
 

Energies 2017, 10, 1111; doi:10.3390/en10081111 www.mdpi.com/journal/energies 

Article 

Optimal Dynamic Analysis of Electrical/Electronic 
Components in Wind Turbines 
Fausto Pedro García Márquez 1,*, Alberto Pliego Marugán 1, Jesús María Pinar Pérez 2,  
Stuart Hillmansen 3 and Mayorkinos Papaelias 4 

1 Ingenium Research Group, Universidad Castilla-La Mancha, 13071 Ciudad Real, Spain; 
alberto.pliego@uclm.es 

2 CUNEF-Ingenium, University College of Financial Studies, 28040 Madrid, Spain; 
jesusmaria.pinar@cunef.edu 

3 School of Electronic, Electrical & Computer Engineering, University of Birmingham, Birmingham B15 2TT, 
UK; s.hillmansen@bham.ac.uk 

4 School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK; 
m.papaelias@bham.ac-uk 

* Correspondence: faustopedro.garcia@uclm.es; Tel.: +34-926-295-300 (ext. 6230) 

Received: 23 May 2017; Accepted: 18 July 2017; Published: 31 July 2017 

Abstract: Electrical and electronic components are very important subcomponents in modern 
industrial wind turbines. Complex multimegawatt wind turbines are continuously being installed 
both onshore and offshore, continuously increasing the demand for sophisticated electronic and 
electrical components. In this work, most critical electrical and electronic components in industrial 
wind turbines have been identified and the applicability of appropriate condition monitoring 
processes simulated. A fault tree dynamic analysis has been carried out by binary decision diagrams 
to obtain the system failure probability over time and using different time increments to evaluate 
the system. This analysis allows critical electrical and electronic components of the converters to be 
identified in different conditions. The results can be used to develop a scheduled maintenance that 
improves the decision making and reduces the maintenance costs. 

Keywords: fault tree analysis; binary diagram decisions; wind turbines; converters; condition 
monitoring; maintenance management 

 

1. Introduction 

The environmental benefits arising from the use of wind energy, together with energy policies, 
mean that the total installed capacity increases every year worldwide. The availability of installed 
wind turbines (WTs) must be improved to enhance productivity and maximize benefits. 

The total global installed wind energy capacity was 486 GW by the end of 2016 [1].The Global 
Wind Energy Council (GWEC) forecast anticipates that the cumulative global installed wind energy 
capacity will be over 800 GW by the end of 2021. Wind energy is expected to continue growing until 
at least 2050. For a 20-year lifetime, the operation and maintenance (O&M) costs of 750 kW turbines 
is about 25–30% of the overall energy generation cost, or 75–90% of the investment costs over the life 
of the wind turbine. Therefore, it is essential to improve the availability, reliability and operational 
lifetime of WTs to make this energy more efficient [2]. 

The O&M costs for 2 MW turbines might be 12% less than an equivalent project of 750 kW WTs 
[3]. The increasing size of the WTs has led to the development of sophisticated maintenance strategies 
to avoid loss of production [4]. Figure 1 suggests that the largest WTs fail more frequently and, 
therefore, require more maintenance [5]. 
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Figure 1. Distribution of failure frequencies between different turbine types, sorted by turbine size 
(Adapted from [5]). 

Certain WT components fail earlier than expected, causing unscheduled downtimes that can be 
expensive [6]. Condition monitoring systems (CMS) [7,8] are extensively employed to improve the 
WT availability and reduce the O&M costs. However, there is a degree of uncertainty about the 
appropriateness of applying specific maintenance policies to the components of a WT [9]. 

Figure 2 [10] illustrates the major components of most installed WTs. Driven by the wind, the 
blades and rotor transmit mechanical energy to the generator, being the low speed shaft supported 
by the mean bearings. The gearbox monitors the generator speed so that optimal electricity is 
generated. The nacelle, and hence rotor alignment with respect to the direction of the wind, is 
controlled by the yaw system at the top of the tower.  

