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Abstract: A multi-mode power-split (MMPS) hybrid electric vehicle (HEV) has two planetary
gearsets and clutches/grounds which results in several operation modes with enhanced electric drive
capability and better fuel economy. Basically, the battery storage system is involved in different
operation modes to satisfy the power demand and minimize the fuel consumption, whereas
the complicated operation modes with frequent charging/discharging will absolutely influence the
battery life because of degradation. In this paper, firstly, we introduce the solid electrolyte interface
(SEI) film growth model based on the previous study of the battery degradation principles and
was verified according to the test data. We consider both the fuel economy and battery degradation as
a multi-objective problem for MMPS HEV by normalization with a weighting factor. An instantaneous
optimization is implemented based on the equivalent fuel consumption concept. Then the control
strategy is implemented on a simulation framework integrating the MMPS powertrain model and
the SEI film growth map model over some typical driving cycles, such as New European Driving
Cycle (NEDC) and Urban Dynamometer Driving Schedule (UDDS). Finally, the result demonstrates
that these two objectives are conflicting and the trade-off reduces the battery degradation with fuel
sacrifice. Additionally, the analysis reveals how the mode selection will reflect the battery degradation.

Keywords: multi-objective optimization; power-split hybrid; battery degradation; solid electrolyte
interface (SEI) film model

1. Introduction

Electrification is the trend in clean and efficient vehicle development [1]. Considering the battery
cost and customers’ anxiety of driving mileage, hybrid electric vehicles are still the key technology
from an industrial viewpoint. Power-split hybrid vehicles dominate the blooming hybrid electric
vehicle market. The core of the power-split powertrain is the hybrid transmission of the planetary
gearset which splits and couples the mechanical power from the engine and two electric machines.
The configuration can take advantages of both series and parallel hybrid vehicles [2,3].

Two representative power-split hybrid vehicles are Toyota’s Prius and the Chevrolet Volt.
The former uses an input-split configuration with single planetary gearset (PG) [4]. The latter uses
an output-split configuration with a single PG, as well, whereas the Volt has three clutches and four
operating modes [5]. Furthermore, GM released a new hybrid propulsion system on second-generation
Volt and Cadillac CT6 sedans recently. The second-generation Volt reforms the hybrid transmission,
which has been researched as a Multi-Mode Power-Split (MMPS) configuration with two planetary
gearsets [6,7]. The CT6 adopts a more complicated transmission with three planetary gearsets which
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can satisfy the drivability requirement from the luxury sedan, benefitting from the abundant driving
modes [8].

Despite of the number of planetary gearsets, the alternation of the connection between planetary
gearsets with clutch/ground provides many propulsion schemes and there has been much concern
on this topic [9,10]. Using two planetary gearsets, or more, can provide more operation modes when
clutches are used [11,12]. Based on different configurations, performance, such as fuel economy,
is more likely to be analyzed [11–15].

Motivated by the optimal goal of fuel economy, proposed methods include a wide range of
numerical techniques. For the supervisory control strategy of HEVs, various methods have been
studied and implemented [16]. Heuristic and empirical control methods cannot reveal the full potential
on fuel economy. As a global optimization problem, dynamic programming (DP) can give the optimal
solution over the whole time horizon with the knowledge of the driving cycle, however, the greatest
shortcoming is the heavy computation load which increases exponentially with state variables [17].
Stochastic dynamic programming uses a Markov chain to represent the drive cycle distribution
without the non-causality as deterministic dynamic programming [9]. The equivalent consumption
minimization strategy (ECMS) is an instantaneous optimization which solves the instantaneous fuel
cost at each time step, which is not equivalent to the global optimization problem, but is much easier
to calculate achieving a nearly-global optimization [18,19]. These strategies are optimized for specific
objectives, such as fuel consumption, emission, and drivability.

