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Abstract: It is important to reveal the relations of physical factors to deposition of contaminants on
insulator. In this paper, the simulation model of high voltage end of insulator was established to
study the force and motion characteristics of particles affected by electric force and airflow drag force
near the ultra-high voltage direct current (UHVDC) insulator. By finite element method, the electric
field was set specially to be similar to the one near practical insulator, the steady fluid field was
simulated. The electric force and air drag force were loaded on the uniformly charged particles.
The characteristics of the two forces on particles, the relationship between quantity of electric charge
on particles and probability of particles contacting the insulator were analyzed. It was found that,
near the sheds, airflow drag force on particles is significantly greater than electric force with less
electric charge. As the charge multiplies, electric force increases linearly, airflow drag force grows
more slowly. There is a trend that the magnitude of electric force and drag force is going to similar.
Meanwhile, the probability of particles contacting the insulator is increased too. However, at a certain
level of charge which has different value with different airflow velocity, the contact probability
has extremum here. After exceeding the value, as the charge increasing, the contact probability
decreases gradually.

Keywords: electric force; air drag force; uniform charged; contact probability; contamination particle;
multi-physics field

1. Introduction

The state of outdoor polluted insulation is closely related to the normal operation of power
systems [1]. The deposition of contaminants on insulator surface is affected by various physical effects.
Some studies have been done concerning outdoor insulation pollution for preventing and reducing
operation accident caused by pollution flashover [2,3]. Some research on insulator structure and
operation performance has pointed out that composite insulator has great advantages over porcelain
and glass insulator in the UHVDC system. The structure of composite sheds is closely related to the
DC pollution flashover characteristics, the parameters of the shed affects the partial discharge on shed
surface and flashover voltage [4,5]. Aerodynamic structure of the shed can play a role in reducing
insulator pollution and improving wet discharge voltage [6].

The precondition of flashover is the existing of contamination layer on the surface of the insulator,
and related with other factors, such as humidity, temperature, and weather conditions [7–9], which
is a very complex physical process. The motion of contamination particles in atmosphere is affected by
air drag force, electric force, collision force, and other forces. To analysis the forces on the contaminant
particles is helpful to reveal the physical process and the laws of insulator contamination, to offer more
effective antifouling measures, and to improve the design of the insulator.
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With respect to the analysis of the motion of contamination particles near the insulator, Ye et al. [10]
established the dynamic model under the condition of low wind speed based on the theory of fluid
mechanics and two-phase flow, and studied the force characteristics of the contamination particles
near the insulator under the condition of low wind speed. On the basis of flow field around insulators
simulated by the method of computational fluid dynamics, Jiang et al. [11] analyzed the effects of
free stream velocity, diameter of particles, and angle of the free stream on the collision coefficient of
contamination particles. Sun et al. [12] built a high-speed railway insulator simulation model, and
analyzed the force situation of contamination particles in high speed airflow. The relationships
of the pollution degree characterized by the volume fraction of the contamination on the shed
upper or lower surface with airflow velocity, and angle of airflow were declared. However, none of
the above simulation studies was concerned with the effect of electric field force on the motion of
contamination particles.

By some coaxial electrode model experiments and two-dimension axial symmetric electrode
simulation, it is indicated that the charged dust particles deflect along the electric field line driven by the
electric force, the drag force dominates and the particles move with the strong wind [13]. Sun et al. [14]
pointed out that the contamination on insulator is greatly affected by electric field, and is more serious
under DC voltage than AC voltage from the experiment phenomenon of contamination tests of
insulator in a small dust chamber. Liu [15] discussed the movement direction of fog particles
in ionized field around HVDC transmission line, and studied the polarity of fog particles and
motion characteristics in ionized field by the experiments, similarly to the works of Wang et al. [13].
Ravelomanantsoa [16,17] raised an experiment similar to wind tunnel test to study the accumulation of
road salt on the energized insulator, involved the factors of air flow velocity and salt particle diameter.
From the results of experiment and calculation of scale model insulator, it was indicated that the
factor airflow has the greatest influence on particle motion; the electric force causes the deflection of
contamination particles as moving between the sheds [18]. Olsen [19] considered the effects of airflow
drag force, the electric force and gravity in the calculation of particle trajectories and contaminant
distribution on insulator string which is a cylinder model.

