
 

Energies 2017, 10, 966; doi:10.3390/en10070966 www.mdpi.com/journal/energies 

Article 

Quick Screening of Pareto-Optimal Operating 
Conditions for Expanding Solvent–Steam Assisted 
Gravity Drainage Using Hybrid Multi-Objective 
Optimization Approach 
Baehyun Min 1,*, Krupa Kannan 2 and Sanjay Srinivasan 3 

1 Department of Climate and Energy Systems Engineering, Division of Sustainable Systems Engineering, 
Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul 03760, Korea 

2 Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, TX 78712, USA; 
krupa.kannan@utexas.edu 

3 Department of Energy and Mineral Engineering, College of Earth and Mineral Sciences,  
Pennsylvania State University, University Park, PA 16802, USA; szs27@psu.edu 

* Correspondence: bhmin01@ewha.ac.kr; Tel.: +82-2-3277-6946 

Received: 20 April 2017; Accepted: 5 July 2017; Published: 10 July 2017 

Abstract: Solvent–steam mixture is a key factor in controlling the economic efficiency of the 
solvent-aided thermal injection process for producing bitumen in a highly viscous oil sands 
reservoir. This paper depicts a strategy to quickly provide trade-off operating conditions of the 
Expanding Solvent–Steam Assisted Gravity Drainage (ES-SAGD) process based on 
Pareto-optimality. Response surface models are employed to evaluate multiple ES-SAGD scenarios 
at low computational costs. The surrogate models play a role of objective-estimators in the 
multi-objective optimization that provides qualified ES-SAGD scenarios regarding bitumen 
recovery, steam–energy efficiency, and solvent-energy efficiency. The developed hybrid approach 
detects positive or negative correlations among the performance indicators of the ES-SAGD 
process. The derived Pareto-optimal operating conditions give flexibility in field development 
planning and thereby help decision makers determine the operating parameters of the ES-SAGD 
process based on their preferences. 
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1. Introduction 

Steam Assisted Gravity Drainage (SAGD) is a thermal injection technique useful for producing 
bitumen by lowering its viscosity (typically greater than 10,000 cP under reservoir conditions) 
sufficiently in oil sands reservoirs [1]. One salient issue in the SAGD process is how to save the 
volume of steam injected into the formation while achieving high bitumen recovery [2–5]. 
Researchers have led to the development of a more energy-efficient version called Expanding 
Solvent-SAGD (ES-SAGD). The ES-SAGD process co-injects light hydrocarbon solvent with steam 
for enhancing the thermal injection efficiency [6–11]. Injected solvent condenses at the vapor/liquid 
boundary of the steam chamber and creates a diluted interface for further reducing the viscosity of 
heated bitumen [12]. Nasr et al. [6] showed that the steam–solvent co-injection could increase 
bitumen production rate while decreasing steam injection rate compared to SAGD. 

Solvent–steam mixture is a critical factor for economically operating the ES-SAGD process 
owing to expensive solvent costs. Ardali et al. [13] provided a review of hybrid steam–solvent 
processes used for in-situ recovery of Canadian heavy oil, e.g., Propane-SAGD, ES-SAGD, 
Solvent-Aided Process (SAP), Liquid Addition to Steam to Enhance Recovery (LASER), and 
Steam-Alternating-Solvent (SAS). As pointed out in [13], it is still unclear for solvent-aided processes 
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how much the solvent concentration in the injected stream is sufficient to minimize total energy loss. 
The excessive solvent injection might cause adverse heat transfer at the steam–solvent–bitumen 
interface. Thus, it is necessary to make optimization strategies that can maximize the bitumen 
recovery and the steam–solvent efficiency formally. Various optimization approaches have been 
adopted to reduce energy consumption in solvent-aided SAGD processes. Gates and Chakrabarty 
[14] determined the solvent fraction in the injected stream and the solvent–steam injection pressure 
using simulated annealing. Kam et al. [15] designed a solvent–steam injection procedure using a 
back-propagation neural network for the McMurray formation of the Athabasca oil sands reservoir. 
Edmunds et al. [16] and Peterson et al. [17] maximized net present value (NPV) per hectare of land 
using genetic algorithm (GA) that perturbed steam–solvent injection rates. Proxies have also been 
investigated to alleviate computation costs accompanied with computationally intensive thermal 
reservoir simulation runs. Al-Gosayir et al. [18] implemented a hybrid technique that combined GA 
with a response surface model. 

The optimization works above have found the operating condition compromising bitumen 
recovery and energy efficiency due to the form of objective functions. Conventionally, most 
optimization approaches that the petroleum industry has adopted are based on global-objective 
optimization no matter what they are either gradient-based methods [19–22] or non-gradient-based 
methods [23–26]. Global-objective optimization scheme converts a vector of objective functions into 
a single global objective function, i.e., the weighted sum of individual objective function values. For 
a minimization problem, exploring the global optimum is to find the smallest objective-sum that 
depends on the weight factors determined a priori. As a result, solutions tend to evolve in the 
direction of minimizing the objective-sum regardless of the characteristics of each objective function 
[27–29]. For this reason, global-objective optimization approaches are inappropriate to provide 
diversified solutions in case individual objective functions conflict with each other. 

As a breakthrough, multi-objective optimization has been investigated to explore trade-off 
solutions referred to as Pareto-optimal front (POF), which is the multi-dimensional optimal solution 
domain [30,31]. POF consists of Pareto-optimal solutions in which no response can be improved 
without adversely affecting other responses. As the purpose of multi-objective optimization is to 
approximate the whole POF, it is the virtue of multi-objective optimization algorithms to provide 
solutions not only converged on the POF but also uniformly distributed along the POF. This 
diversity-preservation of converged solutions highlights the significance of multi-objective 
optimization for avoiding artificial bias in uncertainty quantification. Multi-objective optimization 
algorithms have been examined to solve a variety of optimization issues in subsurface modeling as 
follows: monitoring the migration of contaminant plume [32–35]; reservoir characterization [27–
29,36–38]; and production design [39,40]. 

This study presents a framework that searches for Pareto-optimal operating conditions of the 
ES-SAGD process at low computational costs. A hybrid multi-objective optimization approach, 
which incorporates multi-objective genetic algorithm with response surface models, is proposed to 
achieve the computational efficiency by replacing expensive thermal reservoir simulations during 
optimization. The surrogate models play a role of the objective estimators that calculate oil recovery, 
steam–oil ratio as steam injection efficiency, and solvent–steam ratio as solvent injection efficiency in 
the proposed framework. The efficacy of the method is examined by comparing with those of 
global-objective optimization algorithms. 