From the control viewpoint, the battery storage on board improves the fuel economy by acting
the role providing an electrical path besides mechanical path, which increase the control degree
of freedom of energy management strategy [20]. Through the electrical path, fuel consumption
can be reduced by power flow optimization during driving and regenerative braking during
deceleration. However, the frequent charging/discharging could harm the battery system and
accelerate the degradation, especially serious over the long lifetime. Battery degradation mechanisms
are still not as well-understood as their electrical behavior due to their complex, non-linear
characteristics [21]. Promising electrochemical models have been proposed to predict battery
degradation based on which power management has been implemented on plug-in hybrid electric
vehicles [22] and fuel-cell plug-in hybrid vehicles [23].

Regardless of the technique, power management strategies considering battery degradation as
an additional optimal goal is still uncommon. Especially the MMPS HEV can dominate the degree of
electrification among the operation modes, e.g., parallel, power-split, electric driving. The effects of
MMPS acting on the fuel economy and battery degradation deserves to be investigated.

Considering both fuel consumption and battery degradation as integral terms over time, we solve
the multi-objective optimal problem by extending the equivalent fuel consumption.

The paper outline is as follows: In Section 2 we define the MMPS configuration and also
the proposed battery degradation model. Section 3 presents the multi-objective optimization, which
is implemented based on the ECMS concept with a normalization method. In Section 4 simulation
results over NEDC and UDDS driving cycles are analyzed. Conclusions are drawn in the last section.

2. Multi-Mode Power Split (MMPS) Model

The 2-PG configuration implemented as the hybrid transmission couples the power from power
elements, e.g., internal combustion engine (ICE), electric machines (EMs), to the output shaft (Output).
Therefore, the possible design of the four-shaft E-CVT configuration is the permutation of the four
nodes and the four elements (ICE, EM1, EM2, and Output) as much as 4! = 24. A typical design
is picked that transforms the basic Ravigneaux configuration into a new four-shaft hybrid transmission
working as a power-split device [24], as shown in Figure 1a.The simplified lever scheme is also
shown in Figure 1b, where PS1 is the sun gear in the first planetary gearset (PG1) connecting with
Electric Machine A(EMA) with a brake B1 that can lock up the rotation of these two components;
PC1 is the carrier in the first planetary gearset (PG1) also sharing with the second planetary gearset
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(PG2) as PC2 and connected with the output shaft, PR1 is the ring gearset sharing with the second
planetary gearset (PG2) as PR2 and also can be connected or locked with ICE via the clutch C0 or
the brake B0, PS2 is the sun gear in the second planetary gearset (PG2) which is always connected
with EMB.
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Figure 1. (a) Proposed configuration of the MMPS powertrain; (b) scheme of the Multi-Mode
Power-Split (MMPS) powertrain.

Compared with the no clutch power-split design like the Prius with the Toyota Hybrid System
(THS) which is a typical input-split configuration, the proposed MMPS is constituted of two planetary
gearsets, one pair of clutch and brakes at the input node, and another brake at the node connecting
with an electric machine. The components of planetary gearsets and clutch/brake are denoted as PG1,
PG2, C0, B0, and B1. The ring gear, sun gear, and carrier are respectively denoted as PR, PS, and PC
in the scheme.

As listed in Table 1, the combination of the clutch and brakes enables the MMPS with four feasible
modes, two of which are hybrid modes and the other two are electric drive modes also regenerative
braking modes. Benefiting from the pair of clutch/brake denoted as C0/B0, the novel MMPS enhances
the electric drive capability. Otherwise, B1 makes the powertrain switches between the parallel mode
and the compound split mode, which are two representative hybrid modes.

Table 1. Operating modes of the MMPS powertrain.

Mode C0 B0 B1

Compound split 1 1 0 2 0
Parallel 1 0 1

Dual-EM 0 1 0
Single EM 0 0 1

Notes: 1 Clutch/Brake is engaged; 2 Clutch/Brake is disengaged.