In the present studies mentioned above, the relationships between contamination particle
movement, pollution situation, fluid field, and electric field were discussed from the two approaches of
simulation and experiment. However, the quantitative analysis of the relationship between the motion
of contamination particles, fluid field, and the electric field near the practical insulator is not involved.
In this paper, the electric field near the high voltage end of insulator under the operating environment
was taken as the background electric field; the quantitative effects of airflow drag force and electric
charge on contamination particle motion were analyzed with the condition of low airflow velocity.

2. Analysis of Forces on Contamination Particles near Insulator

It is necessary to clarify the forces on contamination particles in the study of motion of natural
contaminants. According to the difference of material form, the contamination particle is considered
as dispersed solid phase, and the air is a continuous gas phase, the surface of the insulator is the
fluid–wall boundary [11,20,21]. The volume fraction of dust particles in the atmosphere is very small,
which is sparse discrete phase, the effect of the particles on the air flow and the interaction between
particles can be neglected [10,22].

The forces on the contaminant particle moving near the insulator can be classified into two types:
the force produced by fluid flow and the force produced by external physical field. The fluid forces
include drag force, Magnus spin lift force, Saffman shear lift force, pressure gradient force, and so on.
Wherein, the drag force has a most important role, the other forces are too small to be considered in
the motion. The external physical field forces include gravity, polarization force, electric force and
magnetic force, etc. Because the high intensity of the electrical field near the high voltage end of
insulator, the effect of electric force on contamination particles should be considered while neglecting
the effect of very small polarization force [13,23].
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2.1. Air Drag Force

As a single spherical particle moving in the atmosphere, the drag force can be expressed as [23]

FD =
1
2

CD Apρu2
p =

1
8

CDπd2
pρu2

p, (1)

where CD is the drag coefficient, up is the velocity of spherical particle relative to fluid, Ap and dp are
the projection area and diameter of spherical particle, ρ is the fluid density.

The drag coefficient CD is related to Reynolds number Re which is the ratio of inertia force
and viscous force in physics. There is a complex airflow field near the insulator, and the Reynolds
number has a spatial distribution. When the spatial position of the particle is changed, the air drag
force is very different. Therefore, the acting of drag force on contamination particle is a transient
process, the magnitude and direction of the drag force could be calculated according to a certain time
and position.

2.2. Electric Force

In the electric field, especially the DC ionized field, the contaminant particles are charged during
moving. A majority of charged particles by field charging in atmosphere have a diameter size between
1 µm and 100 µm whose ratio is about 90% [11,13]. Saturated quantity of electric charge on each
particle can be calculated as [24]

qps =
3εr

εr + 2
ε0πdp

2Ep, (2)

where Ep is the maximum external electric field density as the particle has saturated charges in the
non-uniform electric field, dp is particle diameter, εr is the relative permittivity of particle, ε0 is the
permittivity of free space. The Ep is distributed in space; the particles in a non-uniform electric
field have different saturated charge. In considering a small range of particle charges, to reduce the
complexity of analysis, it can be considered that Ep has a uniform value.

The particle has saturated charges, the electric force Fe is

Fe = qpsE0, (3)

where E0 is the background electric field density at the position where the charged particle is.

2.3. Gravity

For spherical particle, the gravity on it can be expressed as

Fg =
1
6

πdp
3ρpg, (4)

where ρp is particle mass density, g is gravity acceleration.
The motion equation of contamination particle near insulator combined air drag force, electric

force, and gravity can be expressed as

1
6

πdp
3ρp

dv
dt

= FD + Fe + Fg, (5)

where v is the moving velocity of particles relative to the ground.

3. Simulation

The drag force and electric field force is the parameters changing with time and space, thus the
three dimension simulation is essential for studying the contamination particles motion. The finite
element method was applied in the simulations of the electric and fluid fields. The forces on the
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particles are derived from the mechanical action of the electric field and flow field on the dispersed
phase particle. Particle trajectory and motion state can be calculated by forces.

3.1. The Model and Calculate Condition

The study object is the contaminant particles moving around the high voltage end of the ±800 kV
composite insulator. Referring to the practical insulator with a length of 10.2 m, creepage distance
is 35.1 m [25], the simulation model of high voltage end was built after simplifying some fittings
and details of sheds. It is shown in Figure 1. The simplified model is 1 m full length—which has
a 0.2 m metal joint and a 0.8 m insulate rod with 50 mm diameter—only has sheds at the high
voltage end in which the bigger shed diameter is 246 mm; the middle shed diameter is 186 mm.
The spherical particles were used to simulate the contaminant dust [20]. From the contamination
data in the field [26], the contamination particles with diameter is 20 µm accounts for the majority
of the contamination samples, and the major component of insoluble matter is SiO2. So, the physics
parameters of contaminant particles were that the particle diameter is 20 µm, the bulk density of SiO2

is 2200 kg/m3, the relative permittivity is 4 [27].
The insulator string and the surrounding space are symmetrical. In order to save the computing

resources, the geometry and the calculation domain are built up with the 1/2 part based on the axial
section of insulator. The background electric field near the high voltage end of the insulator was
established which is similar with the one around the ±800 kV composite suspension insulator [25].
The distribution of electric field intensity is shown in Figure 2.
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Figure 2. The high voltage end simplified model of composite insulator.

