 10 kWh 90 0.5 cents/kWh

Total electricity demand is satisfied by local generation plus energy imported from the main
power grid. BSS is used to store excess electricity generated from RESs and used later when high
price hours at the grid or no RE is available. Battery charge and discharge levels under all techniques
are shown in Figure 4. RE generation depends on installed capacity, ambient temperature and solar
radiations. The profile for ambient temperature and solar radiation is shown in Figures 5 and 6,
respectively, and obtained from Meteonorm 6.1 software (Oak Ridge, TN, USA) for the Islamabad
region of Pakistan.
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Figure 4. Battery charge and discharge levels.
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4.1. Power Output of Renewable Energy Sources

Major RESs include solar and wind; however, PV is the least expensive source of generation
and requires one time investment. The planet we live on receives 174,000 terawatts (TW) of solar
radiation [34]. The areas with insolation levels of 150–300 W/m2 or 3.5–7.0 kWh/m2 per day are the
most populated areas in this world [35]. The incoming solar energy (in the form of radiation) that
reaches the surface of the Earth is defined as insolation. Approximately 70% of the total radiations
are absorbed, and the rest is reflected back to space. This is called the solar energy cascade, which
does not have a fixed value around the different locations of the Earth, nor is it constant over different
periods of time. If we move to the north and south of the Equator, the insolation shows a continuously
varying trend, and its quantity keeps decreasing towards the poles with respect to season. In March
and September, the isolations are at the highest level in the Northern Hemisphere, whilst the Southern
Hemisphere enjoys September and March [36]. Thus, the power output of RESs depends on several
parameters. Some of them are nature dependent, while others can be adjusted accordingly. The former
includes season (summer or winter), weather (sunny or cloudy) and topographical constraints, whereas
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the latter comprises the size and efficiency of installed technologies. A block diagram of the power
flow of RESs in the proposed model is shown in Figure 7.

Power output from the PV unit can be measured as a function of solar irradiation and ambient
temperature. Both solar irradiance and temperature highly depend on weather and season. A solar
panel consists of several cells, which are coupled together to produce power. In a similar work [37],
the authors use renewable energy generation and storage systems, where deterministic and stochastic
methods have been used to consider uncertainties.

The temperature of a cell can be given as [15]:

Tc(t) = Ta(t) + IG(t)
NOCT − 20

0.8
(1)

where Tc(t) belongs to the temperature of cell (◦C) at time t, Ta denotes the current temperature
(◦C) at given location, IG is the global solar irradiance (kWh/m2), NOCT is the nominal operating
cell temperature (◦C), which can be defined as a level of temperature reached under the following
conditions: irradiance = 800 w/m2, air temperature = 20 ◦C, wind velocity = 1 m/s and tilt angle of
cell = 45◦. Therefore, the output of a PV array can be measured as [38,39]:

opv
t = Xd

IG(t)
IS

[
1−

Kp

100
(Tc(t)− TSTC)

]
(2)

Figure 7. Power flow of renewable energy sources (RESs) in the proposed model.
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where opv
t is the output of the PV at time t, Xd is the derating factor of the PV array, IS is the

standard irradiations (kWh/m2) and Kp shows the temperature coefficient (%/◦C). The Meteonorm
software is used to calculate the radiations on a PV panel of tilt angle 30◦, which is considered as
the optimal direction for PVs. Generically, if the temperature remains within the limits of 16–36 ◦C
throughout the day and the area of the PV is 200–220 m2, then the output power on a typical sunny
day would be roughly 500 kW. Moreover, the partially sunny and cloudy days will have 200–300 and
50–70 kW of generation, respectively, under similar conditions.

The power output from a WT is modeled as a piecewise function of wind speed. We denote v
as wind speed, vr as rated wind speed (i.e., where WT generates maximum energy), vci the cut-in
speed (i.e., minimum required speed to turn on WT) and vco the cut-out speed (i.e., excessive speed,
blades brought to test). Besides, the air density, the size of WT obviously effects the total power output.
A generic mathematical expression is given below to find output of WT [31]:

owt
t =


0 i f v < vci or v > vco
v3−v3

ci
v3

r−v3
ci

i f v > vci and v < vr

1 i f v > vr and v < vco

(3)

The parametric values for vci, vr and vco are 3, 10 and 20, respectively. Users usually do not follow
a specific pattern to run daily appliances. Therefore, appliances are categorized according to their
electricity consumption pattern in the subsequent section.

4.2. Load Categorization

In view of daily power consumption pattern, appliances are categorized into two groups, i.e.,
flexible loads and inflexible loads, as described below.