2. Theoretical Background of Expanding Solvent–Steam Assisted Gravity Drainage (ES-SAGD) 

2.1. Description of SAGD 

SAGD is a steam injection process that produces highly viscous oil under reservoir conditions 
[1]. SAGD composes a pair of a horizontal production well and an injection well (Figure 1a). The 
producer locates 3–5 m below the injector. SAGD process consists of four stages according to the life 
cycle of the steam vapor chamber. Firstly, the injected steam vapor rises vertically from the injector. 
Secondly, the vapor grows horizontally once reaching the overburden or the seal and then forms an 



Energies 2017, 10, 966 3 of 21 

 

inverted cone-shaped vapor chamber above the injector. Thirdly, the heated bitumen is drained 
along the walls of the vapor chamber towards the producer by gravitational force. Depletion is the 
last phase in which the vapor chamber collapses and bitumen production decreases [41]. 

The primary physical phenomena controlling bitumen production in SAGD are heat 
conduction and gravity flow. Most SAGD studies have focused on the stability of the horizontal 
growth of the steam vapor chamber. Butler et al. [1] was the first to derive a classical model for the 
single-phase oil flow by coupling Darcy’s law and heat transfer. The heat transfer mechanism was a 
unidirectional quasi-steady state temperature distribution with heat conduction ahead of the edge of 
the vapor chamber. Butler’s equation was valid only for the horizontal growth phase of the vapor 
chamber before the vapor reaches the reservoir boundary. Butler and Stephens [42] accounted for 
the extra head required to move the draining bitumen sideways to the producer by incorporating the 
tangential drainage approximation and the linear drainage approximation in the Butler’s equation. 
Reis [43,44] reflected the change of the interface velocity by adding an empirical constant in the 
Butler’s equation. Alali et al. [45] suggested a semi-analytical model of unsteady state flow SAGD 
model.  

2.2. Description of ES-SAGD 

ES-SAGD co-injects a single solvent or a mixture of solvents with steam into the reservoir from 
the injector [6] (Figure 1b). The solvent mixture primarily comprises of light hydrocarbons from C4 
(butane) to C7 (heptane). Compared with SAGD, the most distinguishable feature of ES-SAGD is the 
solvent diffusion mechanism that further decreases the bitumen viscosity by the dilution effect. 
Another advantage of solvent co-injection is to reduce the volume of steam injected owing to the 
partial volume occupied by the solvent in the vapor. 

Apparently, the performance of the ES-SAGD process is predominantly controlled by mass and 
heat transfer that occurs over a short length scale within a very narrow region around the edge of the 
steam–solvent vapor chamber. At the vapor chamber interface, the solvent partitions into the liquid 
phase based on the equilibrium constant, and then dilutes the bitumen. The solvent diffusivity 
governs the degree of solvent penetration into the bitumen. Thus, the solvent recovery is one of the 
critical factors for the economic operation of the ES-SAGD process as well as the bitumen recovery 
and the volume of steam injected. 

(a) (b) 

Figure 1. Schematics of Steam Assisted Gravity Drainage (SAGD) and Expanding Solvent–SAGD 
(ES-SAGD): (a) SAGD; and (b) ES-SAGD. 

3. Hybrid Multi-Objective Optimization of ES-SAGD Process 

3.1. Parameterization of Multi-Objective Problem 

Equation (1) is a general expression of an M-objective minimization problem: 
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Minimize { })(f,),(f)x,,(x)( 11 xxfxf MN  ==  

subject to Y)(  X, ∈∈ xfx , 
(1) 

where x is a variable vector in prior space X, f  is an objective function used to compute an 
objective vector )(xf  in posterior space Y, ix  is the ith decision variable of x, )(f xj  is the jth 

objective of )(xf , N is the number of decision variables, and M is the number of objective 
functions. For ES-SAGD optimization, candidates of variables are bottomhole pressure at an 
injection or a production well, steam or solvent injection rate, production rate, duration injecting 
pure steam, duration coinjecting steam and solvent, fraction of solvent in the injected stream during 
the steam–solvent co-injection, steam injection temperature, and so on. The objective functions are to 
be economic indicators related to the performance of ES-SAGD operations: for example, NPV, 
recovery factor, or steam–solvent–oil ratio. Computing )(xf  is referred to as forward modeling, 
while estimating x from )(xf  is referred to as inverse modeling. Optimization can be regarded as 
a process to repeat both forward and inverse modeling for exploring solutions minimizing )(xf . 

The application of global-objective optimization requires assembling objective functions using a 
weight vector ω , as shown in Equation (2): 


=

=
M

j
jj

1

)(f)( xx ωG , (2) 

where )(xG  is the global objective function and jω  is the jth weight factor corresponding to the jth 

objective function )(f xj . In general, each weight is a non-negative real number determined based on 

expert knowledge before invoking optimization. In contrast, a multi-objective analysis is 
advantageous in that its formulation is free from an obligation to predetermine ω . This 
independence is significant because the optimum of one objective would be different from the 
optimum of any other objective if the objectives are either uncorrelated or negatively correlated, i.e., 
conflicting. 

Figure 2 describes an example of a minimization problem composed of two quadratic objective 
functions 2

1 x(x)f =  and 2
2 2)-x((x)f = . The common variable x  is a non-negative real number. If 

possible, it is desirable to have a certain solution x that can force each objective function value to be 
zero. This ideal solution is projected on the origin of the given two-dimensional objective space 
where both objectives are minimized simultaneously. However, the origin is an infeasible solution in 
this example. As shown in Figure 2c, global-objective optimization regards 1x =  as the global 
optimum in the case of using equal weights. This global optimum does not conform to the optimum 

0x =  for (x)f1  nor the optimum 2x =  for (x)f2 . From the point of view of multi-objective 
optimization, however, x= [0,2] on the red solid curve are equivalent Pareto-optimal solutions 
because the decrease of (x)f1  (improvement) accompanies the increase of (x)f2  (deterioration) and 
vice versa on this POF (Figure 2d). Note that the global optimum obtained from global-objective 
optimization is one of the Pareto-optimal solutions, which is closest from the origin under the given 
weights in objective space. 