2.1. Kinetic Analysis and Equations of Powertrain System

2.1.1. State-Space Equations of MMPS

The state-space representation for dynamics of 2-PG powertrain in [9] is adopt to derive
the Equations describing the multi-mode configuration. The state-space equations are also the theory
of the powertrain model, whose dynamics associated with energy management in Section 3 are of
a relatively low-bandwidth nature. The transient dynamics of clutches and engine are ignored
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in this paper due to the high-bandwidth characteristic which is always taken into consideration
in drivability problems, but not quasi-steady simulation [25]. Additionally, the gear and shaft losses
are ignored here. The state-space equations of MMPS are listed as (1)–(4). Equations (1)–(3) describe
the dynamics of the power-split mode, parallel mode and dual-EV mode, where m is the mass of
the vehicle, r is the radius of the tire, and K is the final drive ratio. IICE, ωICE and TICE, IEM1, ωEM1

and TEM1, IEM2, ωEM2 and TEM2 are the inertia , speed, and torques of the engine, the first electric
machine, and the second electric machine, respectively. ωout is the speed of transmission output shaft.
Tf is the load imposed by the rolling resistance and aerodynamic drag during driving which is defined
at the transmission output shaft. I() with subscript denotes the inertia of the nodes connected with
power components, the subscripts S, R, C indicate the sun gear , the ring gear, and the carrier, and
the subscripts 1 and 2 indicate PG1 and PG2. Similarly, R1, S1, R2, S2 are the radius of the ring gear
and sun gear in PG1 and PG2. F() is the internal force between gear teeth in PG1 and PG2.

(1) Power-split mode:
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.
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(2) Parallel mode:
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(3) Dual-EM mode:
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(4) Single EM mode:

Single EM is the particular case in the parallel mode or dual-EM mode when the ICE or EMA idles.
Compared the ratio between output speed and EMB speed, the parallel mode can provide relatively
larger torque while at low vehicle speed, which is proper for the single EM condition. Therefore,
here we assume that the ratio between the output shaft and EMB in the Single EM mode is the same as
in the parallel mode.

2.1.2. Power Capability of MMPS

The method of lever diagram [26] directly gives the basic relationship and equations of the torque
and speed among the lever nodes, by which we can get the maximum torque and power versus vehicle
speed for each mode, within the limits of power components’ torque and power.

The maximum output torque and power for different modes are shown in Figure 2. Benefiting
from the decouple characteristic of the power-split, the compound split mode can cover a wide vehicle
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speed range, while the parallel mode is limited by the engine maximum speed. However, in the parallel
mode more torque can be output compared with the compound split mode at the same vehicle speed,
which is powerful especially for climbing and accelerating. The dual-EM mode can be considered as
the enhanced electric drive version of the single-EM mode.
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torque of each mode versus vehicle speed.

The maximum power curves give out the direct impression about the powertrain power
performance. Additionally, the maximum power for each mode is used as the hard constraints
during the optimal control iteration.

2.1.3. Electric Subsystem

The electric subsystem containing two electric machines EMA and EMB. Their dynamics
are ignored since their transient characteristics are much quicker than the typical time step of
1 s in power management problems. Nonetheless, the power loss for operating are accounted for
in the static efficiency maps. The power equations for the electric subsystem are shown as:

Pbatt = TEM1ωEM1ηK1
EM1 + TEM2ωEM2ηK2

EM2
Pelec = Pbattη

K3
elec

(4)

where Ki =

{
−1, Tiωi > 0
1, Tiωi < 0

f or i = {EM1, EM2}, K3 =

{
−1, Pbatt > 0
1, Pbatt < 0

, and

ηMGA, ηMGB, ηelec are MGA, MGB, and the electrical transferring path efficiency, respectively.