 
Figure 2. Main components of the most installed WT where: 1—pitch system; 2—hub; 3—main 
bearing; 4—low speed shaft; 5—gearbox; 6—high speed shaft; 7—brake system; 8—generator; 9—
yaw system; 10—bedplate; 11—converter; 12—tower; 13—meteorological unit. (Adapted from [10]). 

The configuration of the WT presented in Figure 2 has an indirect drive system because it 
employs a gearbox to increase the rotational speed of the shaft that drives the generator. The direct 
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drive configuration does not use a gearbox, but it needs different generators and electric power 
converters to adapt the energy to the grid frequency. 

The main generators used in WTs are squirrel-cage induction generator, wound rotor induction 
generator, doubly-fed induction generator, permanent magnet synchronous generator (PMSG) and 
electrically excited synchronous generator [11]. Direct drive configurations use larger and more 
expensive generators (heavier and multi-pole) than indirect drive types. 

Hansen et al. [12,13] identify four types of WT configuration (A, B, C and D), which may be 
classified together with the sub-types given by Li and Chen [14]. This classification and the main 
characteristic of each configuration are shown below: 

 Type A: Constant speed. 

- A0: WTs use passive stall control;  
- A1: WTs employ active stall control;  
- A2: WTs use a pitch control system, the most advanced technology used in larger WTs; 

 Type B: Limited variable speed; 
 Type C: Variable speed with partial-scale frequency converter. With DFIG (doubly fed induction 

generator); 
 Type D: Variable speed with full-scale frequency converter: 

- DD: Direct-drive: Gearless and variable speed with full-scale frequency converter: 

o DDE: This type uses an electrically excited synchronous generator.  
o DDP: This group uses a permanent magnet synchronous generator, PMSG;  

- DI: Indirect-drive: Variable speed indirect drive with a full-scale power converter: 

o DI1P: It is the only configuration with a single-stage gearbox with PMSG;  
o DI3W: Three stages gearbox with a wound rotor synchronous generator;  
o DI3P: Three stages gearbox with PMSG;  
o DI3S: Three stages gearbox with squirrel-cage induction generator. 

Figure 3 shows the component cost distribution for a typical 2 MW WT such as the WT shown 
in Figure 2. Note that the electrical and electronic components account for a considerable percentage, 
which increases for those configurations with a greater use of electronics such as direct drive WTs. 

 
Figure 3. Distribution of the component costs for a typical 2 MW wind turbines (adapted from [15]). 

Some failures, such as leaking and corrosion, can be detected by visual inspection. The noise 
coming from the bearings can also indicate physical condition [16,17]. However, many typical 
failures, e.g., electric short circuits in the generator and converters, demand more sophisticated 
maintenance. 
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The cost per failure increases due to the cost of corrective maintenance and the loss of production 
during downtimes. A proper CMS can be used to detect more faults. Early detection of incipient faults 
prevents major component failures and allows predictive strategies to be carried out [18–20]. The 
capability of a CMS depends on the number and type of sensors, and signal processing [21–25]. It 
involves measuring, e.g., current, voltage, temperature, humidity, etc., and turning them into electric 
signals to be processed and monitored. It requires sensors and measurements to carry out basic 
operations, e.g., amplification, filtering, linearization, modulation/demodulation, etc. Optimization 
techniques may be employed [26] in the processing of the signals by a digital signal processor. The 
most common signal processing methods employed in a supervisory control and data acquisition 
system (SCADA) are: 

 Statistical methods. 
 Trend analysis. 
 Filtering methods. 
 Time-domain analysis. 
 Cepstrum analysis. 
 Time synchronous averaging 
 Fast-Fourier transform. 
 Amplitude demodulation. 
 Order analysis. 
 Wavelet transforms. 
 Hidden Markov models. 
 Novel approaches. 