Energies 2017, 10, 966 5 of 21 

 

  
(a) 2

1 x(x)f =  (b) 2
2 2)-x((x)f =  

 
(c) G(x) = (x)f1  + (x)f2  (d) Pareto-optimal front of (x)f1  and (x)f2  

Figure 2. Comparison of global- and multi-objective optimization for a two-objective minimization 
problem. The global optimum obtained from global-objective optimization is ( x , (x)G ) = (1, 2), 

which is neither the optimum for (x)f1  nor the optimum for (x)f2 . The global optimum is the 

closest Pareto-optimal solution from the origin under the given weights in objective space. Here, the 
origin is the ideal but infeasible solution. 

For many production optimization problems, NPV may be employed as the only objective 
function including all effects from subsurface environments for deriving an optimal operation of an 
ES-SAGD process. Multi-criteria decision analyses would be less significant if the estimated NPV is 
consistent under market conditions. However, NPV varies as it is hugely affected by the volatility of 
economic factors such as oil price. Therefore, not only weight factors aggregating individual 
objective functions but also the market volatility influences the selection of decision variable values 
for economic optimization and uncertainty assessment of production operations. Notably, NPV 
calculations depend on recovery factor and energy efficiency in the ES-SAGD process. However, the 
scenario achieving the highest energy efficiency does not conform to the scenario having the highest 
oil recovery. A correlation between the performance indicators would be positive or negative under 
given reservoir and operating conditions. For this reason, it is meaningful to explore a posterior 
solution set detecting a relationship between the indicators. Selecting only one scenario is still 
needed when making the final decision applied to the field. Nonetheless, it will be straightforward 
to select the best NPV scenario among the trade-off posterior solutions if the economic parameters 
are determined later. 

3.2. Response Surface Model 

This study adopts response surface modeling for building proxy models that delineate the flow 
behavior of steam–solvent mixture under reservoir conditions. Response surface model is a 
statistical formulation to approximate a functional relationship between decision variables and 
responses, i.e., objective functions [46]. In this study, polynomial regression models are built to 
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replace a computationally intensive thermal simulator to compute the objective vector )(xf  
cost-effectively during optimization. 

The normalized decision vector normx  is input to proxy models, as seen in Equation (3):  

( ){ } ( ){ } Nil
i

u
i

l
i

u
ii

norm
i ,,1  2/xx/2/xxxx =∀−+−= , (3) 

where norm
ix  is the normalized ix , u

ix  is the upper limit of ix , and l
ix  is the lower limit of ix .  

Equation (4) expresses a second-order regression model composed of N decision variables 
corresponding to the ith objective )(f xi : 


= ==

=∀++=
N

k

N

kl

norm
l

norm
kikl

N

j

norm
jiji

norm
i Mi

11

,,1  xxcxcc)x(f  , (4) 

where c is the regression coefficient vector determined by minimizing the average of least square 
error in the regression dataset. 

3.3. Integration of Multi-Objective Genetic Algorithm with Proxy Models 

Figure 3 presents the flow chart of the proposed hybrid multi-objective analysis incorporating 
proxy modeling. The proposed framework combines experimental design, proxy modeling, and 
non-dominated sorting genetic algorithm-II (NSGA-II) as a multi-objective optimizer [31]. A few 
ES-SAGD scenarios are simulated and prepared as training scenarios to proxy models. Proxy 
modeling starts with selecting relevant decision variables, performing regression, and testing 
accuracy and adequacy of the proxy model. The trained proxy models are used for evaluating the 
quality of each solution during multi-objective optimization. The Npop-sized population evolves from 
generation to generation. In each generation, recombining Npop variable vectors in the parent 
population creates Npop new variable vectors of the offspring population by use of two genetic 
operators, i.e., crossover and mutation [47]. The trained proxy models compute the objective vector 
f(x) of each offspring solution. The union of both populations is called a mating pool. After 
objective-evaluation, 2Npop solutions in the mating pool are ranked using non-dominated sorting (see 
Section 3.3.1) and crowding-distance sorting (see Section 3.3.2) in M-dimensional objective space. 
Subsequently, Npop superior solutions survive and compose the parent population of the next 
generation. If GA replaces NSGA-II and is invoked as a global-objective optimization algorithm in 
the proposed framework, the selection process could be conducted using a tournament method, a 
roulette wheel method, or in the ascending order of the weighted objective-sum [47]. The 
evolutionary process above iterates until the stopping criteria are satisfied as follows: either the 
number of iterations reaches the maximum number of generations Ngen or the improvement of the 
population gets stagnated. Finally, the Pareto-optimal variables and corresponding objective 
function values are obtained. 
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Figure 3. Flow chart to design the ES-SAGD process using hybrid NSGA-II algorithm combined with 
proxy models. The quadratic response surface models are developed from reservoir simulation 
results of training scenarios of ES-SAGD and then used to evaluate the quality of each ES-SAGD 
scenario regarding bitumen recovery, cumulative steam–oil ratio, and cumulative solvent–steam 
ratio. NSGA-II generationally evolves the ES-SAGD scenarios using non-dominated sorting and 
crowding-distance sorting until the stopping criteria are satisfied. 

3.3.1. Non-Dominated Sorting 

Pareto-optimality is an optimal allocation of resources [27]. Mathematically, Pareto-optimality 
is defined as the best non-domination. The non-domination is a state of equivalence where no 
solution can be improved with respect to any objective function without worsening at least one other 
objective function [30]. Thus, a key assumption of non-dominated sorting is the equivalent 
importance of each objective function. 

For a many-objective minimization problem, a variable vector 1x  is said to dominate a variable 
vector 2x  if and only if Equation (5) is satisfied:  

{ } { } )(f)(f:,,1)(f)(f:,,1 2121 xxxx jjii MjMi <∈∃∧≤∈∀  . (5) 

where the dominance of 1x  over 2x  is denoted as )()( 21 xfxf  . 
Figure 4a is the schematic diagram that illustrates non-dominated sorting to prioritize objective 

vectors in two-dimensional objective space. For solvent-aided processes, for example, the first and 
second objective functions f1(x) and f2(x) would be the amount of unrecovered mobile oil and the 
amount of steam–solvent injected into a reservoir, respectively. Let the population size Npop equal 
eight. 2Npop solutions in the mating pool are projected in objective space. Here, ndF  denotes the 
non-dominated front number, i.e., an indicator of the solution quality. In Figure 4a, the number of 
non-dominated fronts is three: 1

ndF , 2
ndF , and 3

ndF . The black circle refers to the best non-dominated 
objective vector given the 1st front 1

ndF , the gray rectangular does the non-dominated objective 
vector given the 2nd front 2

ndF , and the empty triangle does the non-dominated objective vector 
given the 3rd front 3

ndF . The objective vector )( 1xf  dominates )( 2xf  because )(f)(f 2
1

1
1 xx <  and 

)(f)(f 2
2

1
2 xx < . In the same manner, )()()( 543 xfxfxf  . On the other hand, )( 1xf  and )( 3xf  are 