In the fluid field simulation, Reynolds average Navier–Stokes equation (RANS) and k-ε turbulence
model were applied [21]. The initial airflow velocity at inlet was set to 1, 2, 3, and 5 m/s, and the
direction was perpendicular to the insulator axial. The outlet condition was zero pressure diffusion.
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In the component of particle tracing for fluid flow, the release velocity of particles was consistent with
the airflow velocity in turbulent flow component; the electric force and drag force were added as the
factors affect the particle motion in the component. The state of particle when contacting the surface of
the insulator can be described in that it sticks to the contact position, and motion parameters maintain
the value at the moment of contact, and it can be called as frozen.

All particles were charged uniformly, and the charge on each particle reached saturation value
as the Ep was set to 200 kV/m. The polarity of space charges in the vicinity of conductor of the DC
transmission line is similar to the conductor’s, and the charged particles have the same polarity as the
high voltage end of the insulator [15,28,29]. A transient solution was applied to simulate the particle
tracing. The simulation time was 1 s, and time step was 0.01 s.

There were three components be used for simulation modeling. Firstly, the electric field near
high voltage end of insulator was calculated in the electrostatics component, the data of electric field
were used as values of variables not solved in the static turbulence study. Secondly, the turbulent flow
component was used to simulate fluid field. As the things above mentioned, the data of electric field
and fluid field were saved in the static turbulence study. Thirdly, for studying the moving processes of
contamination particles, the component of particle tracing for fluid flow was applied to calculate the
motion state of particles with the gravity, drag force, and electric force which was taken from static
turbulence study. The particle charge was set as a particle property in particle tracing component
calculated by Formula (2) when a value of Ep was specified.

3.2. Simulation Results

When the airflow entrance velocity V0 was 3 m/s, the airflow velocity distribution near the
insulator model is shown in Figure 3. There was a small area of airflow deceleration zone on the
windward side of insulator, the airflow velocity in the vicinity of insulator was less than the entrance
velocity. There was a wide range of low velocity zones on the leeward side, but the air velocity
increased gradually as airflow was moving away from the insulator.
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Considering the particles had been charged saturated which still had a certain distance away
from sheds. The saturated charge on single particle was 4.4505 × 10−15 C which is set to 1 p.u.,
as Ep = 200 kV/m. The time of releasing contamination particles from entrance is 0 s. A majority of
particles had arrived at the leeward side of sheds after 0.4 s with the help of gravity, electric force, and
airflow drag force, a part of them were frozen when contacting the sheds. At this moment, the position
of contamination particles is shown in Figure 4. The distribution of the contamination particles on
the sheds as the charge Q on single particle was 1, 10, 30, and 50 p.u. is shown in Figure 5. The most
of particles contacted to sheds were frozen on the lower surface, and a few of them were stay on the
edge of sheds. It is revealed that the contaminants tend to accumulate on the lower surface of sheds
at the high voltage end of insulator. This phenomenon is similar with the practical contamination
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characteristics and distribution of DC insulators [30–32]. Similarly to the simulation results of this
paper, in another study of contamination particle deposit characteristics considering the effects of
electric force and air drag force with neglecting turbulent flow, the researchers in the theory analysis
pointed out that the charged particles which have same polarity with conductors, deflected and hit the
lower insulator surface as sweeping past the insulator.. In their scale model experiment, the deposition
phenomenon of the bottom surface of sheds occurred [33].Energies 2017, 10, 969 6 of 11 
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Figure 5. The distribution map of contamination particles frozen on insulator surface, when
(a) Q = 1 p.u.; (b) Q = 10 p.u.; (c) Q = 30 p.u.; and (d) Q = 50 p.u.

4. Analysis of Characteristics of Forces and Motion

A rectangular plane that is perpendicular to windward, 604 cm2, was drawn. All force data of
each particle in this plane were extracted for analyzing the characteristics of forces on particles closed
to the sheds.