This paper presents a novel approach that uses the data provided by the CMS to analyze the 
converters and main electrical components of any WT. The results will support the optimization of 
CMS design and investment. The approach employs fault trees (FTs) and binary decision diagrams 
(BDDs) for an efficient determination of the system failure probability over time. Additionally, 
different importance measures (IMs) have been considered to identify the events that contribute more 
to this probability. Finally, a FT has been developed and analyzed qualitatively and quantitatively 
considering a large number of research studies. The main components of the converters and electrical 
parts of the WTs have been considered according to the advice of industrial experts involved in the 
European NIMO [27] and OPTIMUS [28] projects. Finally, the critical components have been set in 
different scenarios and the fault probabilities of the events, which would be given by the CMS in real 
conditions, have been simulated. 

2. Electrical/Electronic Failures Analysis 

Figure 4 shows the annual failure probabilities of the main components of a WT. The maximum, 
minimum and median values are shown for each component from different estimations [29]. The 
figure illustrates that the components with the highest failure probability are the electronics, being 
more than double that estimated for the rest of the components. Therefore, the electrical and 
electronic components must be considered in detail. 

The literature collects different critical failures for the generator [30–35], and for the power 
electronics and electric controls failure [30,34,36]. Figure 5 shows the failure root distribution in 
power electronic systems [37]. 
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Figure 4. Annual failure probability for subcomponents (adapted from [29]). 

 
Figure 5. Failure root cause distribution (adapted from [37]). 

A study of failure modes and effects for WTs in 2010 (from the RELIAWIND project [38]) noted 
the causes of failure and failure modes of a specific 2 MW WT with a diameter of 80 m [39]. Some 
causes of electrical failures are: 

 Calibration error 
 Connection failure 
 Electrical overload 
 Electrical short 
 Insulation failure 
 Lightning strike 
 Loss of power input 
 Conducting debris 
 Software design fault 

The main failure modes of the converters and electrical components are [39,40]: 

 Electrical insulation 
 Electrical failure 
 Output inaccuracy 
 Software fault 
 Intermittent output 

The reliability analysis requires information about each cause of failure. For this purpose, CM of 
electrical equipment such as converters, motors, generators and accumulators, is typically performed 
using voltage and current analysis (see Figure 6). Discharge measurements are used for medium and 
high voltage grids. A spectral analysis of the stator current in the generator can be used for detecting 
isolation faults in the cabling without influencing WT operation [41]. 
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Figure 6. The current sensors for the brake hydraulic system inside the main control panel of the WT 
Reproduced with permission from [42]. Elsevier, 2012. 

Electrical resistance is also used for the structural evaluation of certain WT components. It varies 
with stiffness, and abrupt changes can be used to detect cracks, delamination, and fatigue. Hence, the 
technique can be applied on in-service WTs. The resistance principle is useful for detecting fatigue 
damages as demonstrated in [43]. These techniques are identified as research-related activities, but 
there is significant potential in applying them successfully in real case studies. 

Thermography is usually used for monitoring electronic and electrical components and 
identifying failures [44]. This technique is only applied off-line, and often involves visual 
interpretation of hot spots that arise due to a bad contact or a system failure, but new cameras and 
diagnostic software are becoming available for on-line monitoring processes. Infrared cameras [45] 
have been used to visualize temperature variations in the surface of the blades [46] and can 
“effectively indicate cracks as well as places threatened by damage” [47]. The converter configuration 
is essential for the reliability analysis, being the most common [48]: Diode rectifier-Boost-Pulse Width 
Modulation (PWM) inverter, Two-Level Back-To-Back (2L-BTB) voltage source converter, Three-
Level Neutral-Point diode Clamped Back-To-Back (3L-NPC-BTB), multicell converters with 2L-BTB 
or Power Feed Equipment (PFE) module. 