Energies 2017, 10, 966 8 of 21 

 

non-dominated (i.e., equivalent) to each other because superiority in one objective accompanies 
inferiority in another objective: )()( 31 xfxf ≡  because )(f)(f 3

1
1

1 xx <  while )(f)(f 3
2

1
2 xx > . Note 

that a solution in a lower front has a higher probability to survive than a solution in an upper front. 
In summary, [ )()( 31 xfxf ≡  in 1

ndF ]  [ )()( 42 xfxf ≡  in 2
ndF ]  [ )( 5xf  in 3

ndF ]. More detailed 
descriptions on non-dominated sorting can be found in [30]. 

(a) (b) 

Figure 4. Ranking evaluation using NSGA-II for a bi-objective minimization problem: (a) 
non-dominated sorting; and (b) crowding-distance sorting. 

3.3.2. Crowding-Distance Sorting 

After invoking non-dominated sorting as shown in Figure 4a, solutions are gathered from 1
ndF  

to k
ndF  until the cumulative number of solutions is greater than or equal to Npop. Crowding-distance 

sorting discards supernumerary solutions in k
ndF  for keeping the population size Npop of the next 

generation consistently. Figure 4b illustrates the crowding distance, i.e., a measure of the density of 
solutions given the identical non-dominated front number, as defined in Equation (6) [31]: 


= −

=
M

i ii

j
ij

dd
d

1
minmaxψ  kNj :1=∀ , (6) 

where jψ  is the crowding distance for the jth solution, j
id  is the distance between two neighboring 

solutions to the jth solution in the direction of if , max
id  is the maximum distance between two 

solutions in the direction of if , min
id  is the minimum distance between two solutions in the 

direction of if , and kN  is the number of solutions in the kth non-dominated front k
ndF . 

For preserving the diversity of non-dominated solutions, a sparsely distributed solution having 
a larger crowding distance is preferred over a densely-distributed solution having a smaller 
crowding distance if their front numbers are identical. Let us recall the population size Npop is eight in 
this example. Thus, eight superior solutions are to survive from the mating pool composed of 16 
solutions in Figure 4. Firstly, all five solutions existing in the first non-dominated front 1

ndF  survive, 
as shown in Figure 4a, because they dominate at least one or more solutions in the other fronts. As 
seven solutions exist in the second non-dominated front 2

ndF , only three solutions survive in this 
front for preserving Npop = 8 of the next generation. For example, )( 4xf  having a larger crowding 
distance would be preferred over )( 2xf  having a smaller crowding distance. In brief, the solutions 
in the red circles are the survived ones using Equation (6). Meanwhile, no solution in the third 
non-dominated front 3

ndF  survives because eight superior solutions are already selected from the 
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two lower fronts 1
ndF  and 2

ndF . More detailed descriptions on the crowding-distance sorting can be 
found in [31]. 

4. Results and Discussion 

The proposed hybrid multi-objective optimization approach was applied to the design of the 
ES-SAGD process for a synthetic Canadian oil sands reservoir. The performance of the approach was 
tested in comparison with those of global-objective optimization algorithms. 

4.1. Reservoir Description 

Figure 5 shows an oil sands reservoir model inspired by the McMurray Formation in Athabasca 
oil sands, Canada. With a fully perforated 500 m long horizontal well pair, the reservoir model 
consists of 250 × 1 × 100 gridblocks of which the unit gridblock size is 1 m × 500 m × 0.48 m. It will be 
straightforward to extend the proposed approach for a three-dimensional reservoir having multiple 
gridblocks along the well pair. Table 1 summarizes reservoir properties. The model has a constant 
porosity of 33% and permeability of 4.2 D (Darcy) for all gridblocks where 1 Darcy permits a flow of 
1 cm3/s of a fluid with viscosity 1 cP (1 mPa·s) under the pressure gradient of 1 atm/cm acting across 
an area of 1 cm2. The initial reservoir pressure is 1500 kPa at a reference depth of 270 m. The initial 
reservoir temperature is constant as 283.15 K (10 °C) in consideration for the typical geothermal 
gradient of 25 K/km. Specific gravity of bitumen is 8 °API (1.014 ton/m3), which is denser than that of 
water. CMG (Computer Modelling Group) STARSTM is employed as a thermal reservoir simulator in 
this study. 

Butane is the solvent employed in this study with regards to reservoir pressure and 
temperature [48]. Dynamic grid refinement based on the mole fraction of butane with a tolerance 
value of 0.1 is imposed to capture the short-length scale mass and heat transfer at the vapor/liquid 
boundary of the vapor chamber. Well spacing between the injector and the producer is 6 m. 
Four-year (48 months) production behavior is evaluated with a preheating period of five months. 
The steam quality is 0.8. A steam trap control of 2 K is allocated to the producer. 

 

Figure 5. Configuration of a reservoir model inspired by the McMurray formation in Athabasca oil 
sands, Canada. 

Table 1. Reservoir properties used for optimizing the ES-SAGD process. 

Parameter Units Value 
Number of gridblocks (I × J × K) Dimensionless 250 × 1 × 100 

Size of gridblock (I × J × K) m × m × m 1 × 500 × 0.48 
Porosity Dimensionless 0.33 

Effective permeability Darcy 4.2 
Initial reservoir temperature K 283.15 
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Initial bitumen saturation Dimensionless 0.85 
Residual bitumen saturation Dimensionless 0.1 
Specific gravity of bitumen °API 8 

Molecular weight of bitumen kg/kmole 581 
Molecular weight of water kg/kmole 18 

Thermal conductivity of bitumen W/m/K 0.1 
Thermal conductivity of rock W/m/K 2.85 

Thermal conductivity of water W/m/K 0.6 

4.2. Experimental Design 

4.2.1. Decision Variables and Objective Functions 

This case study aimed at finding Pareto-optimal operating conditions of the ES-SAGD process 
that could achieve high bitumen recovery and steam–solvent energy efficiency simultaneously by 
adjusting decision variables. The problem was designed as a three-variable and three-objective 
minimization problem for comparing simulation results from global- and multi-objective 
optimization clearly. The decision variable vector x consists of bottomhole pressure at the solvent–
steam injection well Pinj, the period injecting pure steam without solvent after the steam trap control 
Tinj, and the fraction of solvent in the injected stream during the steam–solvent co-injection Sfrac, as 
shown in Equation (7): 

{ } { }fracinjinj , S, TP, , xxx 321 ==x . (7) 

Other variables, e.g., the steam–solvent injection rate and the steam injection temperature, are 
dependent on the three primary decision variables. In particular, the steam–solvent injection rate 
depends on injection pressure, inflow potential of a reservoir, productivity/injectivity of the well, 
and solvent fraction. Tinj is the timing to convert the SAGD process into the ES-SAGD process. One 
assumption is that the well pair is optimally located based on an assessment of reservoir 
heterogeneity. 