4.1. Characteristics of Air Drag Force and Electric Force

When airflow entrance velocity V0 was 3 m/s, the single particle charge was 1 p.u., the direction
of air drag force and electric force on particles which moved to the front of the bigger shed edge at
0.19 s after release are shown in Figure 6, and those that moved to the back of the sheds at 0.28 s
after release are shown in Figure 7. From the figures, it is observed that the direction of electric force
has obvious regularity which always departs from the high voltage end of insulator. The electric
force plays a role in slowing down the contamination particles on the windward side of insulator,
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and accelerates particles moving away on the leeward. However, the direction of air drag force does
not have obvious regularity, it is closely related to the turbulence, electric field distribution and other
factors. So it is difficult to quantify the particle motion characteristics from the direction regularity of
air drag force.

It can be seen that the drag force increased remarkably when the particles moved to the place
be apart from the edge of bigger shed 0.16 m. So it is inferred that the turbulence and electric field
close to the insulator play more important roles in the particle motion from here. In order to study
the numerical relationship between drag force and electric force, the values of forces on each particle
were extracted to plot a series of curves. These curves are shown in Figure 8. The electric force and
drag force curves were plotted respectively when particles have a different charge Q. On condition
that the charge Q was 1 p.u., the drag force was higher than the electric force about 0.4 to 0.5 orders
of magnitude from the statistical data. With Q increasing from 1 p.u. to 10 p.u., the drag force and
electric force on particles were increased overall, nevertheless, the electric force increased more greatly
than the drag force. When Q > 30 p.u., the magnitude curves of drag force and electric force became
more and more similar. The electric force played a more important role to affect the motion of particles
than the drag force, and the magnitude of them tended to equilibrium gradually.
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4.2. The Relationship between Charge and Particle Contact Probability

One important issue about contamination depositing is a process of contaminant particles
contacting and adhering on the insulator surface. The more particles are in contact with the insulator,
the greater the probability of contamination deposition is. An indirect parameter to characterize the
degree of contamination was defined. It is the ratio of the number of particles in contact with the
insulator surface to the total number of particles released, and named as the contact probability of
particles Pct.

The contact and adhesion determine the deposition of contaminant particles on the surface of
insulators. The more contaminant particles that contact the insulator, the greater the accumulation
of contaminant is on the surface. A ratio of number of particles contact with the insulator sheds to
the total number of particles released from inlet was defined for indirectly representing the degree of
contamination, and named as the contact probability of particles Pct.

Pct = Nct/Ntotal , (6)

where Nct is the number of particles contact to the insulator surface, Ntotal is the total number of
particles released.

The velocity of airflow V0 was 1, 2, 3, and 5 m/s, the relationship curves between charge Q on
single particle and contact probability Pct are shown in Figure 9. The range of Q was from 1 p.u. to
60 p.u. It is revealed that, at low airflow velocity (V0 ≤ 3 m/s), the contact probability is approximately
linearly increases in the front of the curve with the charge increasing. However, it decreases when the
charge has a certain quantity. When the velocity of airflow from entrance reduced from 3 m/s to 1 m/s
gradually, the particle charge was reduced from 30 p.u. to 10 p.u. according to the point of maximum
contact probability, but the maximum contact probability still remained at about 0.011. However,
when the airflow velocity reached 5 m/s, the curve of contact probability had some differences with the
other curves under lower airflow velocity. At the initial stage of particle charge increasing, the contact
probability increased to about 0.011 according to the particle charge 40 p.u. When the particle charge
continued to increase to 60 p.u., the value of Pct was still near 0.0113, and there was no downward trend.

In other previous studies [33], a deposition experiment of a scale insulator model applying DC
voltage to a line conductor in test chamber was carried out. The results indicated that the average
contamination on the sample insulator surface is indeed proportional to applied voltage that is
shown in Figure 10. The electric field scales linearly with the applied voltage, the electric force on
charged particles changes linearly, too. As in this paper, increasing the quantity of charge on particle,
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the electric force also changed linearly. The curves in Figure 9, especially the linear part on the left
side, have a similar shape to the curve in Figure 10.
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Figure 9. The relationship of electric charge on particles and particles contact probability with different
airflow velocity V0.

These characteristics can be explained in that the electric force on particle increased with the
increasing of charge, while gradually performing a balance with drag force. At this moment, the
particles were more easily to move to sheds that lead to the maximum value of the contact probability.
As the charge increasing further, the particles were rejected away from insulator by extremely great
electric force, and the number of particles near the insulator was reduced, which lead to the decrease
of the contact probability. As the airflow velocity increases, more electric force is required to balance
the drag force, therefore, the particle charge corresponding to maximum of contact probability under
different V0 was also increased, and the maximum of Pct slightly increased near 0.011 with V0

increasing. The role of airflow drag force on contaminant particles diminished, when the inlet velocity
is reduced, the increasing charge and electric force had a more pronounced effect on the movement
of particles.