Most of the research studies in the literature propose algorithms to control the specific 
components and configurations of WTs. For instance, Alrifai et al. [49] proposed a feedback 
linearization controller for a DFIG with a 3L-NPC-BTB. Xu et al. [50] proposed a slip control strategy 
to regulate a PWM converter to control the output power. Xiao et al. [51] developed a fuzzy based 
strategy for controlling DFIG and review many control techniques for different converter 
configurations. 

The authors have not found any previous research work that analyses all the components 
together from the point of view of reliability. A new approach is proposed that will analyse the main 
electrical and electronic components. It is important to note that they could be simplified or extended, 
but in this research study the authors have considered in this research study a certain set of events, 
following the opinion of the experts [27,28]. 

3. Reliability Analysis 

FT is a tool for analyzing a system composed of several events. FT provides an alternative 
method to represent a system, including the logical interrelations between the components. Logical 
operators “AND” and “OR”, together with the events (or components), will allow a better perception 
of the system. 

Figure 7 shows a FT composed by 12 basic events (ei) and 10 non-basic events (gi). An event is 
called a “basic event” if it cannot be broken down into simpler components. They are connected by 
logical gates. The example shown in Figure 7 has seven “OR” gates and four “AND” gates. Top event 
is an undesirable event and it is unique in the FT. Non-basic events can be repeated in the FT, but 
their branch must be the same. FTs provide the information required to carry out a qualitative 
analysis. BDDs have been successfully found in the constant search for an efficient way to simulate 
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FTs. BDD is a direct graph representation of a Boolean function where equivalent Boolean sub-
expressions are uniquely represented [52]. 

 
Figure 7. Fault Tree example. 

Further information about the origins of BDDs can be found in references [53] and [54]. The main 
data provided by BDD are the Cut-Sets (CS). A CS is a path of the BDD “from the top to a one” that 
provides the combination of events that would cause a system failure. 

The number of CSs (BDD size) and the computational cost have a strong dependence on the 
basic events ordering [55]. Different ranking methods can be used to reduce the number of CS, and 
consequently, to reduce the computational runtime. There is not a unique method that can provide 
the best solution in all cases. In this paper, the “Level”, “Top-down-Left-Right” (TDLR), “AND”, 
“Depth First Search” (DFS) and “Breadth-First Search” (BFS) methods [56] are considered for listing 
the events, and a comparative analysis is done in order to set the best ranking order. The order of the 
events will not modify the probability of the top event in any case, i.e., different orders will provide 
equivalent BDDs. 

The TDLR method generates a ranking of the events by ordering them from the original FT 
structure in a top-down and then left-right manner [57]. The listing of the events is initialized, at each 
level, in a left to right path adding the basic events found in the ordering list. If any event has been 
considered and located previously, then this event must not be considered. 

The DFS approach goes from top to down of a root and each sub-tree from left to right. This 
procedure is a non-recursive implementation and all freshly expanded nodes are added as last-input 
last-output process [58]. 

The BFS algorithm begins ordering all the basic events obtained expanding from the standpoint 
by the first-input first-output procedure. The events not considered are added in a queue list named 
“open”. The list will be recalled “closed” list when every event is studied [59]. 

The “level” method creates a ranking regarding to the level of the events. The level of any event 
corresponds to the number of the gates from that event to the top event. Should two or more events 
have the same level, the event that appears early in the tree will have highest priority [60]. 

The “AND” criterion sets that the importance of the basic event is based on “AND” gates located 
between the k event and the top event. These gates imply redundancies in the systems [61]. Basic 
events with the highest number of “AND” gates will be ranked at the end. In the case of duplicated 
basic events, the event with less “AND” gates has priority. Finally, basic events with the same number 
of “AND” gates can be ranked as the TDLR method approach. Table 1 shows the number of CSs 
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obtained by doing the conversion in Figure 7 with the five different ranking methods mentioned 
above. 

Table 1. Number of Cut-Sets (CS). 