1. Inflexible appliances: This type of appliance is also referred to as fixed or regular appliances
because of their constant power usage pattern and length of operation time. Typically, inflexible
loads include fridge, fan, light, etc., which are considered to be required run loads and cannot
be shifted to later hours. These appliances usually do not participate in the DR, so they cannot
contribute to the optimization process in order to achieve lower electricity bill. Therefore, regular
loads execute their job on respective time slots and have no relation with the appliance scheduler.

2. Flexible appliances: Flexible loads are also known as shiftable or burst loads. Flexible appliances
include the dish washer, washing machine, spin dryer, etc. The power consumption pattern of
this type of appliance can be altered to later hours in response to some incentives. Appliances
are shifted to later hours due to two main reasons: either appliances are preferred to alter the
consumption pattern from on-peak hours to off-peak hours or when the price for the grid is high,
appliances are shifted to low price hours for bill reduction.

4.3. Energy Consumption Model

Each consumer in the smart building has two sets of appliances, discussed earlier, i.e., F and I.
The set of flexible appliances F = {a1, a2, a3, . . . , a f } and the set of inflexible appliances
I = {b1, b2, b3, . . . , bi} over a scheduling horizon of T = {1, 2, 3, 4, 5, . . . , 48}. The hourly electricity
demand of a single appliance is given as:

Ea,t = Ea,t1 + Ea,t2 + Ea,t3 , . . . ,+Ea,t48 (4)
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where Ea, t1 + Ea, t2 + Ea, t3, . . . ,+Ea, t48 denote electricity demand of an appliance in a respective
time slot. The daily electricity consumption of both types of appliances (flexible and inflexible) is given
by Equations (5) and (6), respectively:

Ea =
48

∑
t=1

(
F

∑
f=1

Ea
t

)
= {Ea

t1 + Ea
t2 + . . . + Ea

t48} ∀ f εF (5)

Eb =
48

∑
t=1

(
I

∑
i=1

Eb
t

)
= {Eb

t1 + Eb
t2 + . . . + Eb

t48} ∀ iεI (6)

where Ea
t1, Ea

t2, . . . , Ea
t48 denote the power consumption of flexible appliances and Eb

t1, Eb
t2, . . . , Eb

t48
represent the power consumption of inflexible appliances at time t. The total daily power consumption
Esum is given as:

Esum =
48

∑
t=1

(
F

∑
f=1

Ea
t, f εF +

I

∑
i=1

Eb
t,iεI

)
(7)

4.4. Capacity Constraints

The power outputs of considered resources must not exceed beyond the limits of
designed capacities:

oc
t ≤ Pc ∀t (8)

ob
t ≤ Pb ∀t (9)

Sts
t ≤ Pts ∀t (10)

opv
t ≤ Ppv ∀t (11)

owt
t ≤ Pwt ∀t (12)

Se
t ≤ Pe ∀t (13)

where oc
t , ob

t , Sts
t , opv

t , owt
t and Se

t are the outputs; Pc, Pb and Pts are the capacities of the CHP, boiler,
thermal storage, PV, WT and electric storage respectively at t.

4.5. Thermal Storage Constraints

The total heat in the storage at t depends on heat stored at t− 1, heat charged and heat discharged.
Heat discharged is subject to being subtracted from the total heat because it is the out going source and
results in depletion of storage. Heat loss in the process of charging and discharging, i.e., turn around
efficiency, is denoted by λts. In order to store 10 kW in storage, 10 + λts kW must be provided, and in
the case of discharging 10 kW of power, 10 + λ kW must be discharged:

Sts
t = Sts

t−1 + λtsct − dt/λts ∀t (14)

where ct and dt are the charge and discharge rates of thermal storage at t, respectively. The charge and
discharge rates must be within the designed limits of the charge and discharge rates. Cts and Dts are
the thermal storage charge and discharge limits:
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ct ≤ Cts ∀t (15)

dt ≤ Dts ∀t (16)

4.6. Electric Storage Constraints

The total electricity in the electric storage at t depends on the electricity stored at t − 1, the
electricity charged and discharged. Electricity discharged is subject to being subtracted from the total
electricity, because it is the out going source and, hence, results in the depletion of storage. Electricity
loss in the process of charging and discharging, i.e., turn around efficiency, is denoted by λe. The rest
of the storage and discharge process is the same as that for heat storage described above:

Se
t = Se

t−1 + λegt − ht/λe ∀t (17)

where gt and ht are the charge and discharge rates of electrical storage at time t, respectively. The
charge and discharge rates must be within the designed charge and discharge limits. Ge and He

represent electrical storage charge and discharge limits:

gt ≤ Ge ∀t (18)

ht ≤ He ∀t (19)