Equation (8) defines the objective vector )(xf  composed of three performance indicators as:  

{ } { }SR cSOR, RF,1)(),(),()( 321 −== xfxfxfxf , (8) 

OOIP/QRF oil= , (9) 

oilsteam Q/QcSOR = , (10) 

solpsol, /MM1SR −= , (11) 

where RF (recovery factor) is the ratio of the volume of cumulative oil (i.e., bitumen) produced Qoil to 
the original oil in place (OOIP), cSOR (cumulative steam–oil ratio) is the ratio of the volume of 
cumulative steam injected Qsteam to the volume of cumulative bitumen produced Qoil, and SR (solvent 
retention) is the ratio of the mass of cumulative solvent unrecovered to the mass of cumulative 
solvent injected Msol. Here, Msol,p is the mass of cumulative solvent recovered (i.e., produced). It is 
anticipated to achieve higher RF, lower cSOR, and lower SR simultaneously for the optimal 
ES-SAGD process. According to their definitions, the range of RF or SR is from zero to one, 
respectively, while cSOR increases from zero to infinity. 

The implementation of the proposed multi-objective analysis compels neither 
objective-normalization nor objective-aggregation. Meanwhile, global-objective analyses require 
assembling the individual objective functions with a predetermined weight vector. The effects of the 
weight vector were examined by investigating the results obtained by replacing NSGA-II with 
genetic algorithm (GA) in the proposed framework. Here, two forms of global objective function 
were considered for global-objective analyses. Equation (12) is the first form that is the sum of the 
individual objective functions: 
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SRcSORRF)1()( ++−=xG . (12) 

For solving real-world engineering problems, it is recommended to normalize each objective 
function before objective-aggregation in a global-objective optimization process. This study clarifies 
that Equation (12), which is in the form of an non-normalized global-objective function, is employed 
to track the change in the global-optimum if a different form is optimized. 

Equation (13) is another form of a global objective function, which is the sum of the individual 
objective functions normalized using the regression dataset: 

2

min

min2

min

min2

max

max

SR
SRSR

cSOR
cSORcSOR

RF
RFRF)( 







 −+






 −+



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

 −=xG , (13) 

where maxRF , mincSOR , and minSR  are the maximum RF, the minimum cSOR, and the minimum 
SR in the regression dataset, respectively. The objective-normalization aims at alleviating the 
scale-difference among the individual objective functions. 

4.2.2. Construction of Response Surface Models 

The regression dataset used for training proxy models were obtained from thermal simulation 
results of 100 ES-SAGD scenarios. For each objective function, a second-order polynomial regression 
model was derived through a five by four by five multi-level factorial design using the regression 
dataset: Tinj had four levels, while Pinj and Sfrac had five levels, respectively. Table 2 gives the lower 
limit, the upper limit, and the step size of each decision variable used for proxy modeling and 
optimization. Note that the upper limit of Tinj is half the total production period. 

Table 2. Experimental setting of decision variables for proxy modeling and optimization of the 
ES-SAGD process. 

Variable Unit Lower Limit Upper Limit 
Step Size for  

Proxy Modeling 
Step Size for 
Optimization 

Pinj kPa 2000 3800 450 50 
Tinj months 6 24 6 1 
Sfrac dimensionless 0.05 0.35 0.075 0.01 

Table 3 presents the maximum and minimum values of each performance indicator obtained 
from the thermal simulation results of the regression dataset. These statistical parameters were used 
for computing the global objective function in the form of Equation (13). 

Table 3. Maximum and minimum values obtained from 100 simulation results used for training 
proxy models. 

Performance Indicator Minimum Maximum 
Recovery factor (RF) 0.158 0.483 

Cumulative steam–oil ratio (cSOR) 2.33 4.64 
Solvent retention (SR) 0.01 0.36 

Table 4 contains the regression coefficient vectors of the three response surface models. As 
depicted in Equation (4), the regression coefficient vector c of each quadratic model was determined 
using the least square method. After proxy modeling, the T-statistic test was performed to drop off 
insignificant coefficients from each proxy model. In addition, the confidence level of each coefficient 
was assessed using p-value that refers to the probability of an observed result assuming that null 
hypothesis is true [49]. Any coefficient of which p-value was greater than or equal to 0.01 was 
discarded from the proxy models. 
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Table 4. Regression coefficient vector c and its p-values for each response surface model. 

RF cSOR SR 
c i = 1 p-value of ci i = 2 p-value of ci i = 3 p-value of ci

ci0 0.352 1.2 × 10−92 3.266 1.7 × 10−92 0.178 2.0 × 10−62 
ci1 0.064 1.5 × 10−47 0.242 7.8 × 10−20 −0.006 2.5 × 10−2 
ci2 −0.038 6.5 × 10−32 0.424 2.1 × 10−37 0.023 3.6 × 10−16 
ci3 0.060 9.1 × 10−45 −0.488 2.1 × 10−40 −0.053 8.9 × 10−37 
ci11 −0.014 5.6 × 10−6 0.112 1.1 × 10−4 −0.003 3.7 × 10−1 
ci12 −0.002 6.3 × 10−1 0.032 2.7 × 10−1 0.000 5.5 × 10−1 
ci13 −0.008 8.9 × 10−3 0.052 6.4 × 10−2 0.011 4.4 × 10−1 
ci22 −0.011 4.4 × 10−3 −0.011 7.6 × 10−1 0.005 0.3 × 10−1 
ci23 −0.021 6.1 × 10−8 0.200 2.6 × 10−8 0.009 3.0 × 10−1 
ci33 −0.022 8.4 × 10−8 0.081 2.3 × 10−2 −0.020 9.8 × 10−2 

The adequacy of each polynomial model was assessed using the coefficient of determination R2 
by comparing the objective values obtained using the proxy models and the reservoir simulator 
(Table 5). Since R2 values were greater than 0.85, it seems that the proxy models could capture the 
relationship between the decision variables and the performance indicators with reliability. 
Subsequently, the proxy models were adopted as the objective estimators of NSGA-II in the 
proposed framework. 