Ranking Method TLDR DFS BFS Level AND 
Number of CS 46 31 36 46 35 

The following expressions correspond to the first four CSs out of 31 obtained with DFS method, 
which is the best one for converting the FT in Figure 7: ܥ ଵܵ = ሼ݁ହ, ݁ଵሽ  ܵܥଶ = ሼ݁଺, ݁ହഥ , ݁ଵሽ  ܵܥଷ = ሼ݁ଵ଴, ݁଺ഥ , ݁ହഥ , ݁ଵሽ  ܵܥସ = ሼ଼݁, ݁଻, ݁ଵ଴തതതത, ݁଺ഥ , ݁ହഥ , ݁ଵሽ  

The unavailability of the system (ܳ௦௬௦) can be achieved because the CSs are mutually exclusive, 
and it is expressed as the sum of probabilities of all the CSs. This expression will represent the 
unavailability function of the system. It is defined as: ܳ௦௬௦ =෍ ܥ)ܲ ௜ܵ)௡௜ୀଵ   

where n corresponds to the total number of CSs. Therefore, ܳ௦௬௦ = ܥ)ܲ ଵܵ) + (ଶܵܥ)ܲ + (ଷܵܥ)ܲ (ସܵܥ)ܲ+ +⋯	= ܲ(݁ହ) ∙ ܲ(݁ଵ) + ܲ(݁଺) ∙ (1 − ܲ(݁ହ)) ∙ ܲ(݁ଵ) + ܲ(݁ଵ଴) ∙ (1 − ܲ(݁଺)) ∙ (1 − ܲ(݁ହ)) ∙ ܲ(݁ଵ) +ܲ(଼݁) ∙ ܲ(݁଻) ∙ (1 − ܲ(݁ଵ଴)) ∙ (1 − ܲ(݁଺)) ∙ (1 − ܲ(݁ହ)) ∙ ܲ(݁ଵ)	+ … 
The nature of the events considered in the FT could be different, but a probability assignment is 

necessary to obtain the system failure probability. Unfortunately, the literature does not include the 
values of these probabilities over time, and the WT operators are reluctant to provide them. 
Therefore, the following time–dependent functions have been considered to estimate the probability 
of each event (ܲ(݁௜),  .’In this paper, the time units correspond to ‘months .(ݐ

I Constant probability. 

The probability of the event ݁௜ is constant ܲ(݁௜, (ݐ =   ܭ

where K is a constant value from 0 to 1. 

II Exponential increasing probability. 

The probability function assigned is	ܲ(݁௜, (ݐ = 1 − ݁ିఒ௧ , where ߣ is a parameter that has only 
positive values and determines the rising velocity of the probability. 

III Linear increasing probability 

ܲ(݁௜, (ݐ = ቄ݉ݐ ݐ݉, < ݐ݉,11 ≥ 1 ,݉ > 1 months−1,  

where m determines the rising velocity of the probability. 

IV Periodic probability 

The events have a periodic behaviour, according to the following expression: ܲ(݁௜, (ݐ = 1 − ݁ିఒ(௧ି௡ఈ), n = 1, 2, 3…  

where ߣ is a parameter that is positive and determines the rising velocity of the probability and ߙ is 
a parameter that determines the period size. 
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Once the ܳ௦௬௦	 has been obtained over time, it is essential to identify the events that are most 
important at each time. For this purpose, the IMs can be used to evaluate the contribution of each 
event to the global system unavailability. In this research, three heuristic IMs (Birnbaum, Criticality, 
and Fussell-Vesely) based on the probability of each component k to cause a system failure [62] are 
calculated. 

 The Birnbaum importance evaluates the probability that the system is in a critical condition with 
respect to a certain event, i.e., the occurrence of the event will cause system failure [63]. 

 The Criticality importance is similar to Birnbaum, but it considers the fault probability of an 
event [63]. 

 Fussell-Vesely is given by the conditional probability that, at least, one minimal CS contains 
component i, considering that the system has failed [63]. This measurement considers that events 
with high importance are more prone to causing system failure [64]. 