2.2. Battery Model

2.2.1. Anode-Side SEI Growth Model of Battery Aging

The cell degradation mechanism of SEI layer growth has been detailed by Ramadass et al. [27].
The most common source of capacity fade is the loss of lithium to the Solid-Electrolyte-Interphase

(SEI), which will typically form at the negative electrode during charging. Initially, SEI formation
protects the electrode against solvent decomposition at large negative voltage, but over time it
leads to a gradual capacity fade as the SEI layer thickens. In general, SEI growth results from
irreversible electrochemical decomposition of the electrolyte, which competes with the desired
Faradaic half-cell reaction at the electrode surface. For Li-ion batteries, SEI is formed at the negative
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electrode because typical electrolytes are not stable at the operating potential of this electrode during
charging. The product of this decomposition forms a solid layer on the surface of the active material.
During the SEI formation, the reaction is undertaken as:

S + 2e− + 2Li+ → P ↓ (5)

where the solvent, the electron, and the lithium will be combined as SEI compounds, and intercalated
in the active material.

The SEI film growth model is presented here [28]; for the negative electrode the local volumetric
transfer current density Jtotal is given by a sum of the intercalation current density and the side reaction
current density Js:

Jtotal = JI + JS (6)

where JI is computed via the Butler–Volmer electrochemical kinetic expression:

JI = ani0,n

[
exp

(
αa,nF
RgT

ηn

)
− exp

(
αc,nF
RgT

ηn

)]
(7)

which is driven by the over-potential:

ηn = φs − φe −Ure f
n −

Jtotal
an

R f ilm (8)

where i0,n is the exchange current density and Ure f
n is the equilibrium potential which is evaluated as

a function of the solid phase concentration at the surface of the particle.
The kinetics of the side reaction are described using a Tafel equation, which assume that the side

reaction is considered irreversible:

JS = −ani0,s exp
(
− αcF

RgT
ηs

)
(9)

and the side reaction over-potential is described as:

ηs = φs − φe −Ure f ,s −
Jtotal
an

R f ilm (10)

Once the side reaction current, Js has been calculated, the change in the film thickness δ f ilm during
charging can be calculated by:

∂δ f ilm

∂t
= −

Mp

anρPF
JS (11)

where Mp is the average molecular weight of the constituent compounds of the SEI layer and ρP
is the average density of the constituent compounds. This allows the overall film resistance to be
calculated as:

R f ilm = RSEI +
δ f ilm

κp
(12)

where RSEI is the initial film resistance that is produced during the formation period of the battery,
and KP is the conductivity of the film.

In addition to the resistance change, there is a capacity loss caused by the side reaction current
during charging, leading to capacity changing via the relationship:

∂Q
∂t

=
∫ Ln

0
Js Adx (13)
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To effect an optimal control strategy with the SEI film growth model, the model should be
simplified to accelerate the speed of calculation. Here three additional assumptions are made to create
a volume-averaged 0-D reduced-order model for calculating Js, R f ilm, and Q:

(1) The cell is always in a quasi-equilibrium state, allowing the exchange current density i0,n
to be calculated from the cell SOC alone, neglecting local variations in electrolyte and solid
surface concentration.

(2) The intercalation current density and the side-reaction current densities are uniform over
the anode. This allows us to state that the total reaction current density Jtotal is related to
the applied cell current iapp by the following relationship:

Ibatt =
VOC −

√
V2

OC − 4R · Pbatt

2R
(14)

(3) The anodic and cathodic charge-transfer coefficients are equal (αa = αC = 0.5).

From the above assumptions, the incremental reduced-order model (ROM) equations could be
deduced as:

θn = θn,min + SOCcell(θn,max − θn,min) (15)

Js[N] = −i0,san exp

−F(Ure f
n −Ure f ,s)

2RgT

× exp
(
−asinh

(−iapp[N]/Voln − Js[N]

2ani0

))
(16)

R f ilm[N] = R f ilm[N − 1]− MP∆t
anρPFκP

Js[N − 1] (17)

Q[N] = Q[N − 1] + (ALn∆t)Js[N − 1] (18)

According to the above equations, we can calculate the SEI film growth versus battery current
and state of charge (SOC). The 3-D map is shown in Figure 3.