Table 5. Coefficients of determination for the three response surface models. 

Parameter RF cSOR SR
R2 0.96 0.93 0.86 

Mean square error 3.0 × 10-4 2.1 × 10-2 3.0 × 10-3 

Figure 6 shows the response surface plots of the three performance indicators corresponding to 
the four levels of Tinj (6, 12, 18, and 24 months) in variable-objective space. The x-axis, the y-axis, and 
the z-axis indicate Pinj, Sfrac, and the performance indicator, respectively. Increasing Pinj induced 
higher steam saturation temperature, which in turn prolonged the growth of the vapor chamber to 
lower the mixture viscosity. Expanding the vapor chamber improved both bitumen recovery and 
solvent recovery, but increased cSOR as well. Increasing Sfrac led to the increase in RF and the 
decrease in cSOR resulting from solvent dilution. A larger amount of steam injected at a higher 
injection pressure caused an increasing trend of cSOR. A longer duration of steam injection without 
solvent caused the decrease in RF and the increase in both cSOR and SR. 

 

(a) (b) (c) 

Figure 6. Response surfaces for the three objectives corresponding to four values of pure-steam 
injection period Tinj (6, 12, 18, and 24 months): (a) recovery factor (RF); (b) cumulative steam–oil ratio 
(cSOR); and (c) solvent retention (SR). 

Figure 7 shows the response surface plots of the three performance indicators corresponding to 
the four levels of Tinj (6, 12, 18, and 24 months) in three-dimensional objective space. The boundary of 
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the response surface plots implies the possibility of the conflicting relationships among the 
performance indicators, emphasizing the significance of trade-off analysis for optimizing the 
ES-SAGD process. 

 

Figure 7. Surface plots of the three response functions, i.e., RF, cSOR, and SR, in three-dimensional 
objective space, which corresponds to four values of steam (without solvent) injection period (6, 12, 
18, and 24 months). 

4.2.3. Experimental Setting for Optimization 

Table 6 presents the optimization setting used for executing NSGA-II in the proposed hybrid 
framework. The number of generations Ngen was 20. The population size Npop was 100 in each 
generation. This number of 2000 proxy runs was approximately one-eleventh of the total 21,793 
possible scenarios, as implied in Table 2. The probabilities of crossover and mutation were 0.9 and 
0.1, respectively. 

Table 6. Experimental setting used for multi-objective genetic algorithm. 

Parameter Value
Number of generations 20 

Population size 100 
Probability of crossover 0.9 
Probability of mutation 0.1 

4.3. Simulation Results 

4.3.1. Evolution of Performance Indicators 

Figure 8 depicts boxplots showing the evolution of the three performance indicators predicted 
by the trained proxy models during global- and multi-objective optimization. The bottom of the box 
refers to the 25th percentile, the top of the box does the 75th percentile, and the red horizontal line 
within the box does the 50th percentile, i.e., the median. The whiskers extend to the most extreme 
solutions not considered outliers while every outlier is marked with a red cross. The 100 initial 
solutions in the first generation were created by random under the operating conditions described in 
Table 2. Figure 8a–c shows that the non-dominated solution set obtained using NSGA-II improves 
each performance indicator generationally. Adjusting the decision variables yields the increase in RF 
and the decrease in cSOR and SR, representing the overall improvement in the steam–solvent energy 
efficiency. In Figure 8a, the expected RF values are more diversified than expected. It implies that RF 
could be improved significantly by injecting more steam and solvent with a slight loss regarding the 
steam–solvent energy efficiency in this case study. Figure 8d–f displays the simulation results 
obtained by invoking GA minimizing Equation (12). The results from another GA run employing 
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Equation (13) are shown in Figure 8g–i. As expected, non-dominated sorting and crowding-distance 
sorting of NSGA-II provides a wider range of the performance indicator values than those attained 
by the two GA runs. 

It seems that each GA run found its global optimum as it revealed a narrow dispersion for every 
performance indicator in the last 20th generation. The first GA run minimizing Equation (12) 
decreases the non-normalized objective-sum in the direction of minimizing cSOR while sacrificing 
RF (Figure 8d–f). As a result, the collapse of RF values is observed in Figure 8d: the highest energy 
efficiency is achieved with a moderate RF. On the other hand, as presented in Figure 8h,i, the second 
GA run minimizing Equation (13) improves the normalized objective-sum in the direction of 
maximizing RF while causing a rebound of cSOR from the 7th generation. This rebound arose 
because the normalized RF was an order of magnitude bigger than the normalized cSOR near the 
POF. As a consequence, it was beneficial for the global objective function of the second GA run to 
improve RF by paying off cSOR in that generation. The convergence towards the single optimum is 
the intrinsic characteristics of most global-objective optimization algorithms whether their global 
objective functions are normalized or not. This vulnerability of global-objective optimization in 
handling conflicting objectives might cause artificial bias for decision-making to determine the 
operating conditions of the ES-SAGD project. Objective-normalization alleviated the effects of 
scale-difference among the objective functions, but was hard to escape the ensemble-collapse 
phenomenon. 

 
(a) (b) (c) 

(d) (e) (f) 

 
(g) (h) (i) 

Figure 8. Evolution of performance indicators of the ES-SAGD process obtained by running global- 
and multi-objective optimization algorithms: (a) Recovery Factor (RF) obtained by invoking 
NSGA-II; (b) Cumulative Steam–Oil Ratio (cSOR) by invoking NSGA-II; (c) Solvent Retention (SR) 
by invoking NSGA-II; (d) RF obtained by invoking GA with Equation (12); (e) cSOR obtained by 
invoking GA with Equation (12); (f) SR obtained by invoking GA with Equation (12); (g) RF obtained 

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 1011121314151617181920
Generation number

Re
co

ve
ry

 F
ac

to
r (

fr
ac

tio
n)

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 1011121314151617181920
Generation number

cS
O

R 
(f

ra
ct

io
n)

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 1011121314151617181920
Generation number

So
lv

en
t R

et
en

tio
n 

(f
ra

ct
io

n)

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 1011121314151617181920
Generation number

Re
co

ve
ry

 F
ac

to
r (

fr
ac

tio
n)

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 1011121314151617181920
Generation number

cS
O

R 
(f

ra
ct

io
n)

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 1011121314151617181920
Generation number

So
lv

en
t R

et
en

tio
n 

(f
ra

ct
io

n)

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 1011121314151617181920
Generation number

Re
co

ve
ry

 F
ac

to
r (

fr
ac

tio
n)

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 1011121314151617181920
Generation number

cS
O

R 
(f

ra
ct

io
n)

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 1011121314151617181920
Generation number

So
lv

en
t R

et
en

tio
n 

(f
ra

ct
io

n)



Energies 2017, 10, 966 15 of 21 

 

by invoking GA with Equation (13); (h) cSOR obtained by invoking GA with Equation (13); and (i) 
SR obtained by invoking GA with Equation (13). 