4. FT Dynamic Analysis for Converter, Generator, Electrical and Electronic Components 

The approach presented in this work has been employed to analyse the generator, electrical and 
electronic components that are installed inside the nacelle. The high-speed shaft drives the rotational 
torque to the generator, where the mechanical energy is converted to electrical energy. This 
conversion needs a specific input speed, or a power electronic equipment to adapt the output energy 
from the generator to the requirement of the grid. Several authors have studied the faults related to 
converters and proposed methods to detect and prevent them. For instance, Swain and Ray [65] 
proposed the analysis of short circuit fault for a DFIG with active crowbar protection; Qiu et al. 
studied open-circuit fault features and proposed a new fault diagnosis algorithm to accurately detect 
faulted IGBT in the circuit arms of WT converters [66]. De Moura et al. [67] proposed a classification 
of imbalance levels based on the analysis of vibration signal. Faiz and Moosavi [68] developed a 
method for detecting air gap and other kinds of eccentricities. 

To summarize, faults in generators can be the result of electrical or mechanical causes [32]. The 
main electrical faults are due to open-circuits or short-circuits in the rotor or stator [30] that could 
cause overheating [69]. Previous research work has demonstrated that bearings, rotors and stators 
involve a high failure rate in WTs [35]. The bearings failures of the generator are usually caused by 
cracks, asymmetry and imbalance [70]. The rotor and stator failures can be caused by broken bars 
[33], air-gap eccentricities and dynamic eccentricities, among other failures [30]. Rotor imbalance and 
aerodynamic asymmetry can be generated by the non-uniform accumulation of ice and dirt over the 
blade systems [30]. Table 2 lists the main elements and failures in the generator, electrical and 
electronic components [71]. 

Table 2. Principal faults in the converter, generator, electrical and electronic components. 

Non-Basic Events Basic Events 
Critical Generator Failure g001 Abnormal Vibration G e001 

Power electronics and electric controls failure g002 Cracks e002 
Mechanical failure (generator) g003 Imbalance e003 
Electrical failure (generator) g004 Asymmetry e004 

Bearing generator failure g005 Air-Gap eccentricities e005 
Rotor and stator failure g006 Broken bars e006 
Bearing generator fault g007 Dynamic eccentricity e007 
Rotor and stator fault g008 Sensor Tª error e008 
Abnormal signals A g009 Temperature above limit e009 

Overheating generator g010 Short circuit (generator) e010 
Electrical fault (PE) g011 Open circuit (generator) e011 

Mechanical fault (PE) g012 Short circuit (electronics) e012 

 

Open circuit (electronics) e013 
Gate drive circuit e014 

Corrosion e015 
Dirt e016 

Terminals damage e017 
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Figure 8 presents the FT for the main elements of the converter, generator, electrical and 
electronic components given in Table 2. 

 
Figure 8. Fault tree of the generator, electrical and electronic components. 

The FT is solved by BDDs, based on the method described in Section 2 and using different 
ordering methods. Table 3 shows the number of CSs provided by each method. The AND, TDLR and 
Level methods provide the minimum number of CSs, 99, whereas the DFS and BFS methods get 171 
CSs. 

Table 3. Ranking methods and CSs. 

Ranking Method Number of CSs 
TDLR 99 
DFS 171 
BFS 171 

Level 99 
AND 99 

A probability assignment has been done by using the time-dependent functions defined in 
Section 3. 

Table 4 shows the parameters that define the probability of each event over time. The parameters 
have been set according to the experience of different partners from the NIMO [27] and OPTIMUS 
FP7 European projects [28]. For confidentiality reasons, there is no detailed information of the specific 
components or WTs. The main purpose in this study is to show an example close to reality. This 
numerical dataset has been arbitrarily generated for each event by simulations. 