Energies 2017, 10, 969 9 of 11 

 

As the charge increasing further, the particles were rejected away from insulator by extremely great 
electric force, and the number of particles near the insulator was reduced, which lead to the decrease 
of the contact probability. As the airflow velocity increases, more electric force is required to balance 
the drag force, therefore, the particle charge corresponding to maximum of contact probability under 
different V0 was also increased, and the maximum of Pct slightly increased near 0.011 with V0 
increasing. The role of airflow drag force on contaminant particles diminished, when the inlet velocity 
is reduced, the increasing charge and electric force had a more pronounced effect on the movement 
of particles. 

 

Figure 10. The relationship between deposition and applied insulator voltage [33]. 

5. Conclusions 

By the simulation of motion of contamination particles near high voltage end of UHVDC 
insulator involved fluid field and electric field based on situation of simplified insulator model and 
uniform charging on contamination particles, the characteristics of electric force and airflow drag 
force on particles were analyzed. Based on the analysis of results, it can be concluded that: 

1. The direction of electric force on contamination particles has obvious regularity which is always 
departed from the high voltage end of insulator, however, the direction of air drag force has no 
regularity. 

2. Under these study assumptions, the airflow drag force on the contaminant particles has 
significantly greater magnitude than the electric force on the windward side of sheds when the 
quantity of electric charge on a particle is not great. 

3. While charge is multiplying, the electric forces on particles have a linear increase as the growth 
rate of drag force is less than the electric force’s. This leads to the electric force being greater than 
the drag force as 2 p.u. < Q < 30 p.u.; it has a trend that the magnitude of electric force is equal to 
drag force, both of them form a state of equilibrium as Q > 30 p.u. in the simulation of airflow 
entrance velocity V0 is 3 m/s. 

4. The probability of particles contacting the insulator surface increases with increasing particle 
charge. However, at a certain level of charge qps which has different value with different airflow 
velocity V0, the contact probability has extremum here that is about 0.011. When the charge 
increases after exceeding the value, the contact probability decreases gradually. 

5. The role of airflow drag force on contaminant particles diminishes as the velocity of airflow 
decreases, the increasing charge and electric force have a more pronounced effect on the 
movement of particles. 

Acknowledgments: Research for this paper was supported by National Natural Science Foundation of China 
(Grant No. 51607126). 

Author Contributions: Lei Lan and Gongda Zhang and Yu Wang conceived and designed the simulations; 
Gongda Zhang performed the simulations; all authors analyzed the data; Gongda Zhang wrote the paper, while 
other authors offered their modification suggestions for the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

0

1000

2000

3000

4000

0 2 4 6 8

D
ep

os
ito

n 
[m

g]

Applied insulator voltage [kV]

Figure 10. The relationship between deposition and applied insulator voltage [33].

5. Conclusions

By the simulation of motion of contamination particles near high voltage end of UHVDC insulator
involved fluid field and electric field based on situation of simplified insulator model and uniform
charging on contamination particles, the characteristics of electric force and airflow drag force on
particles were analyzed. Based on the analysis of results, it can be concluded that:

1. The direction of electric force on contamination particles has obvious regularity which is always
departed from the high voltage end of insulator, however, the direction of air drag force has
no regularity.
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2. Under these study assumptions, the airflow drag force on the contaminant particles has
significantly greater magnitude than the electric force on the windward side of sheds when
the quantity of electric charge on a particle is not great.

3. While charge is multiplying, the electric forces on particles have a linear increase as the growth
rate of drag force is less than the electric force’s. This leads to the electric force being greater than
the drag force as 2 p.u. < Q < 30 p.u.; it has a trend that the magnitude of electric force is equal to
drag force, both of them form a state of equilibrium as Q > 30 p.u. in the simulation of airflow
entrance velocity V0 is 3 m/s.

4. The probability of particles contacting the insulator surface increases with increasing particle
charge. However, at a certain level of charge qps which has different value with different airflow
velocity V0, the contact probability has extremum here that is about 0.011. When the charge
increases after exceeding the value, the contact probability decreases gradually.

5. The role of airflow drag force on contaminant particles diminishes as the velocity of airflow
decreases, the increasing charge and electric force have a more pronounced effect on the
movement of particles.
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