4.7. Energy Balance

The electricity demand is fulfilled by the local RESs, energy drawn from storage minus the energy
sent to electrical storage and direct connection of the grid, whereas heat demand is met by the CHP
generation, boiler units and heat retrieval from storage minus heat saved in storage. The electricity
consumption must not exceed the electricity imported from main grid and the total generation of PV
and WT:

30

∑
i=1

12

∑
k=1

Tik

∑
θ=0

Pcc
kθ Sikt = opv

t + owt
t + ht − gt + EIG

t ∀t (20)

where Tik is the processing time duration of appliance k of home i, Pcc
kθ is the power consumption

capacity of appliance k at time period θ, Sikt is a binary variable that shows the status of appliance k at t,
opv

t is the power output from PV, owt
t is the power output from WT at t, ht and gt are the electric storage

discharge and charge rates and EIG
t is the total energy imported from the main grid at t. As discussed

earlier, the heat demand balance is shown in Equation (21), and δ is the heat to power ratio of CHP:

Hd
t = δoc

t + ob
t + dt − ct ∀t (21)

4.8. Start and End Time Horizon

Each appliance has to complete its working hours within the given time frame; however,
no appliance can start before the provided earliest starting time window, nor can it complete later than
finishing time window. Since each appliance has to finish between the given time interval minus the
operational time duration, a binary variable Sikt is introduced that indicates whether an appliance has
finidhed its job or not.

Sikt =

{
1 i f appliance is ON
0 otherwise

(22)
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4.9. Power Demand

The maximum electricity demand from the main grid over a period of time is given as:

Emax ≥ EIG
t ∀t (23)

Emax is the maximum power demand from the power station, and EIG
t is the energy imported

from the grid at t.

4.10. Peak to Average Ratio

The basic aim behind balancing the PAR is to maintain the equilibria of demand and supply
between utility and consumers. In our proposed system model, PAR is defined as a ratio of peak
load over average load in the given time frame and is symbolized as ψ. Mathematically, PAR can be
written as:

ψ =
max(Et)
1
T ∑48

t=1 Et
(24)

4.11. Waiting Time

Inflexible appliances are supposed to run with the highest priority and without any delay, so
these appliances do not have any concern with the waiting time. Flexible tasks play a crucial role
in the optimization by altering the power consumption behavior. Let αa and βa be the start and end
times of flexible appliance a, such that αa ≤ βa within the given time window interval. In our model,
we consider waiting time as discomfort. The more the waiting time is, the lesser the comfort will be.
We denote ξa as the working duration and σa as the actual start time of appliance a. σa has a value no
less than αa, but less than or equal to βa − αa given as:

σa ε [αa, βa − ξa] (25)

4.12. Objective Function

The objective is to minimize the total power consumption cost of all appliances in the smart
residential building. The electricity cost depends on the pricing signal announced by the utility
company and the appliances’ power consumption pattern. We have no control over the pricing signal;
however, we minimize the cost by altering the power consumption pattern of appliances:

min
48

∑
t=1

(
30

∑
i=1

12

∑
k=1

(
(Esum

t − opv
t − ht)× Ep

t

))
+ Cph

t (26)

The objective function is subject to the constraints given in Equations (8)–(16), (20) and (23), where
Esum

t is the total power consumption at time t, Ep
t is the price of electricity at t announced by the utility

and Cph
t is the cost incurred in order to satisfy heat demand.

5. Heuristic Techniques

Numerous heuristic, meta-heuristic and mathematical techniques have been used for DSM in the
residential sector. Reducing energy expense, reducing PAR, balancing demand and supply, maximizing
the user comfort level, stabilizing the grid and ensuring the power quality are some of the objectives
of using optimization techniques. One of the key underpinnings of heuristic techniques is that they
provide a feasible solution in very low computational time. The workings of TLBO, EDE and our
newly-proposed EDTLA are provided below.
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5.1. Teaching Learning-Based Optimization

Unlike other evolutionary and swarm-based optimization techniques, TLBO does not have any
algorithm-specific parameters. Therefore, parameter tuning is not required, which makes TLBO
computationally efficient.

Inspired by the teaching-learning environment of class, TLBO is a population-based algorithm,
which is comprised of two phases. The first phase is the teacher phase, while the other is the student
phase. In the teacher phase, the best solution (depending on the objective function) of the population
is selected as the teacher, and rest act as students. The teacher provides his/her knowledge and tries
to change the mean value of the students to raise their level. The following formulas are used to
distinguish the level of knowledge of the students and teacher in a particular subject:

Difference mean = ri(xj,kbest,i − Tf .Mj,i) (27a)

Tf = round[1 + rand(0, 1)2− 1] (27b)

x′j,k,i = xj,k,i + (Di f f erencemean)j,k,i (27c)

where xj,kbest,i is considered as the outcome of the best learner in respective subject j. The ri represents
a random number whose value is selected between one and two. The teaching factor is represented
by Tf , which has a value between one and two. The teaching factor is not the parameter of TLBO,
and its value is selected randomly. The formula mentioned in Equation (27b) decides the value of the
teaching factor. The updated value of xj,k,i is represented by x′j,k,i, and this updated value is selected in
the population if it proves to be a better solution than the existing one.