The probability functions that link Tables 2 and 4 have been chosen by the authors considering 
the engineering interpretation of each event. For instance, the event “e008” (Rotor and stator fault) 
shows a constant probability of occurrence over time and the “e014” (gate driven circuit) shows a 
linear increasing probability, i.e., the contribution to the system failure of the first event does not 
change over time but the contribution of the second event continues to rise until the probability is 1; 
the event “e016” (Dirty) has been related to a periodic probability because the dirty is expected to be 
eliminated during maintenance processes; the event 017 (terminal damage) is considered as linear 
increasing probability because the responsible phenomena, such as wear or fatigue, increase over 
time. The use of dynamic probabilities for the events enables system failure probability to be 
determined over time. 
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Table 4. Probability distributions for the events considered in Figure 7 and Table 3. 

Event Probability Model Parameters
e001 Exponential increasing 0.0030 = ߣ months−1 
e002 Constant K = 0.0010 
e003 Exponential increasing 0.0025 = ߣ months−1 
e004 Exponential increasing 0.0045 = ߣ months−1 
e005 Linear increasing m = 0.0015 months−1 
e006 Linear increasing m = 0.0009 months−1 
e007 Linear increasing m = 0.0007 months−1 
e008 Constant K = 0.0040 
e009 Periodic 0.0025 = ߣ months−1, 5 = ߙ months 
e010 Constant K = 0.0012 
e011 Constant K = 0.0013 
e012 Constant K = 0.0020 
e013 Constant K = 0.0021 
e014 Linear increasing m = 0.0010 months−1 
e015 Periodic 0.0035 = ߣ months−1, 7 = ߙ months 
e016 Periodic 0.0015 = ߣ months−1, 10 = ߙ months 
e017 Linear increasing m = 0.0010 months−1 

Figure 9 shows the probability assigned to each event. The events have different behaviors 
according to the values of their parameters. The time units considered in this paper correspond to 
months. 

 

Figure 9. Probability over time for each event of Figure. 

Figure 10 presents Qsys(t) over time. This probability has been obtained for 20 months. It does 
not continue rise because there are events (periodic functions) that undergo preventive maintenance.  
The system failure probability must be below the failure probability threshold. The maintenance tasks 
should be set and carried out when the system is close to this threshold. 

The approach proposed in this paper allows the Qsys to be obtained over time using different 
time increments to evaluate the system. This is a novelty regarding the state of the art that has resulted 
in increasing the accuracy of the quantitative analysis. Figure 11 shows the Qsys obtained by using a 
variable time increment from 3 to 9 (blue line). The time increment is five times smaller than the 
increment used from 9 to 20 (green line). This is an important advantage because the critical zone 
(marked as dashed square) can be analysed in further detail. A threshold has been arbitrarily 
established with probability of 0.00125 (horizontal red dashed line). 
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Figure 10. Qsys(t) over time. 

 
Figure 11. Qsys(t) with time variable increment. 

Figure 11 shows that the accuracy in the critical zone is greater. This allows detailed analysis the 
moment the failure probability exceeds the threshold. This procedure shows that the threshold is 
exceeded in the seventh month, however, in Figure 10 the threshold is not exceeded until the mid-
twelfth month. This is an illustrative example about the flexibility of the method and its accuracy in 
critical zones [72]. 

IMs have been calculated employing the methods Birnbaum (Figure 12), Criticality (Figure 13), 
and Fussel-Vesely (Figure 14), described in Section 3 and applied to the FT shown in Figure 8. The 
Birnbaum’s measures are similar for events e001 to e011, whereas e012, e013 and e014 are identified 
as the most critical, followed by e015, e016 and e017 (see Figure 10). According to these results, short, 
open and gate driven circuits are the most critical events due to their occurrences will cause a global 
system failure. Although the probabilities of these events have been considered as constant or linear 
increased, their Birnbaum importance is not constant but it is highly influenced by the ‘health’ of the 
rest of the components. 
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Figure 12. Birnbaum importance for each event over time. 