The steady map demonstrates how the SOC and the current affect the SEI film growth
is represented as the absolute value of instananeous degradation rate with the unit as mA/cm3

as mentioned in [28].Energies 2017, 10, 975 8 of 17 
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2.2.2. Equivalent Circuit Model

In this paper we utilize the most common also simple model of battery, the equivalent
circuit model:

Ibatt =
VOC −

√
V2

OC − 4R · Pbatt

2R
(19)

V = VOC − IbattR (20)

S
.

OC = −
VOC −

√
V2

OC − 4R · Pbatt

2R · Cbatt
(21)

where R is the resistance of the battery cell, Pbatt is the battery power, VOC is the open circuit voltage,
and Cbatt is the capacity of the battery. The current calculated from the battery model is used to find
the anode-side growth discussed in Section 2.2.1.

3. Instantaneous Multi-Objective Optimization (MOO)

To integrate battery-health models with instantaneous optimal control, we build a control
framework for the multi-objective power management strategy design as shown in Figure 4. It is based
on an ECMS control concept. With the feedback of variables, such as battery current and SOC,
the battery degradation can be estimated from a simplified battery aging model.Energies 2017, 10, 975 9 of 17 
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To synthesize the fuel consumption and battery-health degradation, which is a multi-objective
optimal control problem, we combine both objectives into a scalar objective with a weighting factor α.
The general mathematical formulation is as given as:

min c(x, u) = α · cbatt(x, u) + (1− α) · c f uel(x, u) (22)

where the individual objective functions cbatt(x, u) and c f uel(x, u) are the normalized battery
degradation term and equivalent fuel consumption term, respectively, and the state variable
is indicated in the state space Equations (1)–(3) and Equations (19)–(21), e.g., in the power-split
mode: x = [ωice, ωEM1, ωEM2, ωout, SOC] and u = [Tice, TEM1, TEM2]; in the parallel mode:
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x = [ωice, ωEM2, ωout, SOC ] and u = [Tice, TEM2]; in the dual-EM mode x = [ωEM1, ωEM2, ωout, SOC]
and u = [TEM1, TEM2]; and in the single-EM mode: x = [ωEM2, SOC] and u = TEM2.

The equivalent fuel consumption c f uel(x, u) has the same formulation as the instantaneous
equation used in ECMS:

.
mtotal =

.
m f uel + SCeng · f (SOC) · Pbatt · ηelec

K3

= ηice · Pice + s · ηelec
K3 · Pbatt

(23)

where the engine operating along the BSFC curve has a near-linear relationship between fuel
consumption and engine power; SOC weighting factor f (SOC) can adapt along with the SOC
derivation from the target value.

Equivalence factor SCeng has a physical meaning between electric power and engine fuel
consumption conversion [18], when the battery discharges Pbatt > 0, the electric machines
turn the electric power into mechanical power, which relieves the engine load with less engine
fuel consumption.

In simplified form, s is the combination factor of SCeng and f (SOC), when the current SOC is less
than SOCL, s encourages the powertrain to use the engine to recharge the battery; vice versa when
SOC higher than SOCH , s encourages the powertrain to work as an EV to decrease fuel consumption.
Thus, s plays the role to regulate the SOC trajectory as a charge-sustaining progress.

The electric system contains electric machines, inverters, and battery. The power flows
in the electric system Pelec is calculated as shown in Equation (4).

The battery degradation term is represented by the anode-side SEI film growth rate as
Equation (11). Then the term of battery degradation in optimal objective can be calculated as:

cbatt(x, u) =
.
δ f ilm(SOC, Ibatt) = g f ilm(SOC, Pbatt) (24)

The state constraints are given by:

wice,min < wice < wice,max
wEMA,min < wEMA < wEMA,max
wEMB,min < wEMB < wEMB,max

SOCmin < SOC < SOCmax

(25)

The control variable constraints are given by:

Tice,min < Tice < Tice,max(wice)

TEMA,min(wEMA) < TEMA < TEMA,max(wEMA)

TEMB,min(wEMB) < TEMB < TEMB,max(wEMB)

Vmin < VOC < Vmax

Imin < Ibatt < Imax

(26)

Additionally, as both objectives have different meaning and number scale, they are normalized by
scaling the range of their natural values to values between zero and one.