In the second phase, the students interact with each other and learn from the student having more
knowledge. A student can only learn from other students in the case that he/she has a lower level
of knowledge than that student. In a population of size n, two learners, i.e., M and N, are selected
randomly provided that xtotal−m,i 6= xtotal−n,i. Since our problem is a minimization problem, so the
equation used is:

x′′j,m,i = x′j,m,i + ri(x′j,m,i − x′j,n,i), i f x′total−m,i ≤ x′total−m,i (27d)

x′′j,m,i = x′j,m,i + ri(x′j,n,i − x′j,m,i), i f x′total−n,i ≤ x′total−n,i (27e)

If the solution x(j,m,i) provides better results than the existing one, it is selected or else discarded.
These updated and accepted values are given to the teacher phase as input in the coming iteration
until the termination criterion is satisfied.

5.2. Enhanced Differential Evolution

As the name suggests, EDE is the extended version of the DE algorithm. It has better performance
than DE because of fewer control parameters. EDE differs from DE at the stage of generating trial
vectors. The population size (NP) and the mutation factor (F) are the two control parameters of EDE.
The i-th vector in the current generation of the population is selected as target vector xi,g. Therefore, it
can be written as:

xi,g = [x1,i,g, x2,i,g, x3,i,g, ....., xD,i,g] (28a)

where D shows the dimensions of the parameter space. Initially, the population is generated randomly
between the limits of the upper and lower bounds followed by the mutation step. The mutation
steps starts by randomly selecting three distinct vectors from the population. The difference of the
two randomly-selected vectors is added to the third vector, and a new mutant vector is formed. The
mathematical representation of the mutant vector is shown in Equation (28b) below:

vi,g+1 = xr1,g + F.(xr2,g − xr3,g) (28b)
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The value of F varies in the range of [0, 2], which explores the search space stepwise. Firstly,
100 iterations are performed, and three groups of trial vectors are generated in each iteration by using
the following equations:

uj,i,g+1 =

{
(vj,i,g+1) if randb(j) ≤ 0.3 or (j = Irand)
(vj,i,g+1) if randb(j) ≤ 0.3 and (j = Irand)

(28c)

uj,i,g+1 =

{
(vj,i,g+1) if randb(j) ≤ 0.6 or (j = Irand)
(vj,i,g+1) if randb(j) ≤ 0.6 and (j = Irand)

(28d)

uj,i,g+1 =

{
(vj,i,g+1) if randb(j) ≤ 0.9 or (j = Irand)
(vj,i,g+1) if randb(j) ≤ 0.9 and (j = Irand)

(28e)

Different values of the crossover rate, i.e., 0.3, 0.6 and 0.9, are used to generate the three groups of
trial vectors. After mutation, in the selection stage, the fittest group among the three groups of trial
vectors is selected to compare with the old population. The most appropriate vector is selected using
the equation provided below:

xi,g+1 =

{
(ui,g+1) if ( f (ui,g+1)) ≤ ( f (xi,g))

(xi,g) otherwise
(28f)

This process continues until the termination criterion is satisfied.

5.3. Enhanced Differential Teaching Learning Algorithm

TLBO is a nature-inspired algorithm influenced by the teaching-learning pattern of a class.
Like other evolutionary algorithms, it also works on the principle of repeatedly updating a population
of solutions to reach the global best. TLBO consists of two phases, i.e., the teacher phase and the
learner phase. In the teacher phase, the teacher tries to provide his/her knowledge to students so that
the students can learn and come up to the teacher’s level. Similarly, in the second phase, students
interact with each other and continue to learning.

TLBO sometimes suffers from premature convergence and can also get stuck in local minima.
To avoid these issues, we incorporate the mutation and crossover steps of the EDE algorithm, which
improve the performance and help to search globally. Therefore, two additional steps are added to the
TLBO, which are given below.

In the mutation phase, the difference of two randomly-selected vectors is multiplied with the
mutation scaling factor and added to a third vector to generate a new mutant vector. All three selected
vectors must be different from each other, and the mutation scaling factor (randomly generated
number) ranges between zero and one. If the randomly-generated number is less than the crossover
rate, the mutant vector is selected in the new population and otherwise discarded. The steps of the
hybrid algorithm are provided in Algorithm 1.
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Algorithm 1: Enhanced differential teaching learning algorithm.