The Criticality method shows that the event e012 is the most important for the Qsys, followed by 
e0015 and e014 and, finally, by e016 and e017 (see Figure 13). The criticality enables the real risk of 
each failure to be evaluated considering not only the contribution of the event to the global system 
but also the probability of the event. From Figure 13 it can be gathered that, among the most critical 
failures, the short circuit is the most probable event. However, the open circuit does not represent an 
imminent risk in spite of being a very critical failure according to Birnbaum importance. 

 
Figure 13. Critically importance for each event over time. 

The Fussell-Vesely approach shows in Figure 14 that the principal event is e012, and then e014, 
e015, e016 and e017. Again, the most important event is the short circuit. The Fussel-vesely 
importance establishes the ratio in which the event belongs to the cause of the global failure. In this 
case, the presence of corrosion is very usual when a converter failure occurs. 

The main conclusions are that the events from e001 to e011 have the lowest IMs, and the event 
e012 is the most important for Qsys, followed by the events e013, e014, e015, e016 and e017. Only the 
Birnbaum method demonstrates that the main events are e012, e013 and e014. Therefore, the event 
‘short circuit’ should be studied in detail because all the methods provide a high IM value. 

The dynamic analysis proposed in this paper can improve maintenance planning because the 
fault probability is known over time. The IMs allows classification of the main events or components 
that should be considered to reduce the system failure probability, and, therefore, to optimize the 
resources. This analysis can be employed for prognostics and diagnosis tasks. 
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Figure 14. Fussel-Vesely importance for each event over time. 

5. Conclusions 

The condition of the converters and the main electrical components in a WT has been analysed 
over time in this paper via fault tree analysis. In this work, binary decision diagrams are used to 
reduce the computational costs. The cut-sets (combination of basic events whose simultaneous 
occurrence causes the top event to happen) generated by binary decision diagrams, depending on 
the order of events. The “Level”, “Top-Down-Left-Right”, “AND”, “Depth-First Search” and 
“Breadth-First Search” methods have been considered for ranking the events, and a comparative 
analysis of them has been done. The methods AND, TDLR and Level have provided the minimum 
number of cut-sets, 99, whereas the DFS and BFS methods get 171 cut-sets. 

An illustrative fault tree for converters and the main electrical components has been developed. 
The authors have followed the opinion of experts and research studies in establishing the set of events 
and their occurrence probabilities. Importance measures (Birnbaum, Criticality and Fussel-Vesely) 
have been used to identify the most critical events. A set of experiments were carried out where all 
the importance measures provided a similar solution: short circuit (electronics) is the most important 
event for the system reliability over time, followed by the open circuit (electronics), gate drive circuit, 
corrosion, dirty and terminals damage. Consequently, attention needs to be focused on these events 
to improve the reliability of the system. 

The quantitative analysis proposed in this paper is robust and flexible. It allows system failure 
probability to be determined over time. The dynamic analysis proposed in this paper can be used to 
improve the maintenance planning. This novel approach can increase the accuracy of the system and 
allow a correct maintenance plan to be established.  
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Abbreviations 

BDD Binary decision diagram 
BFS Breadth-first search 
CMS Condition monitoring system 
CS Cut-set 
DFIG Doubly fed induction generator 
DFS Depth-first search 
FT Fault tree 
GWEC Global wind energy council 
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IGBT Insulated gate bipolar transistor 
IM Importance measure 
O&M Operation and maintenance 
PFE power feed equipment 
PMSG permanent magnet synchronous generator 
PWM pulse width modulation 
SCADA Supervisory control and data acquisition system 
TDLR Top-Down-Left-Right 
WT Wind turbine 
3L-NPC-BTB Three-Level Neutral-Point Diode Clamped Back-To-Back 
2L-BTB Two-level back-to-back voltage source converter 
Formula Expressions 
CS Cut-set 
Qsys Unavailability of the system	((࢏ࢋ)ࡼ, ࢚) Probability of the event ‘i’ over timeࣅ probability rising velocity ࢻ period size ࡷ Constant 
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