Based on the knowledge of the relationship between fuel consumption and battery degradation
from previous global optimization [29], we pick the typical weighting factor α = 0.3 denoted as
a combined situation compared with α = 0 denoted as a fuel-only situation.

The vehicle parameters are listed in Appendix A in Table A1.

4. Results and Analysis

Simulations have been run with respect to the framework shown in Figure 4, where the
multi-objective controller calculates the solution iteratively through feasible operating points. The plant
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model includes the power components’ static characteristics, planetary gear sets’ kinetics, vehicle
dynamics, and battery, which are also respectively validated in previous research work [22,24,30].

To evaluate the effect of the MOO control strategy, two solutions are obtained with factors
α = 0.3 and α = 0 which, respectively, correspond to emphasizing fuel saving and a balance between
consumption and battery aging.

Additionally, as the MMPS performance is related with driving demand, simulations are also
implemented over two typical driving cycles, NEDC and UDDS, to investigate the impact optimization
of battery degradation and fuel economy, comprehensively.

4.1. NEDC Driving Cycle

The simulation starts from initial SOC which equals to 0.6 and since the second successive NEDC
cycle, the CS (charge-sustaining) strategies with two different weighting factors both sustain the SOC
trajectory balanced at 0.66 over one single driving cycle. The concerned performance with balanced
SOC is listed in Table 2.

Table 2. Fuel consumption and film growth over the single NEDC cycle.

Drive Cycle
Fuel Consumption [L/100 km] Film Growth [mA/cm3]

α = 0.3 α = 0 α = 0.3 α = 0

NEDC 5.22 4.2 1.1442 × 103 1.1958 × 103

Firstly, the performance indicated there exists conflict between the two optimal goals. The MOO
controller reduces the SEI film growth by 4.3% with 1 L/100 km fuel increased during the CS stage.

Figure 5 shows the mode selection and SOC trajectory over the NEDC cycle where the actual
vehicle speed can follow the desired vehicle speed.
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Over one NEDC cycle both controllers ensure that SOC starts and ends at the same point,
while the mode selection is different especially during the first low-speed stage. Compared with
the strategy considering only the fuel economy, the multi-objective method prefers the enhanced EV
mode with two electric machines which leads to lower SOC trajectory. On the other hand, to maintain
charge-sustaining (CS) during the following low-speed stages, the compound split mode is employed
as a supplement to the dual-EM mode, while the former control strategy only adopts the parallel mode
during the low-speed stage, and regenerative braking energy helps to sustain the SOC trajectory.

To investigate how the SOC trajectory affects the battery degradation, the (Ibatt, SOC) distributions
of two different controllers are shown in Figure 6, where the rectangle is the boundary of SOC
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and current. The contour proves the SEI film growth rate is very sensitive to SOC compared with
the equivalent fuel consumption, because the Li-ion battery has nearly constant open-circuit voltage
with respect to SOC in the allowable SOC range. Thus, multi-objective optimization intends to keep
the SOC variates in a lower interval as shown in the circled area.
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4.2. UDDS Driving Cycle

As another typical and urban driving cycle, UDDS cycle contains more dynamic speed variation.
The multi-objective-optimization also runs over the UDDS cycle and the conventional optimization
considering only the fuel economy. The balanced SOC for single-objective and multi-objective
simulations are, respectively, 0.56 and 0.54, and the fuel consumption and battery degradation terms
are listed below in Table 3.

Table 3. Fuel consumption and film growth over a single UDDS cycle.

Drive Cycle
Fuel Consumption [L/100 km] Film Growth [mA/cm3]

α = 0.3 α = 0 α = 0.3 α = 0

UDDS 5.23 4.65 1.2893 × 103 1.3333 × 103

The conflict between the fuel minimization and battery ageing is also obvious from the simulation
results. Compared with NEDC cycle, both fuel consumption and battery degradation deteriorate over
the UDDS cycle due to the intense power demand and vehicle speed fluctuation, which are shown
in Figures 7 and 8.