1 begin
2 Initialize number of learners, dimensions, mutation and crossover rates
3 Generate initial population
4 Evaluate the fitness (cost) function

5 while (termination criterion not met) do
6 Calculate the mean value of each learner
7 Select best individual as teacher
8 for each learner do
9 Randomly select three learners

10 Mi = Xr1 + mutation rate ∗ (Xr2 - Xr3)
11 if random number(0,1) < crossover rate then
12 Xnew = Mi
13 else
14 keep existing

15 Accept Xnew if f (Xnew) < f (Xi)

16 for each learner do
17 Choose one learner randomly i.e., Xj

18 if f (Xi) < f (Xj) then
19 Xnew = Xi + rand ∗ (Xi − Xj)
20 else
21 Xnew = Xi + rand ∗ (Xj − Xi)

22 if f (Xnew) < f (Xi) then
23 Xi = Xnew

6. Feasible Region of Objective Function

The feasible region of the objective function is shown in Figure 8, which is comprised of six
points. The first point P1(9, 0.1953) is the electricity cost where the minimum load (9 kW) coincides
with the minimum price time slot. Similarly, point P2(9, 0.567) shows the consumption cost when the
minimum load is scheduled in the maximum price time interval. If all appliances are ON in a time
interval of maximum price, then the electricity bill is shown by point P4(643.2, 40.52). Conversely,
P6(643.2, 13.93) represents the cost if all appliances are ON in the minimum price time slot. As also
mentioned in Section 4, the power consumption is equal to the power rating and status of an appliance
at a particular time interval, whereas the electricity cost depends on the power consumption and
the price of electricity at that time interval. The RTP signal is announced by the utility, so the power
consumption pattern of appliances is modified to reduce the electricity bill. Moreover, in any time
slot, the maximum cost of the scheduled case must not exceed the maximum cost of the unscheduled
case. Points P3(643.2, 13.93) and P5(643.2, 13.93) show the bounding limits on the maximum load and
cost, respectively. The four possible cases of electricity cost are: (i) minimum load, minimum price,
(ii) minimum load, maximum price, (iii) maximum load, minimum price, and (iv) maximum load,
maximum price.
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Figure 8. Feasible region of objective function.

Feasible Region of Trade-Off

The feasible region of tradeoff between electricity bill and delay is shown in Figure 9. The feasible
region consists of five points. P1(0, 40.52) shows a point when there is no delay and all appliances run
with high priority. The point P4(8, 13.6) shows that if we shift our appliance up to 8 h, we pay only
13.6 $ instead of 40.52 $. In our scenario, one hour is the minimum time delay in which a 22.5 $ cost is
incurred, as can be seen at point P5(1, 22.5), which is much better than the unscheduled case. Similarly,
P2(1, 37) represents the cost with a similar delay of one hour when appliances power on in a high price
hour. If high price hours appear consecutively, then appliances may have to wait for a maximum time
of 5.5 h to achieve a similar cost, as depicted by P3(5.5, 22.5).
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Figure 9. Feasible region of tradeoff.
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7. Simulations and Discussion

In this section, we present simulation findings and comparatively evaluate the workings of GA,
TLBO, EDE and our proposed EDTLA under the RTP environment. Subject to a fair comparison,
all heuristic techniques are compared with each other and also with the unscheduled case under the
same parameters. Our simulations consist of two stages, first without RE integration and the other
with RESs and BSS. Total RE generation depends on ambient temperature and the solar radiation
profile, which are shown in Figures 5 and 6, respectively. The RTP signal shown in Figure 10 is taken
from [11]. The RTP signal, which is assumed to be known ahead, is used, so that users can make
informed decisions. We assume 48 time slots of half an hour each from 8 a.m. to 8 a.m. the next day.
The performance measuring parameters include: electricity demand, electricity consumption cost, PAR
and user discomfort, each of which are discussed hereunder. MATLAB software (2015b, MA, USA)
is used for simulations with Intel(R) Core(TM) i3-2370m CPU @ 2.40GHZ @ and 2 GB of RAM on a
Windows operating system.
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Figure 10. Real time porice signal

7.1. Electricity Demand

The energy consumption pattern of all appliances under four different techniques is shown in
Figure 11. The peak power demand in a specific time interval is about 200 kWh. All techniques
perform better than unscheduled, as can be seen in Figure 11. The comparative discussion of electricity
demand in four techniques is as follows.

GA schedules most of the appliances either in the early morning or before evening while remaining
within the limits of the provided time window. Appliances are scheduled in these slots because of
low price hours and only appliances required to run are scheduled in high price hours. GA has better
hourly energy consumption during peak price hours than EDE. However, a peak also occurs during
Hours 18–19; this is mainly due to the low price hours.