4.3.2. Distribution of Performance Indicators and Decision Variables 

Figures 9 and 10 are the scatter plots that project the decision variables and corresponding 
objective function values before and after invoking global- and multi-objective optimization 
algorithms. In both figures, the initial solutions indicate the solutions in the first generation of 
NSGA-II adopted in the proposed hybrid multi-objective optimization approach. Compared to the 
non-optimal initial solutions, co-injecting steam and solvent at the maximum solvent fraction of 0.35 
(Figure 9) led to the improvement for each performance indicator: the increase in RF as well as the 
decrease in cSOR and SR (Figure 10). The Pareto-optimal injection pressure Pinj ranges from its lower 
limit of 2000 kPa to its upper limit of 3800 kPa because increasing injection pressure improved RF 
while sacrificing cSOR at this solvent fraction. Keeping the maximum solvent fraction in the injected 
stream could be considered as the most optimistic ES-SAGD scenario given that the reservoir is 
sealed by no-flow boundaries without loss of steam and solvent outside the reservoir, as pointed out 
in previous ES-SAGD studies [4,5,11]. The conflict between RF and cSOR under the Pareto-optimal 
operating conditions is rational because the volume of steam needed for producing one barrel 
(approximate to 0.159 m3) of oil is greater than one barrel. Figure 9a,c indicates that the shorter the 
operational period of the SAGD process is, the higher the total energy efficiency that can be achieved 
by initiating the ES-SAGD process, provided the injected solvent can be recovered sufficiently 
(Figure 10c). As the optimized SR ranges from 0.08 to 0.10, the expected solvent recovery is 
approximately 90%. The simulation results are quite optimistic, nevertheless are in reasonable 
agreement with observation results reported from field pilot tests [8,50–52]. 

 
(a) (b) (c) 

Figure 9. Projection of decision variables in two-dimensional variable space before and after 
optimization. The evolved solution set obtained from multi-objective optimization includes the 
optimum solution obtained from global-objective optimization: (a) Pinj vs. Tinj; (b) Pinj vs. Sfrac; and (c) 
Tinj vs. Sfrac. 

 
(a) (b) (c) 
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Figure 10. Projection of objective function values in two-dimensional objective space before and after 
optimization. The evolved solution set obtained from multi-objective optimization includes the 
optimum solution obtained from global-objective optimization. Positive or negative correlations 
among the performance indicators of the ES-SAGD process are clearly revealed from the evolved 
non-dominated solution set: (a) RF vs. cSOR; (b) RF vs. SR; (c) cSOR vs. SR. 

In Figure 10, every final solution dominates one or more initial solutions but is non-dominated 
to any other final solutions. Table 7 provides the decision variables and corresponding performance 
indicator values of four representative solutions, which cover the lowest and greatest performance 
indicator values in the final non-dominated solution set obtained using the hybrid approach. The 
greatest RF of 0.483 accompanied with the poorest steam injection efficiency (cSOR of 2.714) was 
derived when co-injecting 65% steam and 35% solvent in the injected stream at the maximum 
pressure of 3800 kPa after the shortest pure-steam injection period of six months. This case 
corresponds to Solution 1 in Table 7. 

Table 7. Decision variables and performance indicators obtained by running the hybrid 
multi-objective optimization approach. 

Non-Dominated Solutions RF cSOR SR Pinj Tinj Sfrac 
Solution 1: with the greatest RF,  

the greatest cSOR,  
and the lowest SR 

0.483 2.714 0.075 3800 6 0.35 

Solution 2: with the lowest RF 0.325 2.453 0.086 2000 6 0.35 
Solution 3: with the lowest cSOR 0.326 2.451 0.088 2000 7 0.35 
Solution 4: with the greatest SR 0.332 2.463 0.090 2050 8 0.35 

As mentioned in Figures 9 and 10, the non-dominated solution set obtained using NSGA-II 
includes two global optimum values obtained using the two GA runs. The global optimum of the 
first GA run minimizing Equation (12) is the same as Solution 3 presented in Table 7, whereas that of 
the second GA run minimizing Equation (13) is the same as Solution 1 in Table 7. The different 
global optimum values are the exemplification of artificial bias resulting from the use of weight 
factors, indicating that the form of weighted objective-sum has a significant influence on the 
outcome of global-objective optimization. For comparing the performance of non-gradient-based 
and gradient-based global-objective optimization algorithms, the steepest descent method (SDM) 
was performed twice using Equations (12) and (13), respectively. The step size of each decision 
variable shown in Table 2 was not used in the two SDM runs. The following is the outcome derived 
from the first SDM run minimizing Equation (12): RF = 0.325, cSOR = 2.470, and SR = 0.088 from the 
decision variables Pinj = 2003.5 kPa, Tinj = 6.98 months, and Sfrac = 0.346. Using the same form of global 
objective function results in the outcome similar to the global-optimum of GA (Solution 3 in Table 7). 
Note that this outcome from the SDM is dominated by Solutions 2 and 3 in Table 7 according to 
Equation (1). The second SDM run minimizing Equation (13) yielded the following outcome: RF = 
0.458, cSOR = 2.698, and SR = 0.084 when Pinj = 3451.0 kPa, Tinj = 6.91 months, and Sfrac = 0.34. This 
solution might be a Pareto-optimal solution as it is non-dominated to any solution in Table 7. 
Meanwhile, the solution is not identical with that of the second GA run. This inconsistency would be 
because outputs of gradient-based methods depend on initial solutions. 