Figures 7 and 8 demonstrate the mode switch. The multi-objective optimization intends to keep
the SOC trajectory in a lower level than the single optimization. Therefore, more electric driving modes
are selected within the available speed and SOC range. While the SOC acutely drops, the parallel mode
is called and provides power from the engine. The statistics of mode selection are shown in Figure 9.
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The enhanced electric drivability of the MMPS is significant in the latter optimization which
can be directly seen from the mode preference in Figure 9b compared with Figure 9a. Additionally,
parallel mode substitutes some of the compound split mode as the dual-EM mode substitutes more of
the single EM mode.

The distribution of (Ibatt, SOC) for both of the different optimizations, respectively, with α = 0
and α = 0.3 indicates a similar pattern as the NEDC cycle. The results are shown in Figure 10a.

The contour of SEI film growth shown in Figure 10a illustrates that the battery degradation
increases while SOC and discharging current increases. Figure 10b shows the battery current during
the entire cycle, where the multi-objective optimization obviously limits the current amplitude.
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5. Conclusions

The proposed multi-objective optimization has been implemented on a hybrid electric vehicle
with a novel MMPS powertrain on board. This particular powertrain is not only efficient, but also
provides additional control degree of freedom.

The SEI film growth model with 3-D map is integrated in the optimization, so the battery
degradation can be treated as an integral term, like fuel consumption of the engine. The goals of
the multi-objective optimization are obviously conflicting and affected by the power splitting between
the mechanical path from the engine and the electric path from the battery. However, the relationship
is complex due to the non-linear nature of the battery degradation model.

The instantaneous optimization control-oriented framework provides a unified modeling
environment, based on which the optimization process is simulated with different weighting factors
and over two typical driving cycles.

The simulation results indicates that during the charge-sustaining stage, the strategy considering
battery aging directs the SOC trajectory within a lower range. As a result, more electric driving modes,
especially the dual-EM mode, are employed over both NEDC and UDDS cycles. For hybrid driving,
more parallel modes are selected as an optimal solution. Due to the relatively low SOC, the MOO
controller prefers the parallel mode, which eliminates the circuitous power between EMA and EMB
in the electric path compared with the compound split mode.

The research in this paper proves the multi-objective optimization, including battery
degradation-consciousness, is effective as an instantaneous control method for the MMPS configuration.
It can reduce the battery degradation and instruct the mode selection and, especially fully explore
the enhanced electric driving capability. For charge-sustaining stage, SOC distribution is supposed to
concentrate in the lower range.
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Different from CS operating for HEV, charge depleting (CD) and CD-CS blended mode
are particular in PHEV, where the batteries discharge/charge more deeply with EV modes. Therefore,
the patterns which affect the battery aging process is different. The balanced SOC obtained from
the CS stage can be used as a reference. In future work, we will make efforts to explore the relevant
research based on the instantaneous control framework. Battery degradation is a very complex and
long-term state, which needs more experimental data to validate the state variation. In the future
related experiments need to be implemented with different control strategies. Over a long lifetime of
the battery pack, the degradation will be more obvious and significant, as well as the users’ cost of fuel
consumption. Therefore, more research can also be expanded deeply from the viewpoint of cost and
the relevance between the battery capacity loss and fuel consumption
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Appendix A

Table A1. Vehicle Parameters.

Vehicle

Mass (kg) 1380
Frontal Area (m2) 2.33

Cd 0.25
Tire Radius (m) 0.308

Final Drive 3.267

Transmission
PG1 ratio 2.35
PG2 ratio 3.175

Engine
Max speed (rpm) 5200
Max torque (Nm) 142 @ 4000
Max power (kW) 73

EMA
Max speed (rpm) 12,000
Max torque (Nm) 140
Max power (kW) 42

EMB
Max speed (rpm) 12,000
Max torque (Nm) 200
Max power (kW) 60

Battery
(LiFePO4)

Capacity (Ah) 6.5
High Voltage 201.6 V
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