The daily power requirement profile of all appliances under TLBO remains flat throughout the
day. This is why TLBO performs well in cost and PAR. TLBO has relatively small power demand
during high price hours as compared to other cases. TLBO shows a spike in morning hours; however,
it is ignorable because it does not threaten the stability of the grid. The peak power demand in the case
of TLBO is 160 kW in Hours 20–21.
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Figure 11. Hourly electricity demand. Teaching learning-based optimization (TLBO); enhanced
differential evolution (EDE); and enhanced differential teaching learning algorithm (EDTLA).

EDE mimics the behavior of GA particularly in morning hours and, later unlike GA, EDE has
flat curve during the rest of the day. No peak occurs, and appliances are scheduled when the price
is minimum. Peak power demand in a specific time interval is 150 kWh, which is better than both
GA and TLBO. EDE shows an increasing trend in the morning hours and a decreasing trend in later
hours. It schedules most of the appliances during morning hours where the electricity price curve has
a moderate behavior. EDE results in a small peak during Hours 7–8, which is mainly due to the low
price during this period. However, at the same time, it contributes to lowering the waiting time of
appliances. Our proposed technique results in flat behavior during the whole day. EDTLA neither
schedules appliances in a high price hour nor creates a peak in the low price hour. It shows a moderate
power demand curve due to which it has minimum electricity demand from the main power station in
peak hours, i.e., 19–25. Peak power demand in the case of EDTLA is nearly 150 kWh, which is normal
in a 30-home scenario.

Additionally, Table 3 shows the total carbon emissions of one day when the total energy is
imported from the main grid. In the aforementioned case, there is no RE, and the whole electricity
demand is entertained by the main power grid. The smart residential complex generates its own
electricity to meet daily electricity demands. When we integrate RE, the power demand curve under
all cases becomes flatter, as shown in Figure 12. Half of the total power demand is assumed to be
generated by local RESs of the residential complex. Figure 13 shows an estimated RE generation on
the simulation day. Most of the appliances are scheduled when adequate RE is available. Excess RE is
stored in BSS and used later when there is no local energy generation or a high electricity price at the
grid. There is no or very low electricity demand in the initial hours of the day due to the availability of
local energy, particularly in the case of TLBO and EDTLA. Consequently, RE integration contributes to
lowering the electricity bill and a flat PAR. EDTLA has shown the best demand curve in both cases with
minimum electricity demand from the main power grid. During the whole day, when the price is high,
EDTLA has no electricity demand from the grid. EDTLA satisfies load demand from local generation
and BSS when there is a peak at the grid side. EDE does not perform better in terms of hourly power
demand as compared to GA; however, when RESs are integrated, EDE has a lower electricity bill. This
is because of the low power demand in high price hours. From the above results, it can be seen that
EDTLA has a more appropriate and flat demand curve among all algorithms. Similarly, Table 4 lists
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the percentage decrease in carbon emissions when RESs and BSS are incorporated. It is proven that
integration of RESs leads to significantly lowering of the carbon emissions and other harmful gasses.
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Figure 12. Hourly electricity demand with RESs and battery storage system (BSS).
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Figure 13. Estimated energy generation.

7.2. Electricity Cost

Figure 14 shows the comparison of the hourly power consumption cost of the aforementioned
techniques without the integration of BSS and RESs. EDE shows some spikes; however, their impact on
total cost is negligible because these spikes last for one or a couple of low price time intervals. GA has a
maximum of an 8 $ cost in any single time interval, which is adequately less than the unscheduled case.
On the other hand, TLBO has a flat curve during the whole day, because it utilizes low price hours.
Initially, all techniques show an average behavior towards cost; however, TLBO increases drastically
later when there is a low price hour, but only for one time slot. EDE and GA schedule appliances
in high peak hours, which consequently decrease the waiting time, but at the cost of the increased
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consumption expenditures. EDE does not schedule appliances during time slots 10–20, which as a
result creates a peak later in the high price time slots; due to which, EDE has the highest total electricity
cost among the four techniques, as can be seen in Figure 15. GA and EDE have comparable costs of
consumption; however, GA performs slightly better. Our proposed EDTLA shows a flat behavior
of power consumption throughout the day, so its power consumption cost is minimum among all
algorithms in both cases. The total electricity bill for one day is 135.88 $, 116.37 $, 89.47 $, 118.66 $
and 82.14 $ in the case of unscheduled, GA, TLBO, EDE and EDTLA, respectively. The percentage
reduction of cost in the two scenarios under all techniques is shown in Tables 3 and 4.
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Figure 14. Hourly electricity cost.
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Figure 15. Daily electricity bill.