The final solutions obtained using NSGA-II yield strong positive or negative correlation 
coefficients among the performance indicators, as summarized in Table 8. The hybrid approach 
changes not only the sign of the correlation coefficient between RF and cSOR but also that between 
cSOR and SR compared with those obtained from the initial solution set. The pair of RF and cSOR 
has a moderate negative correlation coefficient of −0.494 in the first generation; however, a strong 
positive correlation coefficient of 0.997 is attained in the last generation. In other words, increasing 
bitumen production sacrifices the steam-energy efficiency if the operating parameters are 
Pareto-optimal; nonetheless, the solution set evolves with improving both recovery and energy 
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efficiency simultaneously at earlier generations. On the other hand, RF maintains a negative 
correlation with SR for the generations because high bitumen recovery was achieved by preventing 
solvent from remaining in the heated steam–solvent vapor chamber. This result implies a possibility 
of objective-redundancy: discarding either RF or SR from the objective vector might yield similar 
optimization results. Because the convergence speed of non-dominated sorting is dependent on the 
number of objective functions, selection of essential objective functions is a salient issue in the 
process of multi-objective optimization [28]. Nonetheless, handling objective-redundancy is out of 
the scope of this study as the NSGA-II implemented in the proposed framework has explored the 
POFs of a variety of three-objective problems with reliability. The shape of the POF of this case study 
is curvilinear due to the positive correlation between RF and SR. Note that the POF would be a 
surface if every performance indicator conflicts with each other on the POF. 

In summary, the hybrid multi-directional search was efficient to provide Pareto-optimal 
operating conditions that are all trade-off to the optimization problem of the ES-SAGD process. This 
flexibility of field development planning helps decision makers determine the operating parameters 
of the ES-SAGD process based on their preferences. Therefore, the approach can be classified as a 
method of a posteriori articulation of decision makers’ preferences. 

Table 8. Correlation coefficients between performance indicators obtained from the initial and final 
solutions of the hybrid multi-objective optimization approach. 

 Initial Solution Set Final Solution Set 
 RF cSOR SR RF cSOR SR 

RF 1.000 −0.494 −0.771 RF 1.000 0.997 −0.979 
cSOR −0.494 1.000 0.825 cSOR 0.997 1.000 −0.973 

SR −0.771 0.825 1.000 SR −0.979 −0.973 1.000 

4.4. Discussion 

The comparison of the two GA runs and one NSGA-II run demonstrated the advantage of the 
hybrid multi-objective optimization approach over gradient-based or non-gradient-based 
global-objective optimization approaches with application to the oil sands reservoir. Nevertheless, 
there remain salient issues on the reliability of the proposed approach. Above all, reservoir 
heterogeneity should be reflected for designing the ES-SAGD process in real fields. For example, 
embedded shale layers that are extremely impermeable in cold bitumen deposits have negative 
influences on recovery factor and steam–solvent energy efficiency. RF, cSOR, and SR become more 
complex nonlinear functions depending on the degree of data uncertainty related to reservoir 
properties such as relative permeability curves, capillary pressure, heat loss, and temperature and 
pressure dependent fluid properties in the thermal injection process. 

This study focused on the quick screening of Pareto-optimal operating conditions using the 
trained surrogate models. The three second-order regression models used in the case study were 
derived from the same decision variables but built separately. Developing a unified high-order 
proxy model might be more powerful in capturing positive or negative correlations between 
individual responses. The accuracy of the surrogate models could be improved by updating the 
models adequately. One viable option for the update is to rebuild the surrogate models using 
qualified solutions obtained at each generation of the optimization process if an increment in 
computational costs accompanied with additional thermal simulation runs is affordable. The 
response surface models might be replaced with other proxies such as semi-analytical models that 
describe the movement of solvent vapors in a quasi-steady state by incorporating oil drainage 
equations [53] with solvent dilution effects [54–56]. Adopting a more advanced evolutionary 
optimization algorithm in the proposed framework would also save computational costs required 
for searching for the POF. It is the future work to assess the uncertainty of ES-SAGD production 
forecasts stochastically by incorporating more sophisticated proxies and evolutionary algorithms 
with Monte Carlo simulation techniques. 
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Because of the premise of non-dominated sorting that all objective functions are important 
equivalently, field operators may have difficulty making the final decision to select one operating 
scenario among multiple Pareto-optimal scenarios [57]. In particular, as shown in the ES-SAGD 
results above, cSOR can easily overwhelm the recovery factor that is the most important one. In 
other words, decreasing cSOR by 0.1 means little in the field operation but increasing oil recovery by 
0.1 can be a huge improvement. Operating scenarios expecting low RF are less attractive despite 
high energy-efficiency in oil and gas reservoirs. Coupling a priori articulation of preference 
information such as goal programming in the proposed approach can also expedite searching 
trade-off operating conditions in the region of interests while enduring a small loss of diversity 
among the posterior solutions outside the region. 

5. Conclusions 

This paper demonstrated the framework of the hybrid multi-objective optimization approach 
integrated with the polynomial response surface models and implemented the method for screening 
the Pareto-optimal operating conditions of the ES-SAGD process quickly. The response surface 
models substituting to the expensive thermal reservoir simulator allowed fast calculation of bitumen 
recovery and solvent–steam injection efficiency. The simulation results used for training the 
response surface models were in good agreement with the approximate values obtained using the 
surrogate models. The hybrid approach successfully captured trade-off operating parameters that 
revealed positive or negative correlations between the optimized bitumen recovery and energy 
efficiency. Several combinations of steam–solvent injection parameters derived from the trade-off 
ES-SAGD scenarios indicate that controlling the volume of steam injected at high solvent fraction 
could improve oil recovery while paying off energy efficiency and vice versa by adjusting the 
duration of steam–solvent co-injection and injection pressure. Nevertheless, all the derived 
combinations are viable options to the optimization problem that are more energy efficient and 
environmentally friendly by consuming less natural gas and clean water required for steam 
generation. By contrast, the simulation results obtained using GA and steepest descent method 
pointed out the vulnerability of global-objective optimization in finding the Pareto-optimal 
operating conditions. The proposed parameter-screening can help decision makers design the 
ES-SAGD process based on their preferences on the operating conditions in a posteriori manner. 
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Nomenclature 

The main symbols that appear in this paper are defined below. Other symbols are defined in the 
text as they appear. 

f objective vector 
Fnd non-dominated front 
G global objective function 
M number of objective functions
N number of decision variables
Ngen number of generations  
Npop population size 
Pinj steam–solvent injection pressure
R2 coefficient of determination
Tinj injection period of pure steam
Sfrac solvent fraction 
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x variable vector 
ψ crowding distance 
ω weight vector 
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