In the second scenario, where RESs and BSS are also available, the maximum cost in one time
slot decreases to 9 $ in the case of TLBO. This decrease is due to the discharge of BSS when the peak
occurs at the grid, as also shown in Figure 4. On the other hand, the maximum cost in one time
interval remains the same under GA and TLBO because the RE and BSS are used in high price hours
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(i.e., 24–27), where all techniques have nearly zero cost of electricity from the grid. Figure 16 depicts
the hourly cost of electricity obtained from the grid after using local RESs and BSS. Total per day cost
in both cases (with and without RESs and BSS) is shown in Figures 15 and 17, respectively. The total
electricity bill for one day is 92.63 $, 84.24 $, 48.11 $, 62.21 $ and 44.83 $ in the case of unscheduled,
GA, TLBO, EDE and EDTLA, respectively, when RESs and BSS are also available. EDTLA performs
better in terms of cost with a reduction of 8% in the total electricity bill as compared to TLBO and 36%
as compared to the unscheduled case. From the above figures and facts, the impact of RESs and BSS
can easily be noted, and with a small one time investment on RESs and BSS, the user can reduce the
electricity bill and PAR. The summarized results are also shown in Table 4.
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Figure 16. Hourly electricity bill with RESs and BSS.
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Figure 17. Daily electricity bill with RESs and BSS.
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Table 3. Summarized results of CO2, peak to average ratio (PAR) and cost reduction.

Technique Total Load
(kW/day)

Total Cost
($/day) CO2 Emissions (kg) PAR Reduction (%) Cost Reduction (%)

Unscheduled 1056 135.88 551.3 - -
GA 1056 116.37 551.3 17.30 14.70

TLBO 1056 89.4784 551.3 30.76 33.82
EDE 1056 118.66 551.3 15.38 12.76

EDTLA 1056 82.14 551.3 43.61 36.02

7.3. Peak to Average Ratio

The performance of four different heuristic techniques assessed in terms of PAR is shown in
Figure 18. It is clear that scheduling with GA, TLBO, EDE and EDTLA leads towards low PAR as
compared to the unscheduled case. When RESs and BSS are integrated, the peak at any hour is reduced
up to a significant level; however, PAR becomes high, due to very minimal average load at the grid.
The major portion of load is shifted to RESs, and approximately half remains on the grid side. Peak
load remains the same in GA and TLBO when RESs are integrated; whereas, the average load becomes
flat. Therefore, the PAR shows an increasing trend when RESs are added, as can be seen in Figure 19.
When peak demand occurs at the grid side, BSS is used at the consumer premises to reduce the load
at the grid side. The battery is charged when the RE is available and discharged later when no RE
is available, as shown in Figure 4. The EDE has the highest PAR among the scheduling algorithms
because it creates several small peaks in low price hours, as also shown in Figure 11. GA creates a
moderate peak, so it shows moderate PAR.

As also shown in Figure 12, TLBO has a flat pattern during the whole day except Interval 20, so
its PAR is minimum among all algorithms, which is approximately 3.6; whilst our proposed algorithm
further decreases the PAR and achieves 5% more efficient results as compared to TLBO. Tables 3 and 4
show the percent decrease in the value of PAR with and without RES integration in comparison with
the unscheduled case. Results illustrate that the integration of RESs and BSS not only enhances the
grid stability, but also reduces the daily electricity expenditure.
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Figure 18. Peak to average ratio (PAR).
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Figure 19. PAR with RESs integration.

Table 4. Summarized results with RESs and battery storage system (BSS).

Technique Grid Energy
(kW/day)

RESs Generation
(kW/day)

Total Cost
($/day) PAR Reduction (%) Cost Reduction (%) CO2 Reduction (%)

Unscheduled 630 426 92.63 - - 40.35
GA 566 490 84.2461 11.29 36.76 46.41

TLBO 570 486 48.1144 14.51 64.70 46.03
EDE 600 456 62.2162 11.02 52.94 56.82

EDTLA 580 476 44.8372 29.41 67.44 54.94

7.4. User Discomfort

User discomfort is calculated in terms of the time delay of appliances from the given earliest
starting time window. A tradeoff is always seen in user comfort and electricity cost, described later
in the upcoming subsection. The electricity bill shows a decreasing trend with a compromise on
comfort, and opposite case is also true. Figure 20 shows the waiting time of all appliances under
four different heuristic techniques. It can be clearly seen that EDE has minimum delay, which means
least discomfort, however at the cost of a huge electricity bill, as depicted in Figure 15. Most of the
appliances do not wait to execute in the case of the EDE algorithm. GA and TLBO have comparable
waiting time and appliances, which allow one to shift time intervals, wait and contribute to the
electricity bill reduction. EDTLA has more waiting time than the TLBO technique, which is mainly
due to convergence towards the global optimal solution. TLBO schedules appliances as it finds the
minimum price time slot; however, our proposed technique completely searches all possible solutions
and then schedules accordingly. When we integrate RESs and BSS, there is no direct impact on user
comfort in terms of delay; however, the user is satisfied when the electricity bill shows a decreasing
trend. In the unscheduled case, appliances run whenever they are required, regardless of the cost and
grid stability concerns, so no user comfort is calculated in the unscheduled case.
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7.5. Heat Demand

Figure 21 presents the heat balance for smart building. Heat is provided by using local resources
of the smart building, which consequently decrease global carbon emissions. The heat demand curve
has two peak demands: first, early in the morning; and the other is later, when the temperature
becomes low. During these peak hours, the CHP generator constantly works at full capacity due
to more heat demand, and the rest of the heat is either provided by thermal storage or the boiler.
The boiler starts generating more heat to fulfill the demand when the price becomes flat and no heat
is harvested from the CHP generators. CHP does not generate excess power unless and until the
generated heat is utilized or saved in storage. Thermal storage works as a heat backup and cannot
save more heat than its designed storage capacity. Storage is charged when excess power is available
and discharged when required. Since the heat demand curve is given, only resources are scheduled in
this case in order to lower the carbon emissions and total payable expenditures.
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Figure 21. Heat demand.
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7.6. Execution Time and Performance Tradeoffs

The execution overheads of four heuristic techniques under two different cases are listed in Table 5.
In the first case, GA, TLBO and EDE require 3.41, 8.01, and 1.2 s, whereas in the second case, the
time jumps to 4.6, 8.24 and 2.4 s, respectively. EDE consumes the minimum time in order to provide
desirable results because of good convergence characteristics and fewer control parameters. TLBO
requires more execution time because of the continuous teaching-learning process. Our proposed
hybrid algorithm requires 8.9 and 9.9 s to finish the job. EDTLA consumes more time to find the
optimal solution and to avoid premature convergence.

Table 5. Execution time.

Algorithm Time (s) Time with RES (s)

Unscheduled 0.09314 0.195858
GA 3.4122 4.6754

TLBO 8.0142 8.2490
EDE 1.2841 2.4903

EDTLA 8.9164 9.9490

From the above results and discussions, it is proven that all techniques are able to schedule
appliances in a way that reduces the electricity bill and the PAR and that maintains the load profile,
especially when RESs and BSS are incorporated. Besides this, none of the techniques is perfect in all
performance metrics. A tradeoff can be seen in Figures 15 and 20, where EDE has the minimum delay
(i.e., higher comfort), however at the cost of a higher electricity bill. Similarly, in Figure 15, GA has a
moderate electricity bill; however, PAR is highest among all scheduling techniques, as shown in Figure 18.
Our scheduling algorithm outperforms the other three heuristic methods in terms of electricity bill
and PAR at the cost of slightly high execution overhead. Homogenous tradeoffs exist when RESs and
BSS are incorporated in the scenario described above.

8. Life Cycle Energy Analysis

The life cycle analysis approach is used to estimate all energy input in its life cycle. Generally,
the boundaries of life cycle analysis include the energy use in the manufacturing/process, use and
demolition phases. The manufacturing phase includes the energy used for the transportation of
building material, installation of technical equipment and renovation. The operation phase includes
all of the activities related to the use of that building, maintaining comfort in terms of heating, cooling,
water supply, security, etc. The last phase involves the activities related to the destruction of buildings,
transportation of dismantled material from one place to other place or to recycling plants. From this
discussion, it can be concluded that energy is required in each phase of a building from cradle to grave.
In this work, we do not consider the cost of manufacturing and demotion phases.

9. Conclusions and Future Work

This paper proposes an EMM to optimally schedule residential load to lower the electricity
bill, user discomfort and carbon emissions in an nZEB. For this purpose, we used the optimization
algorithms GA, TLBO and EDE for scheduling to validate the proposed nZEB concept. In addition,
after analyzing the performance of these optimization algorithms, a hybrid algorithm is also proposed
for further improvement in the already achieved results; using cost, PAR, user comfort and total
amount of carbon emissions as performance parameters (Tables 3 and 4). However, along with the
simulation results, the feasible regions of the proposed objective functions have also been calculated
to validate the results. In this work, two cases are considered: (i) without integration of RES; and
(ii) with integration of RES. The former one reduces the electricity cost and PAR up to 36% and 43%,
respectively; while the later one reduces electricity cost, PAR and carbon emissions up to 67%, 29%
and 55%, respectively, showing the difference between traditional energy management and ZEB
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techniques. The proposed model is generic and can be extended to any number of residential units;
homes, buildings, etc.

The future work would include power trading among multiple homes, MGs and EVs under a
large share of RESs.
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